ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

フッ素

索引 フッ素

フッ素(フッそ、弗素、fluorine)は原子番号 9 の元素。元素記号はラテン語のFluorumの頭文字よりFが使われる。原子量は 18.9984 で、最も軽いハロゲン元素。また、同元素の単体であるフッ素分子(F2、二弗素)をも示す。 電気陰性度は 4.0 で全元素中で最も大きく、化合物中では常に -1 の酸化数を取る。反応性が高いため、天然には蛍石や氷晶石などとして存在し、基本的に単体では存在しない。.

159 関係: 原子番号原子量半導体単体塩化水素塩素屈折率上水道不動態三フッ化窒素三フッ化臭素一フッ化塩素一フッ化臭素二フッ化キセノン二フッ化クリプトン二酸化ケイ素微量元素化合物ナトリウムノーベル化学賞マグネシウムネオンハンフリー・デービーバリウムバルブポリテトラフルオロエチレンポリフッ化ビニルポリエチレンモノフルオロ酢酸ラテン語ロケットヘリウムヘキサフルオロリン酸リチウムヘキサフルオロ白金酸キセノンテルルフランスフルオロスルホン酸フッ化ナトリウムフッ化ヨウ素フッ化アルミニウムフッ化カルシウムフッ化硫黄フッ化物フッ化銅フッ化酸素フッ化水素フッ化水素カリウムフッ素症ドイツニッケル...ホウ素ベルギー分子量アメリカ航空宇宙局アルゴンフッ素水素化物アレッサンドロ・ボルタアンモニアアンリ・モアッサンアントワーヌ・ラヴォアジエアントゾナイトアンドレ=マリ・アンペールアトラス (ロケット)アイルランドイリジウムイオンイギリスイソシアン酸フッ素イタリアウランウラン235エッチングエキシマレーザーオキソ酸オゾンカリウムカルシウムカール・ヴィルヘルム・シェーレガラスキセノンギリシア語クリプトンケルビンケイ素ゲオルク・アグリコラストロンチウムセレンソビエト六フッ化テルル六フッ化ウラン六フッ化キセノン六フッ化セレン六フッ化硫黄六フッ化物元素元素記号光ファイバー国立健康・栄養研究所四フッ化キセノン四フッ化ケイ素四フッ化炭素硫黄硫酸窒素第16族元素第17族元素第18族元素炭素発振回路白金融剤融点表面処理露出 (写真)長さの比較長倉三郎腐食酸化酸化剤酸化還元電位酸化数酸素酸性酸化物蛍石電子捕獲電圧電気分解電気陰性度電池通信陽電子放出次亜フッ素酸歯磨剤比重比推力水道水フッ化物添加水酸化ナトリウム氷晶石気体沸点液体酸素液晶日本放射性同位体1530年1670年1771年1800年1806年1813年1869年1886年1906年 インデックスを展開 (109 もっと) »

原子番号

原子番号(げんしばんごう)とは、原子において、その原子核の中にある陽子の個数を表した番号である。電荷をもたない原子においては、原子中の電子の数に等しい。量記号はZで表すことがあるが、これはドイツ語のZahlの頭文字で数・番号という意味である。現在、元素の正式名称が決定している最大の原子番号は118である。.

新しい!!: フッ素と原子番号 · 続きを見る »

原子量

原子量(げんしりょう、英: atomic weight)または相対原子質量(そうたいげんししつりょう、英:relative atomic mass)とは、「一定の基準によって定めた原子の質量」原子量、『理化学事典』、第5版、岩波書店。ISBN 978-4000800907。である。 その基準は歴史的変遷を経ており、現在のIUPACの定義によれば1個の原子の質量の原子質量単位に対する比であり、Eを原子や元素を表す記号として Ar(E) という記号で表される。すなわち12C原子1個の質量に対する比の12倍である。元素に同位体が存在する場合は核種が異なるそれぞれの同位体ごとに原子の質量が異なるが、ほとんどの元素において同位体存在比は一定なので、原子量は存在比で補正された元素ごとの平均値として示される。同位体存在比の精度が変動するため、公示されている原子量の値や精度も変動する。 質量と質量との比なので比重と同様に無次元量だが、その数値は定義上、1個の原子の質量を原子質量単位で表した値に等しい。また物質量が1molの原子の質量をg単位で表した数値、すなわちg·mol−1単位で表した原子のモル質量をモル質量定数 1 g·mol−1 で除して単位を除去した数値にも等しい。 同位体存在比は、精度を高めると試料の由来(たとえば産地、地質学的年代)によって厳密には異なる。測定精度の向上と各試料の全天然存在量予測の変動により、同位体存在比の精度が変動する。そのことによりIUPACの下部組織である (CIAAW) により定期的に「原子量表」の改訂が発表され、これが「標準原子量」と呼ばれている。その改訂は隔年で行われ、奇数年に発表されている。日本化学会原子量小委員会はこの表をもとに原子量表を作成し、日本化学会会誌「化学と工業」4月号で毎年発表している。 原子量表の改定や試料間の原子量の差異があるとは言え、有効数字3桁程度では大部分の元素の原子量は十分に安定している(主な例外: リチウム、水素)。そのため、化学反応等においては、実用上は問題を生じない。一方、精密分析や公示文書の値を計算する場合は、最新の原子量表の値を使うべきである。 1961年まで、物理学では16Oの質量を、化学では天然同位体比の酸素の質量を基準としていた。.

新しい!!: フッ素と原子量 · 続きを見る »

半導体

半導体(はんどうたい、semiconductor)とは、電気伝導性の良い金属などの導体(良導体)と電気抵抗率の大きい絶縁体の中間的な抵抗率をもつ物質を言う(抵抗率だけで半導体を論じるとそれは抵抗器と同じ特性しか持ち合わせない)。代表的なものとしては元素半導体のケイ素(Si)などがある。 電子工学で使用されるICのような半導体素子はこの半導体の性質を利用している。 良導体(通常の金属)、半導体、絶縁体におけるバンドギャップ(禁制帯幅)の模式図。ある種の半導体では比較的容易に電子が伝導帯へと遷移することで電気伝導性を持つ伝導電子が生じる。金属ではエネルギーバンド内に空き準位があり、価電子がすぐ上の空き準位に移って伝導電子となるため、常に電気伝導性を示す。.

新しい!!: フッ素と半導体 · 続きを見る »

単体

単体(たんたい、simple substance)とは、単一の元素からできている純物質のことである。 水素 (H2)、酸素 (O2) などの等核二原子分子や、ナトリウム (Na)、金 (Au) などの純金属が含まれる。 これに対して、水 (H2O) など2種類以上の元素からできている純物質は化合物という。 酸素 (O2) とオゾン (O3)、あるいは赤リンと黄リンのように、同じ元素からできた単体であっても、異なる性質を示す場合がある。 このような単体同士の関係を同素体という。 たとえば、ダイヤモンドとグラファイトを混ぜ合わせた物質は、単一の炭素原子からできているが、密度・融点・沸点などの物理的性質が一定にさだまらないので純物質ではなく(したがって単体でもなく)、2種類の単体(炭素の同素体)の混合物である。.

新しい!!: フッ素と単体 · 続きを見る »

塩化水素

塩化水素(えんかすいそ、英: hydrogen chloride)は塩素と水素から成るハロゲン化水素。化学式 HCl。常温常圧で無色透明、刺激臭のある気体。有毒。塩酸ガスとも呼ばれる。.

新しい!!: フッ素と塩化水素 · 続きを見る »

塩素

Chlore lewis 塩素(えんそ、chlorine)は原子番号17の元素。元素記号は Cl。原子量は 35.45。ハロゲン元素の一つ。 一般に「塩素」という場合は、塩素の単体である塩素分子(Cl2、二塩素、塩素ガス)を示すことが多い。ここでも合わせて述べる。塩素分子は常温常圧では特有の臭いを持つ黄緑色の気体で、腐食性と強い毒を持つ。.

新しい!!: フッ素と塩素 · 続きを見る »

屈折率

屈折率(くっせつりつ、)とは、真空中の光速を物質中の光速(より正確には位相速度)で割った値であり、物質中での光の進み方を記述する上での指標である。真空を1とした物質固有の値を絶対屈折率、2つの物質の絶対屈折率の比を相対屈折率と呼んで区別する場合もある。.

新しい!!: フッ素と屈折率 · 続きを見る »

上水道

上水道(じょうすいどう)とは、一般に飲用可能な水の公共的な供給設備一般を指す。上水道には単に「水道」という呼び方もあり、下水道や中水道などとの区別を強調する場合に上水道と呼ばれることが多い。.

新しい!!: フッ素と上水道 · 続きを見る »

不動態

不動態(ふどうたい、不働態とも)とは、金属表面に腐食作用に抵抗する酸化被膜が生じた状態のこと。この被膜は溶液や酸にさらされても溶け去ることが無いため、内部の金属を腐食から保護するために用いられる。なお、本来「不働態」が正字であるが、現在は「不動態」と表記する。 酸化力のある酸にさらされた場合や、陽極酸化処理によって生じる。不動態の典型的な被膜の厚みは、例えばステンレスに生じる不動態の場合、数nmである。 すべての金属が不動態となるわけではない。不動態になりやすいのは、アルミニウム、クロム、チタンなどやその合金である。また、これらの金属は弁金属(バルブメタル)と呼ばれる。.

新しい!!: フッ素と不動態 · 続きを見る »

三フッ化窒素

三フッ化窒素(さんフッかちっそ)は化学式 NF3で表される無機化合物。この窒素-フッ素化合物は無色、有毒、無臭、不燃性、助燃性の気体である。半導体化学でエッチングガスとして使われるため、使用は増加傾向にある。.

新しい!!: フッ素と三フッ化窒素 · 続きを見る »

三フッ化臭素

三フッ化臭素(さんフッかしゅうそ、)は化学式BrF3の、臭素とフッ素によるハロゲン間化合物。毒性と腐食性のある液体で、硫酸に溶けるが水や有機化合物とは爆発的に反応する。強力なフッ素化剤であり、核燃料処理において六フッ化ウランの製造に使われる。.

新しい!!: フッ素と三フッ化臭素 · 続きを見る »

一フッ化塩素

一フッ化塩素(いちフッかえんそ、chlorine monofluoride)は、化学式が ClF で表される塩素原のフッ化物である。常温では無色の気体で、-100℃で淡黄色の液体となる。CAS登録番号は 。 1928年、ドイツの化学者オットー・ルフ(Otto Ruff)により初めて合成されたArnold F. Holleman, Egon Wiberg, Nils Wiberg: Lehrbuch der anorganischen Chemie, 101.

新しい!!: フッ素と一フッ化塩素 · 続きを見る »

一フッ化臭素

一フッ化臭素(いちフッかしゅうそ、)は化学式BrFで表される、臭素とフッ素からなるハロゲン間化合物。臭素化試薬として使用される。.

新しい!!: フッ素と一フッ化臭素 · 続きを見る »

二フッ化キセノン

二フッ化キセノン(にフッかキセノン、Xenon difluoride、XeF2)は、キセノン化合物でもっとも安定なものの1つであり、強力なフッ化剤である。大部分の共有結合性無機フッ化物のように水分に敏感である。高密度の白色結晶で、光や水に接すると分解する。不快臭を持つが、蒸気圧は低い (Weeks, 1966)。分子構造は直線形である。 550 cm-1 と 556 cm-1 に特徴的な赤外線吸収のダブレットを示す。市販品が入手可能。.

新しい!!: フッ素と二フッ化キセノン · 続きを見る »

二フッ化クリプトン

二フッ化クリプトン(にフッかクリプトン、Krypton difluoride、KrF2)は、最初に発見されたクリプトン化合物である。揮発性の固体である。分子構造は直線形で、Kr-F間の距離は188.9pm。強酸と反応してKrF+とKr2F3+カチオンを形成する。.

新しい!!: フッ素と二フッ化クリプトン · 続きを見る »

二酸化ケイ素

二酸化ケイ素(にさんかケイそ、silicon dioxide)はケイ素の酸化物で、地殻を形成する物質の一つとして重要である。組成式は。シリカ(silica)、無水ケイ酸とも呼ばれる。圧力、温度の条件により、石英(quartz、水晶)以外にもシリカ鉱物()の多様な結晶相(結晶多形)が存在する。.

新しい!!: フッ素と二酸化ケイ素 · 続きを見る »

微量元素

この記事では、微量元素(びりょうげんそ)について説明する。.

新しい!!: フッ素と微量元素 · 続きを見る »

化合物

化合物(かごうぶつ、chemical compound)とは、化学反応を経て2種類以上の元素の単体に生成することができる物質であり岩波理化学辞典(4版)、p.227、【化合物】、言い換えると2種類以上の元素が化学結合で結びついた純物質とも言える。例えば、水 (H2O) は水素原子 (H) 2個と酸素原子 (O) 1個からなる化合物である。水が水素や酸素とは全く異なる性質を持っているように、一般的に、化合物の性質は、含まれている元素の単体の性質とは全く別のものである。 同じ化合物であれば、成分元素の質量比はつねに一定であり、これを定比例の法則と言い株式会社 Z会 理科アドバンスト 考える理科 化学入門、混合物と区別される。ただし中には結晶の不完全性から生じる岩波理化学辞典(4版)、p.1109、【不定比化合物】不定比化合物のように各元素の比が自然数にならないが安定した物質もあり、これらも化合物のひとつに含める。 化合物は有機化合物か無機化合物のいずれかに分類されるが、その領域は不明瞭な部分がある。.

新しい!!: フッ素と化合物 · 続きを見る »

ナトリウム

ナトリウム(Natrium 、Natrium)は原子番号 11、原子量 22.99 の元素、またその単体金属である。元素記号は Na。アルカリ金属元素の一つで、典型元素である。医薬学や栄養学などの分野ではソジウム(ソディウム、sodium )とも言い、日本の工業分野では(特に化合物中において)曹達(ソーダ)と呼ばれる炭酸水素ナトリウムを重炭酸ソーダ(重曹)と呼んだり、水酸化ナトリウムを苛性ソーダと呼ぶ。また、ナトリウム化合物を作ることから日本曹達や東洋曹達(現東ソー)などの名前の由来となっている。。毒物及び劇物取締法により劇物に指定されている。.

新しい!!: フッ素とナトリウム · 続きを見る »

ノーベル化学賞

ノーベル化学賞(ノーベルかがくしょう、Nobelpriset i kemi)はノーベル賞の一部門。アルフレッド・ノーベルの遺言によって創設された6部門のうちの一つ。化学の分野において重要な発見あるいは改良を成し遂げた人物に授与される。 ノーベル化学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には宝箱を持ち雲の中から現れた自然の女神のベールを科学の神が持ち上げて素顔を眺めている姿(物理学賞と共通)がデザインされている。.

新しい!!: フッ素とノーベル化学賞 · 続きを見る »

マグネシウム

マグネシウム(magnesium )は原子番号 12、原子量 24.305 の金属元素である。元素記号は Mg。マグネシュームと転訛することがある。中国語は金へんに美と記する。 周期表第2族元素の一種で、ヒトを含む動物や植物の代表的なミネラル(必須元素)であり、とりわけ植物の光合成に必要なクロロフィルで配位結合の中心として不可欠である。また、有機化学においてはグリニャール試薬の構成元素として重要である。 酸化マグネシウムおよびオキソ酸塩の成分としての酸化マグネシウムを、苦い味に由来して苦土(くど、bitter salts)とも呼称する。.

新しい!!: フッ素とマグネシウム · 続きを見る »

ネオン

ネオン(neon )は原子番号 10、原子量 20.180 の元素である。名称はギリシャ語の'新しい'を意味する「νέος (neos)」に由来する。元素記号は Ne。 単原子分子として存在し、単体は常温常圧で無色無臭の気体。融点 −248.7 ℃、沸点 −246.0 ℃(ただし融点沸点とも異なる実験値あり)。密度は 0.900 g/dm (0 ℃, 1 atm)・液体時は 1.21 g/cm (−246 ℃)。空気中に18.2 ppm含まれ、希ガスとしてはアルゴンに次ぐ割合で存在する。工業的には、空気を液化・分留して作る手段が唯一事業性を持てる。磁化率 −0.334×10 cm/g。1体積の水に溶解する体積比は0.012。 ネオンの三重点(約24.5561 K)はITS-90の定義定点になっている。.

新しい!!: フッ素とネオン · 続きを見る »

ハンフリー・デービー

初代準男爵、サー・ハンフリー・デービー(Sir Humphry Davy, 1st Baronet、1778年12月17日 - 1829年5月29日)は、イギリスの化学者で発明家David Knight, ‘Davy, Sir Humphry, baronet (1778–1829)’, Oxford Dictionary of National Biography, Oxford University Press, 2004 。アルカリ金属やアルカリ土類金属をいくつか発見したことで知られ、塩素やヨウ素の性質を研究したことでも知られている。ベルセリウスは On Some Chemical Agencies of Electricity と題したデービーの1806年の Bakerian Lectureを「化学の理論を豊かにした最良の論文のひとつ」としている, 。この論文は19世紀前半の様々な化学親和力理論の核となった。1815年、デービー灯を発明し、可燃性の気体が存在しても坑夫が安全に働けるようになった。.

新しい!!: フッ素とハンフリー・デービー · 続きを見る »

バリウム

バリウム(barium )は、原子番号 56 の元素。元素記号は Ba。アルカリ土類金属のひとつで、単体では銀白色の軟らかい金属。他のアルカリ土類金属元素と類似した性質を示すが、カルシウムやストロンチウムと比べ反応性は高い。化学的性質としては+2価の希土類イオンとも類似した性質を示す。アルカリ土類金属としては密度が大きく重いため、ギリシャ語で「重い」を意味する βαρύς (barys) にちなんで命名された。ただし、金属バリウムの比重は約3.5であるため軽金属に分類される。地殻における存在量は豊富であり、重晶石(硫酸バリウム)などの鉱石として産出する。確認埋蔵量の48.6%を中国が占めており、生産量も50%以上が中国によるものである。バリウムの最大の用途は油井やガス井を採掘するためのにおける加重剤であり、重晶石を砕いたバライト粉が利用される。 硫酸バリウム以外の可溶性バリウム塩には毒性があり、多量のバリウムを摂取するとカリウムチャネルをバリウムイオンが阻害することによって神経系への影響が生じる。そのためバリウムは毒物及び劇物取締法などにおいて規制の対象となっている。.

新しい!!: フッ素とバリウム · 続きを見る »

バルブ

バルブ(valve)は、液体や気体の配管など、流体が通る系統において設けられる流れの方向・圧力・流量の制御を行う機器の総称石福昭監修・中井多喜雄著 『建築設備用語辞典』技報堂出版 p.563 1998年。特に用途や種類などを表す修飾語が付く場合には「弁(べん)」という語が用いられる。この「弁」の元の用字は“瓣”すなわち花弁・はなびらを意味する。 手動操作バルブのほか、電動弁など動力化により遠隔操作可能なバルブもある。また、一部の工場作業者はベルブと言い換える場合がある。 バルブには、流体の種類(液体、気体)、性質(可燃性、毒性、腐食性、圧力、温度)、特性、さらには、バルブ本体の材料(金属、非金属)により、豊富な種類の構造のものがある。一般生活においては水道、ガス、給湯器などの家庭用や、タンクや、ボンベを初めとした産業設備、金管楽器等に使用されている。 イギリス英語においては真空管を、電気信号の開閉スイッチの役割を果たすことから thermionic valve, radio valve と呼んでいる。.

新しい!!: フッ素とバルブ · 続きを見る »

ポリテトラフルオロエチレン

ポリテトラフルオロエチレン (polytetrafluoroethylene, PTFE) はテトラフルオロエチレンの重合体で、フッ素原子と炭素原子のみからなるフッ素樹脂(フッ化炭素樹脂)である。テフロン (Teflon) の商品名で知られる。化学的に安定で耐熱性、耐薬品性に優れる。.

新しい!!: フッ素とポリテトラフルオロエチレン · 続きを見る »

ポリフッ化ビニル

ポリフッ化ビニル(ポリフッかビニル、、略称PVF)は汎用フッ素樹脂の一種。.

新しい!!: フッ素とポリフッ化ビニル · 続きを見る »

ポリエチレン

製造法によっては、ポリエチレンは分岐構造をもつ。 ポリエチレン(polyethylene、polyethene)、略称PEは、エチレンが重合した構造を持つ高分子である。最も単純な構造をもつ高分子であり、容器や包装用フィルムをはじめ、様々な用途に利用されている。 基本的にはメチレン(-CH2-)のくり返しのみで構成されているが、重合法によって平均分子量や分枝数、結晶性に違いが生じ、密度や熱特性、機械特性などもそれに応じて異なる。 一般に酸やアルカリに安定。低分子量のものは炭化水素系溶剤に膨潤するが、高分子量のものは耐薬性に非常に優れる。濡れ性は低い。絶縁性が高く、静電気を帯びやすい。.

新しい!!: フッ素とポリエチレン · 続きを見る »

モノフルオロ酢酸

モノフルオロ酢酸(モノフルオロさくさん)は化学式C2H3FO2の化学物質で、カルボン酸の一種である。フルオロ酢酸(fluoroacetic acid)、gifblaar poison とも呼ばれる。 酢酸のメチル基を構成する水素の1つが、フッ素原子に置き換わったものである。 日本では毒物及び劇物取締法(毒劇法)により、特定毒物に指定される物質である。.

新しい!!: フッ素とモノフルオロ酢酸 · 続きを見る »

ラテン語

ラテン語(ラテンご、lingua latina リングア・ラティーナ)は、インド・ヨーロッパ語族のイタリック語派の言語の一つ。ラテン・ファリスク語群。漢字表記は拉丁語・羅甸語で、拉語・羅語と略される。.

新しい!!: フッ素とラテン語 · 続きを見る »

ロケット

ット(rocket)は、自らの質量の一部を後方に射出し、その反作用で進む力(推力)を得る装置(ロケットエンジン)、もしくはその推力を利用して移動する装置である。外気から酸化剤を取り込む物(ジェットエンジン)は除く。 狭義にはロケットエンジン自体をいうが、先端部に人工衛星や宇宙探査機などのペイロードを搭載して宇宙空間の特定の軌道に投入させる手段として使われる、ロケットエンジンを推進力とするローンチ・ヴィークル(打ち上げ機)全体をロケットということも多い。 また、ロケットの先端部に核弾頭や爆発物などの軍事用のペイロードを搭載して標的や目的地に着弾させる場合にはミサイルとして区別され、弾道飛行をして目的地に着弾させるものを特に弾道ミサイルとして区別している。なお、北朝鮮による人工衛星の打ち上げは国際社会から事実上の弾道ミサイル発射実験と見なされており国際連合安全保障理事会決議1718と1874と2087でも禁止されているため、特に日本国内においては人工衛星打ち上げであってもロケットではなくミサイルと報道されている。 なお、推力を得るために射出される質量(推進剤、プロペラント)が何か、それらを動かすエネルギーは何から得るかにより、ロケットは様々な方式に分類されるが、ここでは最も一般的に使われている化学ロケット(化学燃料ロケット)を中心に述べる。 ロケットの語源は、1379年にイタリアの芸術家兼技術者であるムラトーリが西欧で初めて火薬推進式のロケットを作り、それを形状にちなんで『ロッケッタ』と名づけたことによる。.

新しい!!: フッ素とロケット · 続きを見る »

ヘリウム

ヘリウム (新ラテン語: helium, helium )は、原子番号 2、原子量 4.00260、元素記号 He の元素である。 無色、無臭、無味、無毒(酸欠を除く)で最も軽い希ガス元素である。すべての元素の中で最も沸点が低く、加圧下でしか固体にならない。ヘリウムは不活性の単原子ガスとして存在する。また、存在量は水素に次いで宇宙で2番目に多い。ヘリウムは地球の大気の 0.0005 % を占め、鉱物やミネラルウォーターの中にも溶け込んでいる。天然ガスと共に豊富に産出し、気球や小型飛行船のとして用いられたり、液体ヘリウムを超伝導用の低温素材としたり、大深度へ潜る際の呼吸ガスとして用いられている。.

新しい!!: フッ素とヘリウム · 続きを見る »

ヘキサフルオロリン酸リチウム

ヘキサフルオロリン酸リチウム (lithium hexafluorophosphate) は、化学式がLiPF6 と表される無機化合物である。白色の結晶性粉末で、水に触れるか空気中の湿気によって速やかに加水分解する。リチウム/リチウムイオン二次電池で使用される電解質を構成するリチウム塩として代表的なものである。.

新しい!!: フッ素とヘキサフルオロリン酸リチウム · 続きを見る »

ヘキサフルオロ白金酸キセノン

ヘキサフルオロ白金酸キセノン(ヘキサフルオロはっきんさんキセノン、xenon hexafluoroplatinate)は世界で初めて作られた希ガス化合物である。 分子式は XePtF6 である。 希ガスは他の元素と化合しないと思われていたが、キセノンに化合物を作ることが分かり、1962年5月にカナダのブリティッシュコロンビア大学のネイル・バートレットとD.H.ローマンによって発見された。 単体は黄色の固体である。.

新しい!!: フッ素とヘキサフルオロ白金酸キセノン · 続きを見る »

テルル

テルル(tellurium)は原子番号52の元素。元素記号は Te。第16族元素の一つ。.

新しい!!: フッ素とテルル · 続きを見る »

フランス

フランス共和国(フランスきょうわこく、République française)、通称フランス(France)は、西ヨーロッパの領土並びに複数の海外地域および領土から成る単一主権国家である。フランス・メトロポリテーヌ(本土)は地中海からイギリス海峡および北海へ、ライン川から大西洋へと広がる。 2、人口は6,6600000人である。-->.

新しい!!: フッ素とフランス · 続きを見る »

フルオロスルホン酸

フルオロスルホン酸(フルオロスルホンさん、fluorosulfonic acid)は化学式 FSO3H で表されるスルホン酸で、一般に入手できる酸の中では最も強いものの1つである。フルオロ硫酸(フルオロりゅうさん、fluorosulfuric acid)とも呼ばれる。示性式では FSO2OH と表され、硫酸 SO2(OH)2 のヒドロキシ基の1つをフッ素原子に置き換えた、四面体型の構造を持つ分子である。.

新しい!!: フッ素とフルオロスルホン酸 · 続きを見る »

フッ化ナトリウム

フッ化ナトリウム(フッかナトリウム、sodium fluoride)は組成式 NaF で表されるナトリウムのフッ化物である。無色の固体で、フッ化物イオンの発生源としてさまざまな用途に用いられる。フッ化カリウムと比べて安価であり、吸湿性も低いが、利用される頻度はカリウム塩のほうが高い。.

新しい!!: フッ素とフッ化ナトリウム · 続きを見る »

フッ化ヨウ素

フッ化ヨウ素(フッかヨウそ、iodine fluoride)は、ヨウ素の酸化数の違いにより以下のものが存在する。.

新しい!!: フッ素とフッ化ヨウ素 · 続きを見る »

フッ化アルミニウム

フッ化アルミニウム(フッかアルミニウム、aluminium fluoride)は化学式 AlF3 で表されるフッ素の化合物である。外観は白色の結晶性粉末である。水酸化アルミニウムまたは金属アルミニウムをフッ化水素と反応させると得られる。結晶構造は酸化レニウム(VI) と類似しており、アルミニウム周りは歪んだ八面体構造をとる。 この構造のため、他のハロゲン類縁体と異なり耐火性を持つ。塩化アルミニウム AlCl3、臭化アルミニウム AlBr3、ヨウ化アルミニウム AlI3 はいずれも液体状態では二量体を形成し、蒸発する際も二量体のままである。一方フッ化アルミニウムの場合、約1000℃における気体状態では D3h の対称性を持つ三角形の構造をとる。Al−F 結合距離は163pmである。 フッ化アルミニウムはアルミニウムを電解製錬する際に添加剤として用いられる。アルミナの融点を下げ、導電性を高める効果を持つ。.

新しい!!: フッ素とフッ化アルミニウム · 続きを見る »

フッ化カルシウム

フッ化カルシウム (フッかカルシウム、calcium fluoride) はカルシウムとフッ素からなる無機化合物で、組成式 CaF2、白色のイオン結晶。天然では蛍石として産出し、フッ素化合物の原料となる。.

新しい!!: フッ素とフッ化カルシウム · 続きを見る »

フッ化硫黄

フッ化硫黄(フッかいおう、sulfur fluoride)はフッ素と硫黄とから構成される無機化合物で、異性体を含めて以下の6種類が知られている。十フッ化二硫黄のみが常温常圧で液体であり、他は気体の化合物である。.

新しい!!: フッ素とフッ化硫黄 · 続きを見る »

フッ化物

フッ化物(フッかぶつ、弗化物、fluoride)とはフッ素とほかの元素あるいは原子団とから構成される化合物である。フッ素は最大の電気陰性度を持つ元素であるため、HF3 などごく一部の例外を除き、化合物の中では酸化数が -1 とされる。イオン性あるいは分子性のフッ化物が知られているが分子性フッ化物は液体のものが多く、常温で気体や固体のものも少数見られる。イオン性のフッ化物でも一般に融点の低いものが多い長倉三郎ら(編)、「フッ化物」、『岩波理化学辞典』、第5版 CD-ROM版、岩波書店、1998年。。 イオン性のフッ化物の構成要素となる、フッ素原子が電子を1個得て単独でイオン化した陰イオン (F-) はフッ化物イオンと呼ばれる。フッ素イオンと言う名称は、現在推奨されていない。.

新しい!!: フッ素とフッ化物 · 続きを見る »

フッ化銅

フッ化銅(フッかどう)は、銅のフッ化物。フッ化銅には銅の酸化数の違いにより以下の2種が存在する。.

新しい!!: フッ素とフッ化銅 · 続きを見る »

フッ化酸素

フッ化酸素(フッかさんそ、oxygen fluoride)は、酸素とフッ素からなる無機化合物である。現在 OF2、O2F2、O3F2、O4F2 および O2F の5種類のフッ化酸素が知られている。二フッ化酸素は他のハロゲン化酸素と同様に水とフッ素との反応で生成するが、それ以外のフッ化酸素は低温下で二酸素 O2 と二フッ素 F2 の混合物に放電もしくは紫外線を照射することで生成する漆山 秋雄、「フッ化酸素」、『世界大百科事典』、CD-ROM版、平凡社、1998年。ISBN 978-4582040029 。また、酸化フッ素(さんかフッそ、fluorine oxide)と呼ばれることもある。また、フッ化酸素はロケット燃料の酸化剤として検討されているCotton, F. A.; Wilkinson,G.; Murillo, C. A.; Bochmann, M. (1999).

新しい!!: フッ素とフッ化酸素 · 続きを見る »

フッ化水素

フッ化水素(フッかすいそ、弗化水素、)とは、水素とフッ素とからなる無機化合物で、分子式が HF と表される無色の気体または液体。水溶液はフッ化水素酸 と呼ばれ、フッ酸とも俗称される。毒物及び劇物取締法の医薬用外毒物に指定されている。.

新しい!!: フッ素とフッ化水素 · 続きを見る »

フッ化水素カリウム

フッ化水素カリウム はカリウムイオンとビフルオリドイオンから成る無機化合物。 用途はエッチング液Jean Aigueperse, Paul Mollard, Didier Devilliers, Marius Chemla, Robert Faron, Renée Romano, Jean Pierre Cuer, “Fluorine Compounds, Inorganic” in Ullmann’s Encyclopedia of Industrial Chemistry 2005 Wiley-VCH, Weinheim.

新しい!!: フッ素とフッ化水素カリウム · 続きを見る »

フッ素症

フッ素症は(フッそしょう、Fluorosis)は、フッ素の過剰摂取に関連して生じる疾病のこと。.

新しい!!: フッ素とフッ素症 · 続きを見る »

ドイツ

ドイツ連邦共和国(ドイツれんぽうきょうわこく、Bundesrepublik Deutschland)、通称ドイツ(Deutschland)は、ヨーロッパ中西部に位置する連邦制共和国である。もともと「ドイツ連邦共和国」という国は西欧に分類されているが、東ドイツ(ドイツ民主共和国)の民主化と東西ドイツの統一により、「中欧」または「中西欧」として再び分類されるようになっている。.

新しい!!: フッ素とドイツ · 続きを見る »

ニッケル

ニッケル (nikkel, nickel, niccolum) は、原子番号28の金属元素である。元素記号は Ni。 地殻中の存在比は約105 ppmと推定されそれほど多いわけではないが、鉄隕石中には数%含まれる。特に 62Ni の1核子当たりの結合エネルギーが全原子中で最大であるなどの点から、鉄と共に最も安定な元素である。岩石惑星を構成する元素として比較的多量に存在し、地球中心部の核にも数%含まれると推定されている。.

新しい!!: フッ素とニッケル · 続きを見る »

ホウ素

ホウ素(ホウそ、硼素、boron、borium)は、原子番号 5、原子量 10.81、元素記号 B で表される元素である。高融点かつ高沸点な硬くて脆い固体であり、金属元素と非金属元素の中間の性質を示す(半金属)。1808年にゲイ.

新しい!!: フッ素とホウ素 · 続きを見る »

ベルギー

ベルギー王国(ベルギーおうこく)、通称ベルギーは、西ヨーロッパに位置する連邦立憲君主制国家。隣国のオランダ、ルクセンブルクと合わせてベネルクスと呼ばれる。首都のブリュッセル(ブリュッセル首都圏地域)は欧州連合(EU)の主要機関の多くが置かれているため、"EUの首都"とも言われており、その通信・金融網はヨーロッパを越えて地球規模である。憲法上の首都は19の基礎自治体から成るブリュッセル首都圏の自治体の一つ、ブリュッセル市である。 19世紀にネーデルラント連合王国から独立した国家で、オランダ語の一種であるフラマン語が公用語の北部フランデレン地域とフランス語が公用語の南部ワロン地域とにほぼ二分される(この他にドイツ語が公用語の地域もある)。建国以来、単一国家であったが、オランダ語系住民とフランス語系住民の対立(言語戦争)が続いたため、1993年にフランデレン地域とワロン地域とブリュッセル首都圏の区分を主とする連邦制に移行した。.

新しい!!: フッ素とベルギー · 続きを見る »

分子量

分子量(ぶんしりょう、)または相対分子質量(そうたいぶんししつりょう、)とは、物質1分子の質量の統一原子質量単位(静止して基底状態にある自由な炭素12 (12C) 原子の質量の1/12)に対する比であり、分子中に含まれる原子量の総和に等しい。 本来、核種組成の値によって変化する無名数である。しかし、特に断らない限り、天然の核種組成を持つと了解され、その場合には、構成元素の天然の核種組成に基づいた相対原子質量(原子量)を用いて算出される。.

新しい!!: フッ素と分子量 · 続きを見る »

アメリカ航空宇宙局

アメリカ航空宇宙局(アメリカこうくううちゅうきょく、National Aeronautics and Space Administration, NASA)は、アメリカ合衆国政府内における宇宙開発に関わる計画を担当する連邦機関である。1958年7月29日、国家航空宇宙法 (National Aeronautics and Space Act) に基づき、先行の国家航空宇宙諮問委員会 (National Advisory Committee for Aeronautics, NACA) を発展的に解消する形で設立された。正式に活動を始めたのは同年10月1日のことであった。 NASAはアメリカの宇宙開発における国家的努力をそれ以前よりもさらに充実させ、アポロ計画における人類初の月面着陸、スカイラブ計画における長期宇宙滞在、さらに宇宙往還機スペースシャトルなどを実現させた。現在は国際宇宙ステーション (International Space Station, ISS) の運用支援、オリオン宇宙船、スペース・ローンチ・システム、商業乗員輸送などの開発と監督を行なっている。 宇宙開発に加えてNASAが帯びている重要な任務は、宇宙空間の平和目的あるいは軍事目的における長期間の探査である。人工衛星を使用した地球自体への探査、無人探査機を使用した太陽系の探査、進行中の冥王星探査機ニュー・ホライズンズ (New Horizons) のような太陽系外縁部の探査、さらにはハッブル宇宙望遠鏡などを使用した、ビッグ・バンを初めとする宇宙全体への探査などが主な役割となっている。2006年2月に発表されたNASAの到達目標は、「宇宙空間の開拓、科学的発見、そして最新鋭機の開発において、常に先駆者たれ」であった。.

新しい!!: フッ素とアメリカ航空宇宙局 · 続きを見る »

アルゴンフッ素水素化物

アルゴンフッ素水素化物(アルゴンフッそすいそかぶつ、argon fluorohydride)とは知られている唯一のアルゴン(Ar)化合物(2006年現在)である。極低温マトリックス中で生成される。 2000年8月24日、フィンランドの科学者 Markku Räsänen によりネイチャー誌上で合成法とその赤外スペクトルが報告された。 分子式は HArF。.

新しい!!: フッ素とアルゴンフッ素水素化物 · 続きを見る »

アレッサンドロ・ボルタ

アレッサンドロ・ジュゼッペ・アントニオ・アナスタージオ・ヴォルタ伯爵(Il Conte Alessandro Giuseppe Antonio Anastasio Volta、1745年2月18日 - 1827年3月5日)は、イタリアGiuliano Pancaldi, "Volta: Science and culture in the age of enlightenment", Princeton University Press, 2003.

新しい!!: フッ素とアレッサンドロ・ボルタ · 続きを見る »

アンモニア

アンモニア (ammonia) は分子式が NH_3 で表される無機化合物。常温常圧では無色の気体で、特有の強い刺激臭を持つ。 水に良く溶けるため、水溶液(アンモニア水)として使用されることも多く、化学工業では基礎的な窒素源として重要である。また生体において有毒であるため、重要視される物質である。塩基の程度は水酸化ナトリウムより弱い。 窒素原子上の孤立電子対のはたらきにより、金属錯体の配位子となり、その場合はアンミンと呼ばれる。 名称の由来は、古代エジプトのアモン神殿の近くからアンモニウム塩が産出した事による。ラテン語の sol ammoniacum(アモンの塩)を語源とする。「アモンの塩」が意味する化合物は食塩と尿から合成されていた塩化アンモニウムである。アンモニアを初めて合成したのはジョゼフ・プリーストリー(1774年)である。 共役酸 (NH4+) はアンモニウムイオン、共役塩基 (NH2-) はアミドイオンである。.

新しい!!: フッ素とアンモニア · 続きを見る »

アンリ・モアッサン

フェルディナン・フレデリック・アンリ・モアッサン(Ferdinand Frédéric Henri Moissan、1852年9月28日 – 1907年2月20日)はフランスの化学者である。フリードリヒ・ヴェーラーが最初に生成した炭酸カルシウムを、1892年にトーマス・ウィルソンと商業的に生産する方法を開発した。1906年、フッ素の研究と分離およびモアッサン電気炉の製作の業績によりノーベル化学賞を受賞した。この電気炉は実績があり、この中に石灰とコークスの混合物を入れて2000℃超に加熱するとカルシウム・カーバイドが得られたのである。.

新しい!!: フッ素とアンリ・モアッサン · 続きを見る »

アントワーヌ・ラヴォアジエ

Marie-Anne Pierrette Paulzeの肖像画 『化学要論』(名古屋市科学館展示、金沢工業大学所蔵 『化学要論』(名古屋市科学館展示、金沢工業大学所蔵 マリー=アンヌが描いた実験図。A側の方を熱してAは水銀、Eは空気である 呼吸と燃焼の実験 ダイヤモンドの燃焼実験 宇田川榕菴により描かれた『舎密開宗』。蘭学として伝わったラヴォアジエの水素燃焼実験図 Jacques-Léonard Mailletによって作られたラヴォアジエ(ルーヴル宮殿) アントワーヌ・ラヴォアジエ Éleuthère Irénée du Pont de Nemoursとラヴォアジエ アントワーヌ=ローラン・ド・ラヴォアジエ(ラボアジェなどとも、フランス語:Antoine-Laurent de Lavoisier, 、1743年8月26日 - 1794年5月8日)は、フランス王国パリ出身の化学者、貴族。質量保存の法則を発見、酸素の命名、フロギストン説を打破したことから「近代化学の父」と称される - コトバンク、2013年3月27日閲覧。。 1774年に体積と重量を精密にはかる定量実験を行い、化学反応の前後では質量が変化しないという質量保存の法則を発見。また、ドイツの化学者、医師のゲオルク・シュタールが提唱し当時支配的であった、「燃焼は一種の分解現象でありフロギストンが飛び出すことで熱や炎が発生するとする説(フロギストン説)」を退け、1774年に燃焼を「酸素との結合」として説明した最初の人物で、1779年に酸素を「オキシジェーヌ(oxygène)」と命名した。ただし、これは酸と酸素とを混同したための命名であった。 しばしば「酸素の発見者」と言及されるが、酸素自体の最初の発見者は、イギリスの医者ジョン・メーヨーが血液中より酸素を発見していたが、当時は受け入れられず、その後1775年3月にイギリスの自然哲学者、教育者、神学者のジョゼフ・プリーストリーが再び発見し、プリーストリーに優先権があるため、厳密な表現ではない; 。進展中だった科学革命の中でプリーストリーの他にスウェーデンの化学者、薬学者のカール・ヴィルヘルム・シェーレが個別に酸素を発見しているため、正確に特定することは困難だが、結果としてラヴォアジエが最初に酸素を「酸素(oxygène)」と命名したことに変わりはない。またアメリカの科学史家の トーマス・クーンは『科学革命の構造』の中でパラダイムシフトの概念で説明しようとした。。なお、プリーストリーは酸素の発見論文を1775年に王立協会に提出しているため、化学史的に酸素の発見者とされる人物はプリーストリーである。 また、化学的には誤りではあったが物体の温度変化を「カロリック」によって引き起こされるものだとし、これを体系づけてカロリック説を提唱した。.

新しい!!: フッ素とアントワーヌ・ラヴォアジエ · 続きを見る »

アントゾナイト

アントゾナイト(Antozonite)は、放射性の蛍石の一種であり、1841年にバイエルン州Wölsendorfで発見され、1962年に名づけられた。かつてはStinkspat、Stinkfluss、Stinkstein、fetid fluorite等とも呼ばれた。 フッ素原子を含む多数の含有物を含み、結晶が破壊された際にフッ素が放出される特徴がある。フッ素は空気中の酸素や水蒸気と反応してオゾンとフッ化水素を生じる。生じたオゾンの特徴的な匂いが、antozoneと呼ばれる仮説上の化合物と誤認されたことから、この名前が付いた。 2012年に、ミュンヘン工科大学等のチームによって、それまで自然界には存在しないとされていた単体のフッ素分子が含まれていることが確認された。.

新しい!!: フッ素とアントゾナイト · 続きを見る »

アンドレ=マリ・アンペール

アンドレ=マリ・アンペール(André-Marie Ampère, 1775年1月20日 - 1836年6月10日)は、フランスの物理学者、数学者。電磁気学の創始者の一人。アンペールの法則を発見した。電流のSI単位の アンペアはアンペールの名にちなんでいる。.

新しい!!: フッ素とアンドレ=マリ・アンペール · 続きを見る »

アトラス (ロケット)

Atlas launch vehicle evolution. (USAF) アトラスロケット(Atlas)はアメリカの大型使い捨て打ち上げロケットの一つである。アトラスシリーズには大きく分けて、タイタンICBMの配備に伴って余剰となったアトラスICBMを流用・改良したアトラスI、チャレンジャー事故の影響でアメリカの衛星打ち上げ能力が一時的に喪失したことを受けて開発されたアトラスII、さらにメインエンジンをロシア製液酸ケロシンエンジンであるRD-180に、上段を液酸液水エンジンであるセントールエンジンに換装したアトラスIII、及び第一段をコモン・コア・ブースターと呼ばれる大型のもの(Common Core Booster メインエンジンとしてRD-180を用いる)へ変更したアトラスVの4種類のシリーズがあり、アトラスIVは存在しない。なお、本稿ではそれら全てについて扱う。.

新しい!!: フッ素とアトラス (ロケット) · 続きを見る »

アイルランド

アイルランド、またはアイルランド共和国(-きょうわこく)は、北西ヨーロッパ、北大西洋のアイルランド島の大部分を領土とする立憲共和制国家。首都はダブリン。島の北東部はイギリスのカントリーの一つである北アイルランドと接している。 独立前より北アイルランドも自国の領土であると主張し、イギリスとの対立と抗争を繰り返してきたが、1998年のベルファスト合意により領有権を放棄した。 2005年、『エコノミスト』の調査では最も住みやすい国に選出されている。.

新しい!!: フッ素とアイルランド · 続きを見る »

イリジウム

イリジウム(iridium )は原子番号77の元素。元素記号は Ir。 白金族元素の一つで、単体では白金に似た白い光沢(銀白色)を持つ金属(遷移金属)として存在する。.

新しい!!: フッ素とイリジウム · 続きを見る »

イオン

イオン(Ion、ion)とは、電子の過剰あるいは欠損により電荷を帯びた原子または原子団のことである。電離層などのプラズマ、電解質の水溶液、イオン結晶などのイオン結合性を持つ物質内などに存在する。 陰極や陽極に引かれて動くことから、ギリシャ語のἰόνイオン, ローマ字表記でion("going")より、 ion(移動)の名が付けられた。.

新しい!!: フッ素とイオン · 続きを見る »

イギリス

レートブリテン及び北アイルランド連合王国(グレートブリテンおよびきたアイルランドれんごうおうこく、United Kingdom of Great Britain and Northern Ireland)、通称の一例としてイギリス、あるいは英国(えいこく)は、ヨーロッパ大陸の北西岸に位置するグレートブリテン島・アイルランド島北東部・その他多くの島々から成る同君連合型の主権国家である。イングランド、ウェールズ、スコットランド、北アイルランドの4つの国で構成されている。 また、イギリスの擬人化にジョン・ブル、ブリタニアがある。.

新しい!!: フッ素とイギリス · 続きを見る »

イソシアン酸フッ素

イソシアン酸フッ素 (fluorine isocyanate,FNCO) はフッ素とイソシアン酸からなる化合物である。アルゴン中で、 (fluorocarbonyl azide) の紫外線分解によって生成することが確認されている。.

新しい!!: フッ素とイソシアン酸フッ素 · 続きを見る »

イタリア

イタリア共和国(イタリアきょうわこく, IPA:, Repubblica Italiana)、通称イタリアは南ヨーロッパにおける単一国家、議会制共和国である。総面積は301,338平方キロメートル (km2) で、イタリアではロスティバル(lo Stivale)と称されるブーツ状の国土をしており、国土の大部分は温帯に属する。地中海性気候が農業と歴史に大きく影響している。.

新しい!!: フッ素とイタリア · 続きを見る »

ウラン

ウラン(Uran, uranium )とは、原子番号92の元素。元素記号は U。ウラニウムの名でも知られるが、これは金属元素を意味するラテン語の派生名詞中性語尾 -ium を付けた形である。なお、ウランという名称は、同時期に発見された天王星 (Uranus) の名に由来している。.

新しい!!: フッ素とウラン · 続きを見る »

ウラン235

ウラン235(uranium-235, U)はウランの同位体の一つ。1935年にArthur Jeffrey Dempsterにより発見された。ウラン238とは違いウラン235は核分裂の連鎖反応をおこす。ウラン235の原子核は中性子を吸収すると2つに分裂する。また、この際に2個ないし3個の中性子を出し、それによってさらに反応が続く。原子力発電では多量の中性子を吸収するホウ素、カドミウム、ハフニウムなどでできた制御棒で反応を制御している。核兵器では反応は制御されず、大量のエネルギーが一気に解放され核爆発を起こす。 ウラン235の核分裂で発生するエネルギーは一原子当たりでは200 MeVであり、1モル当たりでは18 TJである。 自然に存在するウランの内ウラン235は0.72パーセントであり長倉三郎ほか編、『』、岩波書店、1998年、項目「ウラン」より。ISBN 4-00-080090-6、残りの大部分はウラン238である。この濃度では軽水炉で反応を持続させるのには不十分であり、濃縮ウランが使われる。一方、重水炉では濃縮していないウランでも使用できる。核爆発を起こさせるためには90パーセント程度の純度が求められる。.

新しい!!: フッ素とウラン235 · 続きを見る »

エッチング

ッチング(英: Etching)または食刻(しょっこく)とは、化学薬品などの腐食作用を利用した塑形ないし表面加工の技法。使用する素材表面の必要部分にのみ(防錆)レジスト処理を施し、腐食剤によって不要部分を溶解侵食・食刻することで目的形状のものを得る。 銅版による版画・印刷技法として発展してきた歴史が長いため、銅や亜鉛などの金属加工に用いられることが多いが、腐食性のあるものであれば様々な素材の塑形・表面加工に応用可能である。 金属の試験片をナイタール(エタノールと硝酸の混合液)などの腐食液によって表面を腐食することで、金属組織の観察や検査などに用いられている。.

新しい!!: フッ素とエッチング · 続きを見る »

エキシマレーザー

マレーザー(Excimer Laser)とは希ガスやハロゲンなどの混合ガスを用いてレーザー光を発生させる装置である。元々は工業用として利用されていたが、最近ではレーシックなどの視力矯正手術においても利用されている。.

新しい!!: フッ素とエキシマレーザー · 続きを見る »

オキソ酸

最も簡単なオキソ酸の1つ。炭酸。 オキソ酸(オキソさん、Oxoacid)とは、ある原子にヒドロキシ基 (-OH) とオキソ基 (.

新しい!!: フッ素とオキソ酸 · 続きを見る »

オゾン

ゾン(ozone)は、3つの酸素原子からなる酸素の同素体である。分子式はO3で、折れ線型の構造を持つ。腐食性が高く、生臭く特徴的な刺激臭を持つ有毒な気体である。大気中にとても低い濃度で存在している。.

新しい!!: フッ素とオゾン · 続きを見る »

カリウム

リウム(Kalium 、)は原子番号 19 の元素で、元素記号は K である。原子量は 39.10。アルカリ金属に属す典型元素である。医学・薬学や栄養学などの分野では英語のポタシウム (Potassium) が使われることもある。和名では、かつて加里(カリ)または剥荅叟母(ぽたしうむ)という当て字が用いられた。 カリウムの単体金属は激しい反応性を持つ。電子を1個失って陽イオン K になりやすく、自然界ではその形でのみ存在する。地殻中では2.6%を占める7番目に存在量の多い元素であり、花崗岩やカーナライトなどの鉱石に含まれる。塩化カリウムの形で採取され、そのままあるいは各種の加工を経て別の化合物として、肥料、食品添加物、火薬などさまざまな用途に使われる。 生物にとっての必須元素であり、神経伝達で重要な役割を果たす。人体では8番目もしくは9番目に多く含まれる。植物の生育にも欠かせないため、肥料3要素の一つに数えられる。.

新しい!!: フッ素とカリウム · 続きを見る »

カルシウム

ルシウム(calcium、calcium )は原子番号 20、原子量 40.08 の金属元素である。元素記号は Ca。第2族元素に属し、アルカリ土類金属の一種で、ヒトを含む動物や植物の代表的なミネラル(必須元素)である。.

新しい!!: フッ素とカルシウム · 続きを見る »

カール・ヴィルヘルム・シェーレ

180px カール・ヴィルヘルム・シェーレ(Karl (または Carl) Wilhelm Scheele、1742年12月9日 - 1786年5月21日)はスウェーデンの化学者・薬学者。酸素をジョゼフ・プリーストリーとは別に発見したことで有名である。金属を中心とする多数の元素や有機酸(酒石酸、シュウ酸、尿酸、乳酸、クエン酸)・無機酸(フッ化水素酸、青酸、ヒ酸)を発見している。現在の低温殺菌法に似た技法も開発していた。 当時スウェーデン領であったポメラニア地方のシュトラールズントに生まれた。14歳で薬剤師の徒弟として働き始め、その後も薬剤師としてストックホルム、ウプサラ、ケーピンなどで働いた。当時の薬剤師は薬品の精製のために化学実験の装置をもっていたため、シェーレも化学に精通していた。多くの大学からの招聘にもかかわらず学者にはならず、ケーピンで没した。シェーレが若死にしたのは同時代の化学者の例に漏れず、危険な実験条件のもとで研究を進めたためだと考えられている。また彼には物質を舐める癖があったため、毒性のある物質の毒にあたったのではともされる。.

新しい!!: フッ素とカール・ヴィルヘルム・シェーレ · 続きを見る »

ガラス

ガラス工芸 en) 建築物の外壁に用いられているガラス ガラス(、glass)または硝子(しょうし)という語は、物質のある状態を指す場合と特定の物質の種類を指す場合がある。.

新しい!!: フッ素とガラス · 続きを見る »

キセノン

ノン(xenon)は原子番号54の元素。元素記号は Xe。希ガス元素の一つ。ラムゼー (W. Ramsay) と (M. W. Travers) によって1898年に発見された。ギリシャ語で「奇妙な」「なじみにくいもの」を意味する ξένος (xenos) の中性単数形の ξένον (xenon) が語源。英語圏ではゼノン と発音されることが多い。 常温常圧では無色無臭の気体。融点-111.9 、沸点-108.1 。空気中にもごく僅かに(約0.087 ppm)含まれる。固体では安定な面心立方構造をとる。 一般に希ガスは最外殻電子が閉殻構造をとるため、反応性はほとんど見られない。しかし、キセノンの最外殻 (5s25p6) は原子核からの距離が離れているため、他の電子による遮蔽効果によって束縛が弱まっており、比較的イオン化しやすい(イオン化エネルギーが他の希ガス元素に比べて相対的に低い)。このため、反応性の強いフッ素や酸素と反応して、フッ化物や酸化物を形成する。.

新しい!!: フッ素とキセノン · 続きを見る »

ギリシア語

リシア語(ギリシアご、現代ギリシア語: Ελληνικά, または Ελληνική γλώσσα )はインド・ヨーロッパ語族ヘレニック語派(ギリシア語派)に属する言語。単独でヘレニック語派(ギリシア語派)を形成する。ギリシア共和国やキプロス共和国、イスタンブールのギリシア人居住区などで使用されており、話者は約1200万人。また、ラテン語とともに学名や専門用語にも使用されている。省略形は希語。.

新しい!!: フッ素とギリシア語 · 続きを見る »

クリプトン

リプトン(krypton)は原子番号36の元素。元素記号は Kr。希ガス元素の一つ。 常温、常圧で無色、無臭の気体。融点は-157.2 、沸点は-152.9 (-153.4)、比重は2.82 (-157)。重い気体であるため、吸引すると声が低くなる。空気中には1.14 ppmの割合で含まれている。空気を液化、分留することにより得られる。不活性であるがフッ素とは酸化数が+2の不安定な化合物を作る。また、水やヒドロキノンと包接化合物を作る。.

新しい!!: フッ素とクリプトン · 続きを見る »

ケルビン

ルビン(kelvin, 記号: K)は、熱力学温度(絶対温度)の単位である。国際単位系 (SI) において基本単位の一つとして位置づけられている。 ケルビンの名は、イギリスの物理学者で、絶対温度目盛りの必要性を説いたケルビン卿ウィリアム・トムソンにちなんで付けられた。なお、ケルビン卿の通称は彼が研究生活を送ったグラスゴーにあるから取られている。.

新しい!!: フッ素とケルビン · 続きを見る »

ケイ素

イ素(ケイそ、珪素、硅素、silicon、silicium)は、原子番号 14 の元素である。元素記号は Si。原子量は 28.1。「珪素」「硅素」「シリコン」とも表記・呼称される。地球の主要な構成元素のひとつ。半導体部品は非常に重要な用途である。 地殻中に大量に存在するため鉱物の構成要素として重要であり、ケイ酸塩鉱物として大きなグループを形成している。これには Si-O-Si 結合の多様性を反映したさまざまな鉱物が含まれている。しかしながら生物とのかかわりは薄く、知られているのは、放散虫・珪藻・シダ植物・イネ科植物などにおいて二酸化ケイ素のかたちでの骨格への利用に留まる。栄養素としての必要性はあまりわかっていない。炭素とケイ素との化学的な類似から、SF などではケイ素を主要な構成物質とするケイ素生物が想定されることがある。 バンドギャップが常温付近で利用するために適当な大きさであること、ホウ素やリンなどの不純物を微量添加させることにより、p型半導体、n型半導体のいずれにもなることなどから、電子工学上重要な元素である。半導体部品として利用するためには高純度である必要があり、このため精製技術が盛んに研究されてきた。現在、ケイ素は99.9999999999999 % (15N) まで純度を高められる。また、Si(111) 基板はAFMやSTMの標準試料としてよく用いられる。.

新しい!!: フッ素とケイ素 · 続きを見る »

ゲオルク・アグリコラ

ルク・アグリーコラ(Georg Agricola、ゲオルギウス・アグリコラ、Georgius Agricola、本名 ゲオルク・バウエル、Georg Pawer、1494年3月24日 - 1555年11月21日)は、ドイツの鉱山学者、鉱物学者、人文学者、医者。「鉱山学の父」として知られる。彼の本名であるバウエル Bauer は「農夫」の意味であり、Agricola はそのラテン語名。 探鉱術や冶金術、鉱床、鉱脈、断層などに関する記述がある。多くの鉱物についての記述もある。鉱山書を出版する前彼は『化石の本性について』、という本も書いており、化石を生物の遺物としていたり、鉱物の肉眼鑑定で今日も行われている諸特徴を記載して後世に基準を与えている。代表作は1533年頃から編集され1550年に完成した全12巻からラテン語で構成される『デ・レ・メタリカ(De re metallica)』である。 実際に鉱山で働く人々の経験や発見、発明を科学の言葉に持ってきた、ひとつの新しい体系を創出したアグリーコラは、そのように自然や実業に密着していたため、錬金術など頭から否定し、軽蔑していた。.

新しい!!: フッ素とゲオルク・アグリコラ · 続きを見る »

ストロンチウム

トロンチウム(strontium)は原子番号38の元素で、元素記号は Sr である。軟らかく銀白色のアルカリ土類金属で、化学反応性が高い。空気にさらされると、表面が黄味を帯びてくる。天然には天青石やストロンチアン石などの鉱物中に存在する。放射性同位体のストロンチウム90 (90Sr) は放射性降下物に含まれ、その半減期は28.90年である。ストロンチウムやストロンティーアン石といった名は、最初に発見された場所である(Strontian、Sron an t-Sìthein)というスコットランドの村にちなむ。.

新しい!!: フッ素とストロンチウム · 続きを見る »

セレン

レン(selenium 、Selen )は原子番号34の元素。元素記号は Se。カルコゲン元素の一つ。セレニウムとも呼ばれる。.

新しい!!: フッ素とセレン · 続きを見る »

ソビエト

ビエト(ロシア語:Совет サヴィェート)とは、ロシア革命時において、社会主義者の働きかけもありながらも主として自然発生的に形成された労働者・農民・兵士の評議会(理事会)。もしくはそれらの(名目上の)後継組織であるソビエト連邦の議会。ラテン文字表記は英語では「Soviet」が一般的。日本語カタカナ表記としては「ソビエト」や「ソヴィエト」が比較的よく用いられるが、まれに「ソヴェト」「ソヴェート」「ソビエット」という表記もある。.

新しい!!: フッ素とソビエト · 続きを見る »

六フッ化テルル

六フッ化テルル(ろくフッかテルル、tellurium hexafluoride)は最も古くから知られるテルルのフッ化物で、化学式 TeF6 で表される無機化合物である。無色の有毒な気体で、恐ろしい悪臭を持つ。分子量は 241.61。.

新しい!!: フッ素と六フッ化テルル · 続きを見る »

六フッ化ウラン

六フッ化ウラン(ろくフッかウラン)は、化学式 UF6 で示される化合物。常温では固体だが約 56.5 ℃ で昇華して気体になる。 空気中の少量の水分と反応してフッ化水素 (HF) を放出する。 核燃料を得るために、ウランの同位体である 238U と 235U を分離する作業が行われる。これをウラン濃縮といい、六フッ化ウランの気体を遠心分離器などの装置に供給して行う。ウランをフッ化させる理由は、単体のウランを気化させ続けるには約 3800 ℃ の高温が必要だが、前述の通り六フッ化ウランは沸点が低く、処理の開始から完了まで気体の状態を維持するのが容易であること、フッ素が単核種元素であり、六フッ化ウランの式量の差は全てウランの質量数の差に由来することにある。.

新しい!!: フッ素と六フッ化ウラン · 続きを見る »

六フッ化キセノン

六フッ化キセノン(ろくフッかキセノン、xenon hexafluoride)は、化学式が XeF6 と表されるキセノンの六フッ化物で、無色の結晶である。この化合物は、3種類あるキセノンのフッ化物のうちの1つである。(他2つは二フッ化キセノンと四フッ化キセノン)これらは全て標準温度で安定で、六フッ化キセノンはこれらの中で最も強力なフッ素化剤である。水に対して非常に敏感なため、痕跡量の水でさえ取り除かなければならない。 約300℃、6 MPa の下で二フッ化キセノンを加熱し続けることで得られる。.

新しい!!: フッ素と六フッ化キセノン · 続きを見る »

六フッ化セレン

六フッ化セレン(ろくフッかセレン、selenium hexafluoride)は、化学式が SeF6 で表されるセレンの六フッ化物である。無色の有毒の気体で、ひどく不快な臭気を有する。 セレンとフッ素、または三フッ化臭素 BrF3 と二酸化セレン SeO2 によって合成することができる。性質は六フッ化硫黄と類似していて、構造は八面体形である。(Se-O 結合長は 168.8 pm) 通常状態では水に不活性で、10 % の 水酸化ナトリウム 水溶液または 水酸化カリウム 水溶液に通じても反応を起こさないが、アンモニアとは200 で反応するKrebs B, Bonmann S, Eidenschink I. Selenium-Inorganic Chemistry Encyclopedia of Inorganic Chemistry Ed.

新しい!!: フッ素と六フッ化セレン · 続きを見る »

六フッ化硫黄

六フッ化硫黄(ろくフッかいおう、sulfur hexafluoride)は、化学式 SF で表される硫黄の六フッ化物である。硫黄原子を中心にフッ素原子が正八面体構造をとっている。 常温常圧においては化学的に安定度の高い無毒、無臭、無色、不燃性の気体で、大気中での寿命は 3,200年である。1960年代から電気および電子機器の分野で絶縁材などとして広く使用されている化学物質で、人工的な温室効果ガスとされる。使用量はそれほど多くないが、近年新たな用途開発の進展に伴い需要量が増加している。100年間の地球温暖化係数は二酸化炭素の23,900倍と大きくかつ大気中の寿命が長いため、HFCs、PFCsと共に京都議定書で地球温暖化防止排出抑制対象ガスの1つに指定された。大気への放出はほぼ全て人為的なものと考えられている。 2007年に気象庁気象研究所が海水中の六フッ化硫黄濃度を高精度かつ低検出限界で測定できる手法を開発した。.

新しい!!: フッ素と六フッ化硫黄 · 続きを見る »

六フッ化物

六フッ化物(ろくフッかぶつ、Hexafluoride)は、化学式が XF6 と表される、元素の六フッ化物の総称である。17の元素が安定な六フッ化物を形成することが知られている。これらの内の9つは遷移金属元素、3つはアクチノイド元素、その他5つは非金属元素である。 多くの六フッ化物は低い融点と沸点を持つ分子性化合物である。六フッ化物の内 S、Se、Te、W の4つは常温常圧で気体、Re、Mo の2つは液体であり、その他は不安定な固体である。Pブロック元素と第6族元素の六フッ化物は無色、その他は赤色、黄色、茶色、黒色などの有色である。 分子構造は八面体形であるが、六フッ化キセノン(XeF6)は分子上を移動する孤立電子対のため、八面体形からわずかに歪んでいる。XeF6 は固相では四量体と六量体を含む複雑な混合物になっている。量子化学計算によると、ReF6 と RuF6 はヤーン・テラー効果を受けるとされたが、実験では確かめられなかった。 ほとんどの六フッ化物は高い反応性を持つが、六フッ化硫黄(SF6)はほぼ不活性で無毒である。そのため、この安定性と誘電特性、高い密度を生かし様々な用途に利用されている。六フッ化セレンも SF6 と同じように不活性だが、六フッ化テルルは不安定で有毒であり、1日以内に水で加水分解される。これらとは対照的に金属の六フッ化物は腐食性があり、水と激しく反応する。いくつかはフッ素化剤として有用である。高い求電子性を持つため、強力な酸化剤として作用する。特に六フッ化白金は、高いイオン化エネルギーを持つ酸素分子を酸化することに注目され、ほぼ同じイオン化エネルギーを持つキセノンを酸化し、初めての希ガス化合物であるヘキサフルオロ白金酸キセノンを合成することに成功した。 金属の六フッ化物は、高い揮発性のためいくつかの用途がある。六フッ化ウランは、核燃料を作り出すウラン濃縮に使用される。また、核燃料の再処理にも六フッ化物の揮発性を利用することができる。 六フッ化タングステンは半導体回路や回路基板を製造する化学蒸着に使用されている。 以下の表は六フッ化物の主な化学特性である。.

新しい!!: フッ素と六フッ化物 · 続きを見る »

元素

元素(げんそ、elementum、element)は、古代から中世においては、万物(物質)の根源をなす不可欠な究極的要素広辞苑 第五版 岩波書店を指しており、現代では、「原子」が《物質を構成する具体的要素》を指すのに対し「元素」は《性質を包括する抽象的概念》を示す用語となった。化学の分野では、化学物質を構成する基礎的な成分(要素)を指す概念を指し、これは特に「化学元素」と呼ばれる。 化学物質を構成する基礎的な要素と「万物の根源をなす究極的要素」としての元素とは異なるが、自然科学における元素に言及している文献では、混同や説明不足も見られる。.

新しい!!: フッ素と元素 · 続きを見る »

元素記号

在の元素記号(硫黄) ドルトンの元素記号(硫黄) 元素記号(げんそきごう)とは、元素、あるいは原子を表記するために用いられる記号のことであり、原子記号(げんしきごう)とも呼ばれる。現在は、1、2、ないし3文字のアルファベットが用いられる。 なお、現在正式な元素記号が決定している最大の元素は原子番号118のOg(オガネソン)である。 分子の組成をあらわす化学式や、分子の変化を記述する化学反応式などで利用される。 現在使用されている元素記号は1814年にベルセリウスが考案したものに基づいており、ラテン語などから1文字または2文字をとってつくられている。 全ての元素記号がラテン語名と一致しているが、ギリシア語、英語、ドイツ語(その他スペイン語やスウェーデンの地名からの採用もある)などからの採用も多く、ラテン語名との一致は偶然または語源を通した間接的なものである。元素名が確定されていない超ウラン元素については、3文字の系統名が用いられる。 物質の構成要素を記号であらわすことはかつての錬金術においてもおこなわれていた。 化学者ジョン・ドルトンも独自の記号を開発して化学反応を記述していたが、現在はアルファベットでの表記が国際的に使われている。 原子番号16番で質量数35の放射性硫黄原子1つと酸素原子4つからなる2価の陰イオンの硫酸イオンのイオン式。 原子番号や質量数を付記する場合、原子番号は左下に (13Al)、質量数は左上に (27Al)、イオン価は右肩に (Al3+)、原子数は右下に (N2) 付記する。.

新しい!!: フッ素と元素記号 · 続きを見る »

光ファイバー

光ファイバー アクリル棒に入射された光が内部を伝わる様子 光ファイバー(ひかりファイバー、Optical fiber)とは、離れた場所に光を伝える伝送路である。.

新しい!!: フッ素と光ファイバー · 続きを見る »

国立健康・栄養研究所

国立健康・栄養研究所(2007年3月) 国立健康・栄養研究所(こくりつけんこうえいようけんきゅうじょ、National Institute of Health and Nutrition)は、栄養と健康に関する調査研究を行っている日本の研究機関である。前身は1914年に佐伯矩によって設立された、世界初の栄養学研究機関である営養研究所である(当時は栄養を「営養」と表記することが多かった)。1919年に内務省の栄養研究所として設置され、変遷を経て2001年より独立行政法人となったが、2015年に医薬基盤研究所と統合し、医薬基盤・健康・栄養研究所の傘下機関となった。.

新しい!!: フッ素と国立健康・栄養研究所 · 続きを見る »

四フッ化キセノン

四フッ化キセノン(しフッかキセノン、Xenon tetrafluoride)は、分子式がXeF4と表されるキセノンのフッ化物である。二種類の元素からのみ成る希ガス化合物の中では最初に発見された化合物であり、1molのXeと2molのF2により生成する。この反応は251kJ/molの発熱反応である。 この物質の構造は、1963年に核磁気共鳴分光法とX線結晶構造解析により平面四角形であると報告されている。キセノンが2対の孤立電子対をもっているため、この構造はVSEPR理論により説明される。 四フッ化キセノンは、無色の結晶として発生する。115.7℃で昇華する。 キセノンのフッ化物は標準温度で全て熱力学的に安定であるが、空気中の水分とさえ反応するので、乾燥状態で保存しなければならない。 この物質とフッ化テトラメチルアンモニウムを反応させると、ペンタフルオロキセノン酸テトラメチルアンモニウムが得られる。.

新しい!!: フッ素と四フッ化キセノン · 続きを見る »

四フッ化ケイ素

四フッ化ケイ素(しフッかケイそ)は分子式がSiF4で表される化合物である。分子の形は正四面体であり、沸点と融点は4℃しか離れていない。1812年にデービー (John Davy)によって初めて合成された。.

新しい!!: フッ素と四フッ化ケイ素 · 続きを見る »

四フッ化炭素

四フッ化炭素 (しフッかたんそ、tetrafluoromethane、carbon tetrafluoride)は炭素のフッ化物で、化学式は CF4。フロン14、テトラフルオロメタン、パーフルオロメタン、フッ化炭素とも呼ばれる。CAS登録番号は 。IUPAC名はテトラフルオロメタン。 フロン類(フルオロカーボン)の一種で、温室効果ガスである。.

新しい!!: フッ素と四フッ化炭素 · 続きを見る »

硫黄

硫黄(いおう、sulfur, sulphur)は原子番号 16、原子量 32.1 の元素である。元素記号は S。酸素族元素の一つ。多くの同素体や結晶多形が存在し、融点、密度はそれぞれ異なる。沸点 444.674 ℃。大昔から自然界において存在が知られており、発見者は不明になっている。硫黄の英名 sulfur は、ラテン語で「燃える石」を意味する言葉に語源を持っている。.

新しい!!: フッ素と硫黄 · 続きを見る »

硫酸

硫酸(りゅうさん、sulfuric acid)は、化学式 H2SO4 で示される無色、酸性の液体で硫黄のオキソ酸の一種である。古くは緑礬油(りょくばんゆ)とも呼ばれた。化学薬品として最も大量に生産されている。.

新しい!!: フッ素と硫酸 · 続きを見る »

窒素

素(ちっそ、nitrogen、nitrogenium)は原子番号 7 の元素。元素記号は N。原子量は 14.007。空気の約78.08 %を占めるほか、アミノ酸をはじめとする多くの生体物質中に含まれており、地球のほぼすべての生物にとって必須の元素である。 一般に「窒素」という場合は、窒素の単体である窒素分子(窒素ガス、N2)を指すことが多い。窒素分子は常温では無味無臭の気体として安定した形で存在する。また、液化した窒素分子(液体窒素)は冷却剤としてよく使用されるが、液体窒素温度 (-195.8 ℃, 77 K) から液化する。.

新しい!!: フッ素と窒素 · 続きを見る »

第16族元素

16族元素(だいじゅうろくぞくげんそ)は周期表において第16族に属する元素の総称。酸素・硫黄・セレン・テルル・ポロニウム・リバモリウムがこれに分類される。酸素族元素、カルコゲン(chalcogen)とも呼ばれる。 硫黄 、セレン、テルルは性質が似ているのに対し、酸素はいささか性質が異なり、ポロニウムは放射性元素で天然における存在量が少ない。この硫黄 、セレン、テルルは金属元素と化合物を形成し種々の鉱石の主成分となっている。それ故、この三種の元素からなる元素族をギリシャ語で「石を作るもの」という意味のカルコゲンと命名された。また、3種の元素を硫黄族元素と呼ぶ場合もある。その後、周期表が充実されると、第16族をカルコゲンと呼び表す場面が見られるようになった。それ故、性質の異なる酸素はカルコゲンに含めない場合もある。.

新しい!!: フッ素と第16族元素 · 続きを見る »

第17族元素

17族元素(だいじゅうななぞくげんそ、halogèneアロジェーヌ、halogen ハロゲン)は周期表において第17族に属する元素の総称。フッ素・塩素・臭素・ヨウ素・アスタチン・テネシンがこれに分類される。ただしアスタチンは半減期の長いものでも数時間であるため、その化学的性質はヨウ素よりやや陽性が高いことがわかっている程度である。またテネシンは2009年にはじめて合成されており、わかっていることはさらに少ない。 フッ素、塩素、臭素、ヨウ素は性質がよく似ており、アルカリ金属あるいはアルカリ土類金属と典型的な塩を形成するので、これら元素からなる元素族をギリシャ語の 塩 alos と、作る gennao を合わせ「塩を作るもの」という意味の「halogen ハロゲン」と、18世紀フランスで命名された。これらの任意の元素を表すために化学式中ではしばしば X と表記される。任意のハロゲン単体を X2 と表す。.

新しい!!: フッ素と第17族元素 · 続きを見る »

第18族元素

18族元素(だいじゅうはちぞくげんそ)とは、長周期表における第18族に属する元素、すなわち、ヘリウム・ネオン・アルゴン・クリプトン・キセノン・ラドン・オガネソンをいう。なお、これらのうちで安定核種を持つのは、第1周期元素のヘリウムから第5周期元素のキセノンまでである。貴ガス (noble gas) のほか希ガス・稀ガス(rare gas)と呼ばれる。.

新しい!!: フッ素と第18族元素 · 続きを見る »

炭素

炭素(たんそ、、carbon)は、原子番号 6、原子量 12.01 の元素で、元素記号は C である。 非金属元素であり、周期表では第14族元素(炭素族元素)および第2周期元素に属する。単体・化合物両方において極めて多様な形状をとることができる。 炭素-炭素結合で有機物の基本骨格をつくり、全ての生物の構成材料となる。人体の乾燥重量の2/3は炭素である​​。これは蛋白質、脂質、炭水化物に含まれる原子の過半数が炭素であることによる。光合成や呼吸など生命活動全般で重要な役割を担う。また、石油・石炭・天然ガスなどのエネルギー・原料として、あるいは二酸化炭素やメタンによる地球温暖化問題など、人間の活動と密接に関わる元素である。 英語の carbon は、1787年にフランスの化学者ギトン・ド・モルボーが「木炭」を指すラテン語 carbo から名づけたフランス語の carbone が転じた。ドイツ語の Kohlenstoff も「炭の物質」を意味する。日本語の「炭素」という語は宇田川榕菴が著作『舎密開宗』にて用いたのがはじめとされる。.

新しい!!: フッ素と炭素 · 続きを見る »

発振回路

振回路(はっしんかいろ、electronic oscillator)は、持続した交流を作る電気回路である。その原理により、帰還型(きかんがた)と弛張型(しちょうがた)に分類できる。電波の放射や、ディジタル回路におけるクロックパルス(コンピュータ(またはデジタル回路)が動作する時に、タイミングを取る(同期を取る)ための周期的な信号)の発生が代表的な用途であるが、それ以外にも、電子回路の動作の基準となる重要な回路である。.

新しい!!: フッ素と発振回路 · 続きを見る »

白金

白金(はっきん、platinum)は原子番号78の元素。元素記号は Pt。白金族元素の一つ。 学術用語としては白金が正しいが、現代日本の日常語においてはプラチナと呼ばれることもある。白金という言葉はオランダ語の witgoud(wit.

新しい!!: フッ素と白金 · 続きを見る »

銅(どう)は原子番号29の元素。元素記号は Cu。 周期表では金、銀と同じく11族に属する遷移金属である。英語でcopper、ラテン語でcuprumと言う。.

新しい!!: フッ素と銅 · 続きを見る »

融剤

融剤(ゆうざい)は物質を融解しやすくするために添加される物質である。 フラックス (flux) ともいう。用途に応じて色々な物質が用いられる。融剤が溶解を促進する作用は化学反応や塩の交換反応に基づいて液相を形成する場合が多い。また、セラミックスの焼結反応や結晶化を促進する目的や、単結晶を得やすくするために添加される薬剤などは多成分系の融点降下により溶けやすくする。融雪剤はこの一種で、この原理は化学変化ではなく多相系の束一的性質による。 乾式製錬で融剤が反応して生成するスラグは融解を促進する作用以外に、表面に浮かぶことで大気を遮蔽したり、不純物を取り込むなど精錬度を向上させる作用も併せ持つ。.

新しい!!: フッ素と融剤 · 続きを見る »

融点

融点(ゆうてん、Schmelzpunkt、point de fusion、melting point)とは、固体が融解し液体になる時の温度のことをいう。ヒステリシスが無い場合には凝固点(液体が固体になる時の温度)と一致する。また、三重点すなわち平衡蒸気圧下の融点は物質固有の値を取り、不純物が含まれている場合は凝固点降下により融点が低下することから物質を同定したり、純度を確認したりする手段として用いられる。 熱的に不安定な物質は溶融と共に分解反応が生じる場合もある。その場合の温度は分解点と呼ばれる場合があり、融点に(分解)と併記されることがある。.

新しい!!: フッ素と融点 · 続きを見る »

表面処理

表面処理(ひょうめんしょり、surface treatment、surface finishing)は、機械工学等の分野においては、めっきや塗装など、素材表面の性質を高めるために行われる機械工作法の一種である。硬さや耐摩耗性、潤滑性、耐食性、耐酸化性、耐熱性、断熱性、絶縁性、密着性、および、装飾性や美観など、これらの性質のいくつかを向上させることを主要な目的として施される。 材料技術 (''cf.'') の一分野であり、合金設計を頂点としその傘下の加工、熱処理、溶接、鋳造などの材料プロセス技術群に属するが、補助的技術群のひとつである。しかし熱処理や研磨技術と同様に、金属母材の性能を極限までに高める重要な技術であるにもかかわらず、性能理論が確定しておらず、その存在が極端な過小評価に陥る場合がある。.

新しい!!: フッ素と表面処理 · 続きを見る »

露出 (写真)

写真技術において露出(ろしゅつ、exposure)ないしは露光(ろこう)とは、フィルム、乾板などの感光材料やCCD、CMOSなどの固体撮像素子を、レンズを通した光にさらすこと(現在のカメラでは通常シャッターの開閉により、これを行う)。またはカメラのレンズを通過してくる光の総量や、画像そのものの明るさのことをいい、これらはレンズの絞り(F値)と露光時間(シャッター速度)及びフィルム感度の組み合わせによって決まる。 また、フィルムに記録された画像を印画紙にプリントするために、引き伸ばし機などを使って印画紙に像を焼き付けることもさす。撮影時のことを露出、プリント時のことを露光と呼んで区別することもある。.

新しい!!: フッ素と露出 (写真) · 続きを見る »

自然金 金(きん、gold, aurum)は原子番号79の元素。第11族元素に属する金属元素。常温常圧下の単体では人類が古くから知る固体金属である。 元素記号Auは、ラテン語で金を意味する aurum に由来する。大和言葉で「こがね/くがね(黄金: 黄色い金属)」とも呼ばれる。。 見かけは光沢のある黄色すなわち金色に輝く。日本語では、金を「かね」と読めば通貨・貨幣・金銭と同義(お金)である。金属としての金は「黄金」(おうごん)とも呼ばれ、「黄金時代」は物事の全盛期の比喩表現として使われる。金の字を含む「金属」や「金物」(かなもの)は金属全体やそれを使った道具の総称でもある。 金属としては重く、軟らかく、可鍛性がある。展性と延性に富み、非常に薄く延ばしたり、広げたりすることができる。同族の銅と銀が比較的反応性に富むこととは対照的に、標準酸化還元電位に基くイオン化傾向は全金属中で最小であり、反応性が低い。熱水鉱床として生成され、そのまま採掘されるか、風化の結果生まれた金塊や沖積鉱床(砂金)として採集される。 これらの性質から、金は多くの時代と地域で貴金属として価値を認められてきた。化合物ではなく単体で産出されるため精錬の必要がなく、装飾品として人類に利用された最古の金属で、美術工芸品にも多く用いられた。銀や銅と共に交換・貨幣用金属の一つであり、現代に至るまで蓄財や投資の手段となったり、金貨として加工・使用されたりしている。ISO通貨コードでは XAU と表す。また、医療やエレクトロニクスなどの分野で利用されている。.

新しい!!: フッ素と金 · 続きを見る »

長さの比較

本項では、長さの比較(ながさのひかく)ができるよう、長さを昇順に表にする。.

新しい!!: フッ素と長さの比較 · 続きを見る »

長倉三郎

長倉 三郎(ながくら さぶろう、1920年10月3日 - )は、日本の化学者、文化勲章受章者。東京大学・岡崎国立共同研究機構分子科学研究所名誉教授。物理化学専攻。 日本人として初めてIUPAC(国際純正および応用化学連合)の会長を歴任したことで知られる。.

新しい!!: フッ素と長倉三郎 · 続きを見る »

腐食

腐食(ふしょく、腐蝕とも。corrosion)とは、化学・生物学的作用により外見や機能が損なわれた物体やその状態をいう。 金属の腐食とは、周囲の環境(隣接している金属・気体など)と化学反応を起こし、溶けたり腐食生成物(いわゆる「さび」)を生成することを指す。これは、一般的に言われる、表面的に「さび」が発生することにとどまらず、腐食により厚さが減少したり、孔が開いたりすることも含む。;金属以外の腐食;生物学的な腐食 以下、金属の腐食を中心に述べる。.

新しい!!: フッ素と腐食 · 続きを見る »

酸化

酸化(さんか、英:oxidation)とは、対象の物質が酸素と化合すること。 例えば、鉄がさびて酸化鉄になる場合、鉄の電子は酸素(O2)に移動しており、鉄は酸化されていることが分かる。 目的化学物質を酸化する為に使用する試薬、原料を酸化剤と呼ぶ。ただし、反応における酸化と還元との役割は物質間で相対的である為、一般的に酸化剤と呼ぶ物質であっても、実際に酸化剤として働くかどうかは、反応させる相手の物質による。.

新しい!!: フッ素と酸化 · 続きを見る »

酸化剤

酸化剤のハザードシンボル 酸化とは、ある物質が酸と化合する、水素を放出するなどの化学反応である。酸化剤(さんかざい、Oxidizing agent、oxidant、oxidizer、oxidiser)は、酸化過程における酸の供給源になる物質である。主な酸化剤は酸素であり、一般的な酸化剤は酸素を含む。 酸化反応に伴い熱やエネルギーが発生し、燃焼や爆発は、急激な酸化現象である。酸化剤は燃料や爆薬が燃焼する際に加えられて、酸素を供給する役割を果たす。一般に用いられる酸化剤としては空気,酸素,オゾン,硝酸,ハロゲン (塩素,臭素,ヨウ素) などがある。.

新しい!!: フッ素と酸化剤 · 続きを見る »

酸化還元電位

酸化還元電位(さんかかんげんでんい、Redox potentialもしくはOxidation-reduction Potential; ORP)とは、ある酸化還元反応系における電子のやり取りの際に発生する電位(正しくは電極電位)のことである。物質の電子の放出しやすさ、あるいは受け取りやすさを定量的に評価する尺度でもある。単位はボルト(V)を用い、電極電位の基準には以下の半反応式で表される酸化還元反応を用いる。 つまり水素ガス分圧が1気圧、水素イオンの活量が1のとき(これを標準水素電極と呼ぶ)の電極電位を0 Vと定義する。この半反応を基準とし、任意の酸化還元反応の電極電位が決定される。すなわち、標準水素電極(SHE; standard hydrogen electrodeもしくはNHE; normal hydrogen electrode)を陰極反応、電極電位を求めたい酸化還元反応を陽極反応にそれぞれ使い、電池を組み立てたときの電池の起電力が、求めたい電極電位となる。このとき、電極電位を求めたい酸化還元反応に関与する物質の活量(あるいは分圧)がすべて1の場合の電極電位を特に、標準酸化還元電位(ひょうじゅん-)あるいは標準電極電位と呼んでいる。 なお基準として用いた標準水素電極(SHE)は水素イオンの活量が1すなわち水素イオン指数がゼロ(pH 0)の環境であり生化学ではこうした極限状態の値では参考にならないためにpH 7での電位を求める中間酸化還元電位(ちゅうかん-、中点とも表記することがある)を基準に用いることがあるが、特に断ることなしにこれを単に酸化還元電位と書くことが多い。いずれにせよ、実際の研究では標準水素電極の代わりに、銀−塩化銀電極やカロメル電極など実用的な基準電極を基準にして酸化還元電位を測定することが頻繁に行なわれる。したがって、酸化還元電位を表記する際(特に標準水素電極以外の基準電極を用いた場合)には、その旨を必ず明記せねばならない。.

新しい!!: フッ素と酸化還元電位 · 続きを見る »

酸化数

酸化数(さんかすう、英: Oxidation number)とは、対象原子の電子密度が、単体であるときと比較してどの程度かを知る目安の値である。1938年に米国のウェンデル・ラティマー (Wendell Mitchell Latimer) が考案した。 酸化とはある原子が電子を失うことであるから、単体であったときより電子密度が低くなっている。それに対して還元とはある原子が電子を得ることであるから、単体であったときより電子密度が高くなっている。 ある原子が酸化状態にある場合、酸化数は正の値をとり、その値が大きいほど電子不足の状態にあることを示す。逆に還元状態にある場合には負の数値をとり、その値が大きいほど電子過剰の状態にあることを示す。 酸化数はローマ数字で記述するのが通例である。.

新しい!!: フッ素と酸化数 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

新しい!!: フッ素と酸素 · 続きを見る »

酸性酸化物

酸性酸化物(さんせいさんかぶつ)とは、水と反応して酸を生じるか、塩基と反応して塩を生じる非金属元素または酸化数の大きな金属元素の酸化物である。しばしば酸無水物と混同される。 酸性酸化物には以下のものがある。.

新しい!!: フッ素と酸性酸化物 · 続きを見る »

鉄(てつ、旧字体/繁体字表記:鐵、iron、ferrum)は、原子番号26の元素である。元素記号は Fe。金属元素の1つで、遷移元素である。太陽や他の天体にも豊富に存在し、地球の地殻の約5%を占め、大部分は外核・内核にある。.

新しい!!: フッ素と鉄 · 続きを見る »

鉛(なまり、lead、plumbum、Blei)とは、典型元素の中の金属元素に分類される、原子番号が82番の元素である。なお、元素記号は Pb である。.

新しい!!: フッ素と鉛 · 続きを見る »

蛍石

蛍石(ほたるいし または けいせき、螢石、fluorite、フローライト、フルオライト)は、鉱物(ハロゲン化鉱物)の一種。主成分はフッ化カルシウム(CaF2)。等軸晶系。 色は無色、または内部の不純物により黄、緑、青、紫、灰色、褐色などを帯びる。加熱すると発光し、また割れてはじける場合がある。また、不純物として希土類元素を含むものは、紫外線を照射すると紫色の蛍光を発する。蛍光する蛍石はイギリスや中国で産出されたものの中から稀に見つかることがある。 へき開が良い鉱物であり、正八面体に割れる。モース硬度は4であり、モース硬度の指標となっている。比重は3.18。濃硫酸に入れて加熱するとフッ化水素が発生する。.

新しい!!: フッ素と蛍石 · 続きを見る »

電子捕獲

電子捕獲(でんしほかく、electron capture、EC)とは、原子核の放射性崩壊の一種である。電子捕獲では、電子軌道の電子が原子核に取り込まれ、捕獲された電子は原子核内の陽子と反応し中性子となり、同時に電子ニュートリノが放出される。捕獲される電子は普通はK軌道の電子であるが、L軌道やM軌道の電子が捕獲される場合もある。.

新しい!!: フッ素と電子捕獲 · 続きを見る »

電圧

電圧(でんあつ、voltage)とは直観的には電気を流そうとする「圧力のようなもの」である-->。単位としては, SI単位系(MKSA単位系)ではボルト(V)が使われる。電圧を意味する記号には、EやVがよく使われる。 電圧は電位差ないしその近似によって定義される。 電気の流れに付いては「電流」を参照の事。.

新しい!!: フッ素と電圧 · 続きを見る »

電気分解

電気分解(でんきぶんかい)英語:Electrolysisは、化合物に電圧をかけることで、陰極で還元反応、陽極で酸化反応を起こして化合物を化学分解する方法である。略して電解ともいう。同じ原理に基づき、電気化学的な酸化還元反応によって物質を合成する方法は電解合成と呼ばれ、特に生成物が高分子となる場合は電解重合という。 塩素やアルミニウムなど様々な化学物質が電気分解によって生産されている。水の電気分解は初等教育の中でも取り上げられる典型的な化学実験であるとともに、エネルギー源として期待される水素の製造法として研究が進められている。.

新しい!!: フッ素と電気分解 · 続きを見る »

電気陰性度

電気陰性度(でんきいんせいど、electronegativity)は、分子内の原子が電子を引き寄せる強さの相対的な尺度であり、ギリシャ文字のχで表されるShriver & Atkins (2001), p.45。。 異種の原子同士が化学結合しているとする。このとき、各原子における電子の電荷分布は、当該原子が孤立していた場合と異なる分布をとる。これは結合の相手の原子からの影響によるものであり、原子の種類により電子を引きつける強さに違いが存在するためである。 この電子を引きつける強さは、原子の種類ごとの相対的なものとして、その尺度を決めることができる。この尺度のことを電気陰性度と言う。一般に周期表の左下に位置する元素ほど小さく、右上ほど大きくなる。.

新しい!!: フッ素と電気陰性度 · 続きを見る »

電池

アルカリマンガン乾電池 電池(でんち)は、何らかのエネルギーによって直流の電力を生み出す電力機器である。化学反応によって電気を作る「化学電池」と、熱や光といった物理エネルギーから電気を作る「物理電池」の2種類に大別される。.

新しい!!: フッ素と電池 · 続きを見る »

通信

通信(つうしん)とは、情報の伝達を意味する言葉である。有史以前から徐々に発展し、近代における様々なそして急激な技術的発展によって、より多様で利便性の高い、大衆的なものに発展してきた。.

新しい!!: フッ素と通信 · 続きを見る »

陽電子放出

陽電子放出(ようでんしほうしゅつ、positron emission)、または、正のβ崩壊(せいのべーたほうかい、beta plus decay)とはベータ崩壊の一種。この過程において、陽子は弱い力を通して中性子、陽電子、ニュートリノに転換される。陽電子はベータプラス粒子として知られている電子の反粒子である。このため、この放出過程は時に"ベータプラス"(β+)として言及される。 この崩壊を行い、それに伴い陽電子を放出する同位体には炭素11、カリウム40、窒素13、酸素15、フッ素18、ヨウ素121などが上げられる。例として、炭素11からホウ素11への崩壊が上げられ、下記の式のように表すことができる。 これらの同位体は陽電子断層法に使われ、この手法は医用画像処理に使われている。特徴的であるのは放たれるエネルギーが崩壊する同位体に依存していることである。上記のように炭素11の一個の崩壊では0.96 MeVが発生し、これは炭素11にのみ当てはまる。 中性子と陽子の中には、クォークと呼ばれる素粒子が存在する。中性子と陽子の中にあるクォークにはアップクォークとダウンクォークがある。ひとつの陽子、中性子に対してクォークは常に3つ入っており、これの組み合わせにより中性子か陽子かという特性を得る。アップクォークは3分の2の電荷で、ダウンクォークは-3分の1の電荷である。陽子ではアップクォーク2個、ダウンクォーク1個であり電荷は2/3 + 2/3 - 1/3.

新しい!!: フッ素と陽電子放出 · 続きを見る »

次亜フッ素酸

次亜フッ素酸(じあフッそさん、hypofluorous acid)は化学式 HFO で表される化合物。Hから始まる化学式を持っているものの、酸性を示さない。.

新しい!!: フッ素と次亜フッ素酸 · 続きを見る »

歯(は、tooth)は、口腔内にある咀嚼するための一番目の器官。人体でもっとも硬く、遺体ではその治療状況によって人物の特定の重要な手掛かりとなる。人工歯と区別する意味で天然歯と言うこともある。多くの種類の構造を持ち、それぞれが異なる目的を果たす。歯学では、過去には歯牙(しが)と言ったが、現在は使わない傾向にある。 また、それに似たものを歯ということがある。例えば歯車、鋸歯など。 歯の部位を示すために、歯の内側を舌側、口蓋側、外側を唇側、頬側、正中に近い方を近心、反対側を遠心、上端下顎の歯の場合。上顎の歯の場合は下端。を切縁、咬合面という。 多くの高等動物が持つ。人間は乳歯と永久歯の二組を持つが(二生歯性)、ネズミ目のように一組の歯が伸び続ける動物もいれば(一生歯性)、サメのように、二週間に一組ずつ新しい歯が作られていく動物もいる(多生歯性)。化石化した哺乳類においてもっとも特徴的な部位であり、古生物学者達は化石の種類や関係を鑑別するのにしばしば歯を使う。 歯は摂食の際の重要な構造であり、その形は餌のタイプと強く結びついている。.

新しい!!: フッ素と歯 · 続きを見る »

歯磨剤

歯磨剤(しまざい)は、歯磨きの際に使用される製品である。一般的に使用される物はチューブ入りのペーストで、練歯磨剤(練り歯磨き)とも呼ばれている。かつては粉状の歯磨剤を使っていた時期があり、歯磨剤全般を「歯磨き粉」とも呼ぶのはその名残である。歯磨剤は歯ブラシに適量付着させて使用し、歯磨き後は嚥下せずに吐き出す。日本では医薬品、医療機器等の品質、有効性及び安全性の確保等に関する法律により化粧品、薬用化粧品(医薬部外品)に分類されている。.

新しい!!: フッ素と歯磨剤 · 続きを見る »

GHSの高い急性毒性を示す標章 EUでの一般的な毒のシンボル(2015年までの使用)。 毒(どく)、毒物(どくぶつ)は、生物の生命活動にとって不都合を起こす物質の総称である。 毒物及び劇物指定令で定められる「毒物」については毒物及び劇物取締法#分類の項を参照のこと。.

新しい!!: フッ素と毒 · 続きを見る »

比重

比重(ひじゅう)とは、ある物質の密度(単位体積当たり質量)と、基準となる標準物質の密度との比である。通常、固体及び液体については水、気体については、同温度、同圧力での空気を基準とする。.

新しい!!: フッ素と比重 · 続きを見る »

比推力

比推力(ひすいりょく、、I)は、ロケットエンジン(ジェットエンジンに対しても定義できる)の推進剤効率を示す尺度であり、推進剤の質量流量に対する推力の大きさを示す。 定義は「推力/(推進剤質量流量・地球の重力加速度)」で、単位は秒である。ノズルの適正膨張を仮定すれば、「噴射速度を重力加速度で割った物」という物理的な意味を持つ。言葉を換えれば、 となり、これは例えば「地球の地表の場合であれば、1トンの燃料を燃やすことで1トンの物を、その重量に抗して空中に支えるだけの垂直推力を維持できる秒数」といえる。この場合、推進剤以外のロケットの質量は全く関係が無く、燃焼に伴って推進剤が減ることも考慮しない。(力の基準として地球の重力加速度を使っているため「地球の地表の場合」や「重量」という表現が使われる数字になってしまうが、ロケットエンジンの性能の指標的な意味としては、前述の「噴射速度」として、地球と無関係に成立する。直感的に説明すると、噴射速度が速ければ速いほど、単位時間当たりの推進剤質量流量が小さくても、同じだけの推力を発生させることができる、という意味で、ある種の「燃費」のような指針と言える) ロケットエンジンやロケットモーターの質量も関係せず、少量で軽い燃料を高速で噴射するほど比推力は向上する。推進器が燃料を消費する効率について、多種多様な推進器同士の比推力を比べることは意味を持つが、推進器や燃料タンクの質量は考慮されていないため燃料効率以外の性能や経済性は示していない。 推進器の性能は、比推力ばかりでなく補機類を含む推進器の質量をふまえた推力重量比も重要であり、総合的には、信頼性、安全性、さらには製造コストといった経済性も総合的な性能に含まれることがある。.

新しい!!: フッ素と比推力 · 続きを見る »

水面から跳ね返っていく水滴 海水 水(みず)とは、化学式 HO で表される、水素と酸素の化合物である広辞苑 第五版 p. 2551 【水】。特に湯と対比して用いられ、温度が低く、かつ凝固して氷にはなっていないものをいう。また、液状のもの全般を指すエンジンの「冷却水」など水以外の物質が多く含まれているものも水と呼ばれる場合がある。日本語以外でも、しばしば液体全般を指している。例えば、フランス語ではeau de vie(オー・ドゥ・ヴィ=命の水)がブランデー類を指すなど、eau(水)はしばしば液体全般を指している。そうした用法は、様々な言語でかなり一般的である。。 この項目では、HO の意味での水を中心としながら、幅広い意味の水について解説する。.

新しい!!: フッ素と水 · 続きを見る »

水道水フッ化物添加

水道水フッ化物添加(すいどうすいフッかぶつてんか、英語:Water Fluoridation)とは、フッ素の化合物(フッ化物)を上水道中に添加し、多数の住民を対象として虫歯を予防する手法。北アメリカとオーストラリアでは、多くの自治体が安価な費用で効果を期待できるとの考えにより、水道水へのフッ化物添加を実施している。アイルランドでは国の法律で水道水フッ素化を義務づけている。2007年現在、アメリカ合衆国住民の66%が、フッ化物を添加された上水道を供されている。(水道水)フロリデーション、水道(水)フッ素化、水道水フッ素添加、フッ素水道、水道水フッ素むし歯予防とも呼ばれる。.

新しい!!: フッ素と水道水フッ化物添加 · 続きを見る »

水酸化ナトリウム

水酸化ナトリウム(すいさんかナトリウム、sodium hydroxide)は化学式 NaOH で表される無機化合物で、ナトリウムの水酸化物であり、常温常圧ではナトリウムイオンと水酸化物イオンからなるイオン結晶である。苛性ソーダ(かせいソーダ、caustic soda)と呼ばれることも多い。 強塩基(アルカリ)として広汎かつ大規模に用いられ、工業的に非常に重要な基礎化学品の1つである。毒物及び劇物取締法により原体および5 %を超える製剤が劇物に指定されている。.

新しい!!: フッ素と水酸化ナトリウム · 続きを見る »

氷晶石

氷晶石(ひょうしょうせき、cryolite)は、産出が比較的稀なハロゲン化鉱物の一つ。化学式はNa3AlF6、物質名はヘキサフルオロアルミン酸ナトリウム(Sodium hexafluoroaluminate)。 1799年に西グリーンランドのイビクドゥト(Ivigtût、現在のイヒドゥート(Ivittuut))で発見された。最初は「解けない氷」と考えられ、外観があまりにも氷に似ていることからこの名前がついた(ギリシャ語で「冷気の石」)。そのほかの国でも産出が報告されているが、現在でも、結晶としてまとまって産出するのはグリーンランドだけである。 単斜晶系。モース硬度は2.5から3。比重は2.95から3。色は、半透明の無色または白色。屈折率が低く1.338で水とほぼ同程度であるため、透明な結晶を水の中に入れるとほとんど見えなくなる。 1886年、アルミニウムの製錬法であるホール・エルー法における融剤(融点1012℃)としての用途が開拓された。このため、グリーンランドは氷晶石の輸出で莫大な富を得た。 現在、アルミの製造にはより安価な蛍石から製造される合成品が用いられているうえ、埋蔵量が底を突いたため1987年にイヒドゥートの鉱山は閉山して町はゴーストタウンと化した。.

新しい!!: フッ素と氷晶石 · 続きを見る »

気体

気体(きたい、gas)とは、物質の状態のひとつであり岩波書店『広辞苑』 第6版 「気体」、一定の形と体積を持たず、自由に流動し圧力の増減で体積が容易に変化する状態のこと。 「ガス体」とも。.

新しい!!: フッ素と気体 · 続きを見る »

沸点

沸点(ふってん、)とは、液体の飽和蒸気圧が外圧液体の表面にかかる圧力のこと。と等しくなる温度であるアトキンス第8版 p.122.

新しい!!: フッ素と沸点 · 続きを見る »

液体酸素

液体酸素(えきたいさんそ)とは、液化した酸素のこと。酸素の沸点は−183℃、凝固点は−219℃である。製鉄や医療現場の酸素源やロケットの酸化剤として利用され、LOX (Liquid OXygen)、LO2のように略称される。有機化合物に触れると爆発的に反応することがある。.

新しい!!: フッ素と液体酸素 · 続きを見る »

液晶

液晶(えきしょう)は、固体と液体の両方の性質を示す状態の一つにある物質である。また、その状態を示す場合もある。 これを利用したディスプレイ・テレビ受像機については、液晶ディスプレイ・薄型テレビを参照のこと。.

新しい!!: フッ素と液晶 · 続きを見る »

日本

日本国(にっぽんこく、にほんこく、ひのもとのくに)、または日本(にっぽん、にほん、ひのもと)は、東アジアに位置する日本列島(北海道・本州・四国・九州の主要四島およびそれに付随する島々)及び、南西諸島・伊豆諸島・小笠原諸島などから成る島国広辞苑第5版。.

新しい!!: フッ素と日本 · 続きを見る »

放射性同位体

放射性同位体(ほうしゃせいどういたい、radioisotope、RI)とは、ある元素の同位体で、その核種の不安定性から放射線を放出して放射性崩壊を起こす能力(放射能)を持つ元素を言う。.

新しい!!: フッ素と放射性同位体 · 続きを見る »

1530年

記載なし。

新しい!!: フッ素と1530年 · 続きを見る »

1670年

記載なし。

新しい!!: フッ素と1670年 · 続きを見る »

1771年

記載なし。

新しい!!: フッ素と1771年 · 続きを見る »

1800年

18世紀最後の年である100で割り切れてかつ400では割り切れない年であるため、閏年ではない(グレゴリオ暦の規定による)。。.

新しい!!: フッ素と1800年 · 続きを見る »

1806年

記載なし。

新しい!!: フッ素と1806年 · 続きを見る »

1813年

記載なし。

新しい!!: フッ素と1813年 · 続きを見る »

1869年

記載なし。

新しい!!: フッ素と1869年 · 続きを見る »

1886年

記載なし。

新しい!!: フッ素と1886年 · 続きを見る »

1906年

記載なし。

新しい!!: フッ素と1906年 · 続きを見る »

ここにリダイレクトされます:

Fluorineふっ素フルオリンフッ素のオキソ酸弗素

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »