ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

フビニ・スタディ計量

索引 フビニ・スタディ計量

フビニ・スタディ計量(Fubini–Study metric)は、射影ヒルベルト空間上のケーラー計量である。つまり、複素射影空間 CPn がエルミート形式を持つことを言う。この計量は、もともとは1904年と1905年に(Guido Fubini)と(Eduard Study)が記述したものであった。 ベクトル空間 Cn+1 のエルミート形式は、GL(n+1,C) の中のユニタリ部分群 U(n+1) を定義する。フビニ・スタディ計量は、U(n+1) 作用の下での不変性(スケーリングに対して)により差異を同一視すると決定し、等質性を持つ。フビニ・スタディ計量を持つ CPn は、(スケーリングを渡る)(symmetric space)である。特に、計量の正規化は、スケーリングの適用に依存する。リーマン幾何学においては、正規化された計量を使うことができるので、(2''n'' + 1) 次元球面上のフビニ・スタディ計量は、単純に標準の計量と関連付けられる。代数幾何学では、正規化を使い、CPn をホッジ多様体とすることができる。 n endowed with a Hermitian form.

43 関係: 単連結空間大圏コース小平の埋め込み定理射影多様体射影空間一般相対性理論代数幾何学ユークリッド距離リーマン多様体リーマン幾何学リーマン球面リッチテンソルリッチフローブラ-ケット記法ブロッホ球ヒルベルト空間アインシュタイン多様体アインシュタイン方程式エルミート多様体エルミート形式エルミート行列カルツァ=クライン理論ガウス曲率ケーラー多様体シュプリンガー・サイエンス・アンド・ビジネス・メディアステレオ投影商空間球面座標系群作用直交直線束非線型シグマモデル複素共役計量計量テンソル超球面距離函数距離空間量子力学量子もつれ量子状態正則数学

単連結空間

連結であるが、穴のまわりを1周するループを考えればわかるように単連結ではない。穴を全てふさげば単連結となる。 位相幾何学における単連結空間(たんれんけつくうかん、simply connected space)とは、任意のループを連続的に1点に収縮できるような弧状連結空間のことである。.

新しい!!: フビニ・スタディ計量と単連結空間 · 続きを見る »

大圏コース

実線はさまざまな大圏コース(破線は緯線) 大圏(たいけん、Great circle)とは地球における大円を指す。大圏コース(たいけんコース、Great circle route)とは、地球上の2点間を大圏(の一部である弧)で結んだルートのことである。大圏航路、大円コースと呼ばれる場合もある。最短距離のルートになるため、航空機や船舶の航路に利用される。また弾道ミサイルの飛行コースとしても重要である。.

新しい!!: フビニ・スタディ計量と大圏コース · 続きを見る »

小平の埋め込み定理

数学において、小平の埋め込み定理(こだいらのうめこみていり、Kodaira embedding theorem)は、コンパクトなケーラー多様体の中で、複素数体上の非特異射影多様体を特徴付ける。要するに小平の埋め込み定理は、ちょうどどんな複素多様体が斉次多項式により定義されるのかを言っている. 小平邦彦の結果は、ホッジ計量を持つコンパクトケーラー多様体 M は、ある十分に大きい次元 N の複素射影空間の中へ複素解析的に埋め込む事ができるという定理である。ここに、ホッジ計量を持つとは、ケーラー形式 ω により定義される 2 次のコホモロジー類が整係数コホモロジーであることを意味する。M が代数多様体として埋め込まれるという事実は、周の定理によりコンパクト性から従う。ホッジ計量を持つケーラー多様体は、(にちなみ)ホッジ多様体と呼ばれることもある。従って、小平の結果は、ホッジ多様体は射影的であると述べている。逆、すなわち射影多様体はホッジ多様体であることは、より基本的であり、以前から知られていた。.

新しい!!: フビニ・スタディ計量と小平の埋め込み定理 · 続きを見る »

射影多様体

代数幾何学において,代数閉体 上の射影多様体(しゃえいたようたい,projective variety)とは, 上の( 次元)射影空間 の部分集合であって,素イデアルを生成する 係数 変数斉次多項式の有限族の零点集合として書けるものをいう.そのようなイデアルは多様体の定義イデアルと呼ばれる.あるいは同じことだが,代数多様体が射影的であるとは, のザリスキ閉部分多様体として埋め込めるときにいう. 1次元の射影多様体は射影曲線と呼ばれ,2次元だと射影曲面,余次元 1 だと射影超曲面と呼ばれる.射影超曲面は単独の斉次式の零点集合である. 射影多様体 が斉次素イデアル によって定義されているとき,商環 は の斉次座標環と呼ばれる.次数や次元のような基本的な不変量は,この次数環のヒルベルト多項式から読み取ることができる. 射影多様体は多くの方法で生じる.それらはであり,荒っぽく言えば「抜けている」点がない.逆は一般には正しくないが,はこの2つの概念の近い関係を記述する.多様体が射影的であることは直線束や因子を調べることによって示される. 射影多様体の顕著な性質の1つは,層コホモロジーの有限性である.滑らかな射影多様体に対して,セール双対性はポワンカレ双対性の類似と見なせる.それはまた射影曲線,すなわち 1 の射影多様体に対するリーマン・ロッホの定理を導く.射影曲線の理論は特に豊かで,曲線のによる分類を含む.高次元の射影多様体の分類問題は自然に射影多様体のモジュライの構成を導く.ヒルベルトスキームは所定のヒルベルト多項式をもつ の閉部分スキームをパラメトライズする.ヒルベルトスキームは,グラスマン多様体は特別な場合であるが,それ自身射影スキームでもある.幾何学的不変式論は別のアプローチを提供する.古典的なアプローチはタイヒミュラー空間やを含む. 古典にさかのぼる特に豊かな理論が,複素射影多様体,すなわち を定義する多項式が複素係数を持つ場合にある.大まかには,GAGA の原理により,射影複素解析空間(あるいは多様体)の幾何学は射影複素多様体の幾何学と等しい.例えば, 上の正則ベクトル束(より一般に連接解析的層)の理論は,代数的ベクトル束の理論と一致する.Chow の定理により,射影空間の部分集合が正則関数の族の零点集合であることと斉次多項式の零点集合であることは同値である.複素射影多様体に対する解析的な手法と代数的な手法の組合せはホッジ理論のような分野に通じる..

新しい!!: フビニ・スタディ計量と射影多様体 · 続きを見る »

射影空間

射影空間(しゃえいくうかん、projective space) とは、その次元が n であるとき、(n + 1)個の「数」の比全体からなる空間の事をさす。比を構成する「数」をどんな体(あるいは環)にとるかによって様々な空間が得られる。非ユークリッド幾何学のひとつである射影幾何学がその概念の端緒であるが、射影空間は位相幾何学、微分幾何学、代数幾何学など幾何学のあらゆる分野にわたって非常に重要な概念である。.

新しい!!: フビニ・スタディ計量と射影空間 · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

新しい!!: フビニ・スタディ計量と一般相対性理論 · 続きを見る »

代数幾何学

代数幾何学(だいすうきかがく、algebraic geometry)とは、多項式の零点のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である。大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中の可換環論と関係が深く、後者は幾何学の中の多様体論と関係が深い。20世紀に入って外観を一新し、大きく発展した数学の分野といわれる。 ルネ・デカルトは、多項式の零点を曲線として幾何学的に扱う発想を生みだしたが、これが代数幾何学の始まりとなったといえる。例えば、x, y を実変数として "x2 + ay2 − 1" という多項式を考えると、これの零点のなす R2 の中の集合は a の正、零、負によってそれぞれ楕円、平行な2直線、双曲線になる。このように、多項式の係数と多様体の概形の関係は非常に深いものがある。 上記の例のように、代数幾何学において非常に重要な問題として「多項式の形から、多様体を分類せよ」という問題が挙げられる。曲線のような低次元の多様体の場合、分類は簡単にできると思われがちだが、低次元でも次数が高くなるとあっという間に分類が非常に複雑になる。 当然、次元が上がると更に複雑化し、4次元以上の代数多様体についてはあまり研究は進んでいない。 2次元の場合、多様体に含まれる(−1)カーブと呼ばれる曲線を除外していくことにより、特殊な物をのぞいて極小モデルと呼ばれる多様体が一意に定まるので、2次元の場合の分類問題は「極小モデルを分類せよ」という問題に帰着される。 3次元の場合も同じように極小モデルを分類していくという方針が立てられたが、3次元の場合は、その極小モデルが一意に定まるかどうかが大問題であった。 しかし、1988年森重文により3次元多様体の極小モデル存在定理が証明され、以降「森のプログラム」と呼ばれるプログラムに沿って分類が強力に推し進められている。 19世紀中期に、ベルンハルト・リーマンがアーベル関数論の中で双有理同値など代数幾何学の中心概念を生み出し、19世紀後半には、イタリアの直観的な代数幾何学が発展した(代数幾何学のイタリア学派)。20世紀前半には、アンドレ・ヴェイユ、オスカー・ザリスキによって、抽象的な代数幾何学の研究が進められ、1950年代以降はグロタンディークのスキーム論によって代数幾何学全体が大きく書き直された。.

新しい!!: フビニ・スタディ計量と代数幾何学 · 続きを見る »

ユークリッド距離

数学におけるユークリッド距離(ユークリッドきょり、Euclidean distance)またはユークリッド計量(ユークリッドけいりょう、Euclidean metric; ユークリッド距離函数)とは、人が定規で測るような二点間の「通常の」距離のことであり、ピタゴラスの公式によって与えられる。この公式を距離函数として用いればユークリッド空間は距離空間となる。ユークリッド距離に付随するノルムはユークリッドノルムと呼ばれる。古い書籍などはピタゴラス計量(Pythagorean metric)と呼んでいることがある。.

新しい!!: フビニ・スタディ計量とユークリッド距離 · 続きを見る »

リーマン多様体

微分幾何学におけるリーマン多様体(リーマンたようたい、Riemannian manifold)とは、可微分多様体 で 上の各点に基本計量テンソル が与えられているものを言う。ベルンハルト・リーマンによって導入された。.

新しい!!: フビニ・スタディ計量とリーマン多様体 · 続きを見る »

リーマン幾何学

リーマン幾何学(リーマンきかがく、Riemannian geometry)とは、リーマン計量や擬リーマン計量と呼ばれる距離の概念を一般化した構造を持つ図形を研究する微分幾何学の分野である。このような図形はリーマン多様体、擬リーマン多様体とよばれる。ドイツの数学者ベルンハルト・リーマンに因んでこの名前がついている。1850年代に確立された。 楕円・放物・双曲の各幾何学は、リーマン幾何学では、曲率がそれぞれ正、0、負の一定値をとる空間(それぞれ球面、ユークリッド空間、双曲空間)上の幾何学と考えられる。なお、楕円幾何学のことをリーマン幾何と呼ぶことがあるが、本稿で述べるリーマン幾何学はそれとは異なるものである。 アルベルト・アインシュタインは、重力、即ち、一様ではなく湾曲した時空を記述するのに擬リーマン多様体の枠組みが有効であることを見いだし、リーマン幾何学を数学的核心とした一般相対性理論を構築した。 3.

新しい!!: フビニ・スタディ計量とリーマン幾何学 · 続きを見る »

リーマン球面

リーマン球面は、複素平面で包んだ球面(ある形式の立体射影による ― 詳細は下記参照)として視覚化できる。 数学においてリーマン球面(リーマンきゅうめん、Riemann sphere)は、無限遠点を一点追加して複素平面を拡張する一手法であり、ここに無限遠点 は、少なくともある意味で整合的かつ有用である。 19 世紀の数学者ベルンハルト・リーマンから名付けられた。 これはまた、以下の通りにも呼ばれる。.

新しい!!: フビニ・スタディ計量とリーマン球面 · 続きを見る »

リッチテンソル

微分幾何学において、リッチ曲率テンソル とは、歪んだリーマン多様体上の測地球の体積がユークリッド空間上の球体からどれだけずれるかを表す量である。に因んでその名がある。あるリーマン計量が与えられたとき、その記述する幾何が通常の 次元ユークリッド空間からどれだけ違うか表わす尺度として使うことができる。リッチテンソルはどんな擬リーマン多様体に対しても、リーマン曲率テンソルのトレースとして定義される。計量それ自体と同様、リッチテンソルは多様体の接空間上の対称双線型形式である。 相対性理論では、リッチテンソルは時空の曲率(Rμvと表す)の一部であり、レイチャウデューリ方程式を通じて物質が時間とともにどれだけ収縮もしくは拡散するかの程度に関連する。アインシュタイン方程式を通じて、宇宙に含まれる物質の量にも関連する。微分幾何学では、あるリーマン多様体上のリッチテンソルの下界により、一様な曲率をもつと比較した場合の(も参照)大域的幾何学および位相幾何学的な情報を得ることができる。リッチテンソルが真空のアインシュタイン方程式を満たすとき、その多様体はアインシュタイン多様体であるといい、特に研究されている (cf.)。これと関係して、リッチフロー方程式はある計量がアインシュタイン計量へ発展するさまを記述する。この方法により、ポアンカレ予想が最終的に解決することとなった。.

新しい!!: フビニ・スタディ計量とリッチテンソル · 続きを見る »

リッチフロー

2次元多様体上のリッチフローの各ステージ リッチフロー (Ricci flow) とは、微分幾何学における本来の(geometric flow)の一つである。リッチフローは、熱伝導方程式に形式的に似た方法でリーマン多様体の計量の特異点を滑らかに変形する過程である。 (Gregorio Ricci-Curbastro)の名前に因むリッチフローは、最初にリチャード・ハミルトン (Richard Hamilton) により1981年に導入され、リッチ・ハミルトンフロー (Ricci–Hamilton flow) とも呼ばれる。リッチフローは、最初にグリゴリー・ペレルマン (Grigori Perelman) によりポアンカレ予想の証明のために使われ、同様に、サイモン・ブレンデルとリチャード・シェーンによる(differentiable sphere theorem) の証明に使われた。.

新しい!!: フビニ・スタディ計量とリッチフロー · 続きを見る »

ブラ-ケット記法

ブラ-ケット記法(ブラ-ケットきほう、bra-ket notation)は量子力学における量子状態を記述するための標準的な記法である。 この名称は、2つの状態の内積が'''ブラケット'''を用いて のように表され、この左半分 をブラベクトル、右半分 をケットベクトルと呼ぶことによる。この記法はポール・ディラックが発明したため、ディラックの記法とも呼ぶ。.

新しい!!: フビニ・スタディ計量とブラ-ケット記法 · 続きを見る »

ブロッホ球

ブロッホ球(ブロッホきゅう、bloch sphere)とは、物理学者、フェリックス・ブロッホ(Felix Bloch)にちなんで名付けられた、二つの直交する純粋状態の重ね合わせで表現できる量子状態を単位球面上に表す表記法である。従って、量子ビットの純粋状態はブロッホ球上の点として視覚的に表現することができる。 量子ビットの任意の純粋状態 は以下のような と の重ね合わせで表現できる。 |\psi\rangle.

新しい!!: フビニ・スタディ計量とブロッホ球 · 続きを見る »

ヒルベルト空間

数学におけるヒルベルト空間(ヒルベルトくうかん、Hilbert space)は、ダフィット・ヒルベルトにその名を因む、ユークリッド空間の概念を一般化したものである。これにより、二次元のユークリッド平面や三次元のユークリッド空間における線型代数学や微分積分学の方法論を、任意の有限または無限次元の空間へ拡張して持ち込むことができる。ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる。 ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる。そういった意味でのヒルベルト空間の研究は、20世紀冒頭10年の間にヒルベルト、シュミット、リースらによって始められた。ヒルベルト空間の概念は、偏微分方程式論、量子力学、フーリエ解析(信号処理や熱伝導などへの応用も含む)、熱力学の研究の数学的基礎を成すエルゴード理論などの理論において欠くべからざる道具になっている。これら種々の応用の多くの根底にある抽象概念を「ヒルベルト空間」と名付けたのは、フォン・ノイマンである。ヒルベルト空間を用いる方法の成功は、関数解析学の実りある時代のさきがけとなった。古典的なユークリッド空間はさておき、ヒルベルト空間の例としては、自乗可積分関数の空間 、自乗総和可能数列の空間 、超関数からなるソボレフ空間 、正則関数の成すハーディ空間 などが挙げられる。 ヒルベルト空間論の多くの場面で、幾何学的直観は重要である。例えば、三平方の定理や中線定理(の厳密な類似対応物)は、ヒルベルト空間においても成り立つ。より深いところでは、部分空間への直交射影(例えば、三角形に対してその「高さを潰す」操作の類似対応物)は、ヒルベルト空間論における最適化問題やその周辺で重要である。ヒルベルト空間の各元は、平面上の点がそのデカルト座標(直交座標)によって特定できるのと同様に、座標軸の集合(正規直交基底)に関する座標によって一意的に特定することができる。このことは、座標軸の集合が可算無限であるときには、ヒルベルト空間を自乗総和可能な無限列の集合と看做すことも有用であることを意味する。ヒルベルト空間上の線型作用素は、ほぼ具体的な対象として扱うことができる。条件がよければ、空間を互いに直交するいくつかの異なる要素に分解してやると、線型作用素はそれぞれの要素の上では単に拡大縮小するだけの変換になる(これはまさに線型作用素のスペクトルを調べるということである)。.

新しい!!: フビニ・スタディ計量とヒルベルト空間 · 続きを見る »

アインシュタイン多様体

微分幾何と数理物理において、アインシュタイン多様体(Einstein manifold)は、リッチテンソルが計量テンソルに比例するリーマン多様体もしくは、擬リーマン多様体である。通常、一般相対論で研究する 4次元のローレンツ多様体とは違い、この条件は、符合と同様に計量の次元も任意であることが可能であるにもかかわらず、この条件と計量が(宇宙定数を持つ)真空のアインシュタイン方程式の解であることとが同値であるとの理由から、アインシュタイン多様体はアルベルト・アインシュタイン(Albert Einstein)の名前に由来している。 M が基礎となる n-次元多様体で、g がその計量テンソルであれば、アインシュタインの条件は、ある定数 k が存在し、 であることを意味する。ここに、Ric は g のリッチテンソルを表わす。k.

新しい!!: フビニ・スタディ計量とアインシュタイン多様体 · 続きを見る »

アインシュタイン方程式

一般相対性理論におけるアインシュタイン方程式(アインシュタインほうていしき、)アインシュタインの重力場方程式(じゅうりょくばのほうていしき、Einstein's field equations;EFE)とも呼ばれる。は、万有引力・重力場を記述する場の方程式である。アルベルト・アインシュタインによって導入された。 アイザック・ニュートンが導いた万有引力の法則を、強い重力場に対して適用できるように拡張した方程式であり、中性子星やブラックホールなどの高密度・大質量天体や、宇宙全体の幾何学などを扱える。.

新しい!!: フビニ・スタディ計量とアインシュタイン方程式 · 続きを見る »

エルミート多様体

数学では、エルミート多様体()はリーマン多様体の複素類似である。より詳しく述べると、エルミート多様体は各々の(正則)接空間上に滑らかに変化するエルミート内積をもつ複素多様体である。また、エルミート多様体を複素構造を保つリーマン計量を持つ実多様体として定義することもできる。 複素構造は、本質的には可積分条件をもつ概複素構造であり、この条件は多様体上にユニタリ構造((U(n) structure))をもたらす。可積分条件を落とすと、概エルミート多様体を得る。 任意の概エルミート多様体上に、計量と概複素構造の選択にしか依存しない基本 2-形式(fundamental 2-form)、もしくはコシンプレクティック構造(cosymplectic structure)を導入することができる。基本形式は常に非退化である。これが閉形式である(こすなわちシンプレクティック形式である)という追加の可積分条件を課すことにより、概ケーラー構造(almost Kähler structure)を得る。もし概複素構造と基本形式の両方が積分可能であれば、 ケーラー構造を持つ。.

新しい!!: フビニ・スタディ計量とエルミート多様体 · 続きを見る »

エルミート形式

数学の線型代数学におけるエルミート積 (Hermitian product), エルミート半双線型形式 (Hermitian Sesqui­linear form) あるいは単にエルミート形式(エルミートけいしき、Hermitian form)は、シャルル・エルミートに名を因む特別な種類の半双線型形式で、対称双線型形式の複素版にあたる。 複素線型空間 とその上のエルミート形式 との組, あるいは同じことだが対応する「二次形式」 との組 をエルミート空間(あるいはエルミート二次空間)と呼ぶ。.

新しい!!: フビニ・スタディ計量とエルミート形式 · 続きを見る »

エルミート行列

線型代数学におけるエルミート行列(エルミートぎょうれつ、Hermitian matrix)または自己随伴行列(じこずいはんぎょうれつ、self-adjoint matrix)は、複素数に成分をとる正方行列で自身の随伴行列(共軛転置)と一致するようなものを言う。エルミート行列は、実対称行列の複素数に対する拡張版の概念として理解することができる。 行列 の随伴を と書くとき、複素行列がエルミートであるということは、 が成り立つということであり、これはまた が成り立つことと同値ゆえ、その成分は任意の添字 について -成分は -成分の複素共軛と等しい。 随伴行列 は と書かれるほうが普通だが、 を複素共軛(本項では と書いた)の意味で使う文献も多く紛らわしい。 エルミート行列の名はシャルル・エルミートに因む。エルミートは1855年、この種の行列が固有値が常に実数となるという実対称行列と同じ性質を持つことを示した。 よく知られたパウリ行列、ゲルマン行列および一般化されたそれらはエルミートである。理論物理学においてそれらのエルミート行列には、しばしば虚数の係数が掛かって歪エルミート行列となる。.

新しい!!: フビニ・スタディ計量とエルミート行列 · 続きを見る »

カルツァ=クライン理論

ルツァ=クライン理論(カルツァ=クラインりろん、Kaluza-Klein theory、KK理論)は、重力と電磁気力を統一するために五次元以上の時空を仮定する理論である。理論物理学者のテオドール・カルツァが1921年に提唱し、1926年にオスカル・クラインが修正した。.

新しい!!: フビニ・スタディ計量とカルツァ=クライン理論 · 続きを見る »

ガウス曲率

微分幾何学において、曲面上のある点でのガウス曲率(Gauss curvature、あるいは、Gaussian curvature)は、与えられた点での主曲率、κ1 と κ2 の積である。神聖ローマ帝国(当時)のカール・フリードリヒ・ガウスにより1827年に発表された。 ガウス曲率は、空間への等長的に埋め込む(embedded)方法へ依存するのではなく、曲面上での距離にのみ依存する曲率を、それ自身から測る曲率である。ガウス曲率の命名は、カール・フリードリッヒ・ガウス(Carl Friedrich Gauss)に因み、彼の著作である 驚異の定理()の記載内容である。 記号で書き出すと、ガウス曲率 Κ は、 と定義される。ここに κ1 と κ2 は主曲率である。 1 and κ2, of the given point.

新しい!!: フビニ・スタディ計量とガウス曲率 · 続きを見る »

ケーラー多様体

数学、特に微分幾何学において、ケーラー多様体(Kähler manifold)とは、複素構造、リーマン構造、シンプレクティック構造という3つが互いに整合性を持つ多様体である。ケーラー多様体 X 上には、ケーラーポテンシャルが存在し、X の計量に対応するレヴィ・チヴィタ接続が、標準直線束上の接続を引き起こす。 滑らかな射影代数多様体はケーラー多様体の重要な例である。小平埋め込み定理により、正の直線束を持つケーラー多様体は、常に射影空間の中へ双正則に埋め込むことができる。 ケーラー多様体の名前はドイツ人数学者エーリッヒ・ケーラー (Erich Kähler) にちなんでいる。.

新しい!!: フビニ・スタディ計量とケーラー多様体 · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: フビニ・スタディ計量とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

ステレオ投影

テレオ投影(ステレオとうえい、stereographic projection)は、球面を平面に投影する方法の一つである。ステレオ投影は複素解析学、地図学、結晶学、写真術など様々な分野で重要である。 stereographic projection の訳語は分野によって異なる。ステレオ投影は主に物理学や機械工学において用いられる。数学においては写像という意味で立体射影あるいはステレオグラフ射影、地図学では図法という意味で平射図法またはステレオ図法と呼ばれる。このように訳語が異なってはいるが、内容は全て同一視できる。 ステレオ投影は、数学的には写像として定義される。定義域は、球面から光源の一点を除いたところである。写像は滑らかかつ全単射である。また、等角写像、すなわち角度が保存される。一方、長さや面積は保存されない。これはとくに光源点付近では顕著である。 すなわち、ステレオ投影は、いくらかの避けられない妥協を含む、球面を平面に描く方法である。実際面では、コンピュータや、ウルフネットまたはステレオネットと呼ばれるなどを使って、投影図が描かれる。.

新しい!!: フビニ・スタディ計量とステレオ投影 · 続きを見る »

商空間

商空間(しょうくうかん).

新しい!!: フビニ・スタディ計量と商空間 · 続きを見る »

球面座標系

球面座標系(きゅうめんざひょうけい、)とは、3次元ユークリッド空間に定まる座標系の一つで、一つの動径座標と二つの角度座標で表される極座標系である。第一の角度はある軸(通常は -軸を選ぶ)と動径がなす角度で、第二の角度は、その軸に垂直な平面にある別の軸(通常は -軸を選ぶ)とこの平面への動径の射影がなす角度である。通常は動径座標に記号 を用い、第一の角度座標には を、第二の角度座標には を用いて表される。動径座標は で与えられる。第二の角度座標を で与えられる。ここで は符号関数 である。-軸上 において特異性があり、分母がゼロとなるため が定まらない。さらに原点 においては も定まらない。 球面座標 から直交直線座標 への変換の式を微分すれば が得られて、ヤコビ行列とヤコビ行列式は となる。従って球面座標で表した体積素は となる。また、線素の二乗は となる。交叉項が現れないため、球座標は各点において動径が増減する方向と二つの角度が増減する方向がそれぞれに直交している直交座標系である。.

新しい!!: フビニ・スタディ計量と球面座標系 · 続きを見る »

群作用

数学における群作用(ぐんさよう、group action)は、群を用いて物体の対称性を記述する方法である。.

新しい!!: フビニ・スタディ計量と群作用 · 続きを見る »

直交

初等幾何学における直交(ちょっこう、orthogonal)は「垂直に交わる」こと、すなわちユークリッド空間内の交わる二つの直線や平面のなす角が直角であることを意味する。 このことは、直線と曲線または曲線同士、あるいは平面と曲面または曲面同士、もしくは曲線と曲面などの場合にも、交点において曲線の接線(または法線)あるいは曲面の接平面(または法線)などを考えることにより拡張できる。すなわち接線同士(または法線同士)の直交を以って二つの曲線の直交を定義するのである。注意すべきこととして、これら対象の直交性をベクトルによって定めるならば、(ベクトルは平行移動不変であるから)直交するそれらの対象は必ずしも「交わらない」。また非標準的な内積に関する直交性を考えるならば、直交するふたつのベクトルは必ずしも直角を成さない。 解析学や線型代数学に属する各分野を含め、直交性の概念は数学において広範に一般化して用いられる。.

新しい!!: フビニ・スタディ計量と直交 · 続きを見る »

直線束

数学における直線束(ちょくせんそく、line bundle; 線束)は、空間の点から点へ動いていく直線の概念を表すものである。例えば、平面上の曲線は各点において接線を持つが、これらを構造化する方法によって接束が得られる。より厳密に、代数幾何学および微分位相幾何学における直線束は階数 のベクトル束として定義される。 一次元の実直線束(冒頭に述べたようなもの)と一次元の複素直線束は異なる。 正則実行列全体の成す空間の位相は、(正および負の実数をそれぞれ一点に縮めた)にホモトピー同値だが、 正則複素行列の空間のホモトピー型は円周である。 従って、実直線束はホモトピー論的には、二点繊維を持つファイバー束としての二重被覆も同然である。これは可微分多様体上のになる(実際これは、直線束が行列式束(接束の最高次外冪)の特別の場合であることからわかる)。メビウスの帯は円周の二重被覆(偏角を θ ↦ 2θ にする写像)に対応し、これを二点繊維を持つものとして見ることもできるが、このとき単位区間でも実数直線でもデータとしては同値である。 複素直線束の場合には、実はこれはでもあることが分かる。よく知られたものとして、例えば球面から球面へのがある。.

新しい!!: フビニ・スタディ計量と直線束 · 続きを見る »

非線型シグマモデル

場の量子論において、非線型シグマモデル (nonlinear σ model) は、対象多様体と呼ばれる非線型多様体 T 上に値をとるスカラー場 である。非線型シグマモデルは により導入され、彼らのモデルの中の σ と呼ばれるスピンを持たないメソンに対応する場に因んで命名された。.

新しい!!: フビニ・スタディ計量と非線型シグマモデル · 続きを見る »

複素共役

数学において、複素数の複素共役、複素共軛(ふくそきょうやく、complex conjugate)は、複素数に対し、その虚部の符号をいれかえたものである。つまり、i を虚数単位として、複素数 z を a, b を実数として と表したとき、 が z の複素共役である。複素共役を表すのには上線がよく使われる。上付きのアスタリスク (z*) なども使われるが、行列での随伴行列などとの混乱を避けるためにあまり使われない。.

新しい!!: フビニ・スタディ計量と複素共役 · 続きを見る »

計量

計量(けいりょう、measuring, measurement)は、.

新しい!!: フビニ・スタディ計量と計量 · 続きを見る »

計量テンソル

計量テンソル(けいりょうテンソル、metric tensor)は、リーマン幾何学において、空間内の距離と角度を定義する、階数()が2のテンソルである。多様体が与えられたとき、多様体の接空間で、滑らかに変化する非負の2次関数を選ぶことができる場合、その多様体をリーマン多様体と呼ぶ。そのため、計量テンソルは、リーマン計量()と呼ばれることもある。 ひとたび、ある座標系 が選ばれると、計量テンソルは行列形式で定義される。通常、 として表記され、各成分は と表される。以下では、添え字の和に関してアインシュタインの縮約記法を用いる。 点 から までの曲線の長さは、 をパラメータとして、 と定義される。2つの接ベクトル()U.

新しい!!: フビニ・スタディ計量と計量テンソル · 続きを見る »

超球面

数学において、 次元球面(-じげんきゅうめん、n-sphere, n 球面)は普通の球面の ''n'' 次元空間への一般化である。任意の自然数 n に対して、半径 r の n 次元球面は中心点から距離 r にある (n + 1) 次元ユークリッド空間における点の集合として定義される。ここで半径 r は任意の正の実数でよい。したがって、原点を中心とする n 次元球面は によって定義される。これは (n + 1) 次元ユークリッド空間内に存在する n 次元多様体である。 特に:.

新しい!!: フビニ・スタディ計量と超球面 · 続きを見る »

距離函数

距離函数(きょりかんすう、distance function)、距離計量(きょりけいりょう)あるいは単に距離(きょり、distance)、計量(けいりょう、metric)は、集合の二点間の距離を定義する函数である。距離が定義されている集合を距離空間(きょりくうかん、metric space)と呼ぶ。距離はその集合上の位相(距離位相)を誘導するが、必ずしもすべての位相空間が距離位相によって生成されるわけではない。ある位相空間の位相を距離によって記述することができるとき、その位相空間は距離化可能 (metrizable) であるという。.

新しい!!: フビニ・スタディ計量と距離函数 · 続きを見る »

距離空間

距離空間(きょりくうかん、metric space)とは、距離関数(きょりかんすう)と呼ばれる非負実数値関数が与えられている集合のことである。 古代より、平面や空間、地上の 2 点間の離れ具合を表す尺度である距離は測量や科学、数学において重要な役割を果たしてきた。1906年にモーリス・フレシェは、様々な集合の上で定義された関数の一様連続性の概念を統一的に研究した論文 において、ユークリッド空間から距離の概念を抽出して用い、距離空間の理論を築いた。 平面 R2 の上の 2 点 P1.

新しい!!: フビニ・スタディ計量と距離空間 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: フビニ・スタディ計量と量子力学 · 続きを見る »

量子もつれ

量子もつれ(りょうしもつれ、quantum entanglement)とは、一般的に を漠然と指す用語として用いられる。しかし、量子情報理論においてはより限定的に、 を表す用語として用いられる。 (2)は(1)のある側面を緻密化したものであるが、捨象された部分も少なくない。例えば典型的な非局所効果であるベルの不等式の破れなどは(2)の枠組みにはなじまない。 どちらの意味においても、 複合系の状態がそれを構成する個々の部分系の量子状態の積として表せないときにのみ、量子もつれは存在する(逆は必ずしも真ではない)。このときの複合系の状態をエンタングル状態という。量子もつれは、量子絡み合い(りょうしからみあい)、量子エンタングルメントまたは単にエンタングルメントともよばれる。.

新しい!!: フビニ・スタディ計量と量子もつれ · 続きを見る »

量子状態

量子状態(りょうしじょうたい、)とは、量子論で記述される系(量子系)がとる状態のことである。 これは系の物理量(可観測量、オブザーバブル)を測定したとき、その測定値のバラつき具合を表す確率分布によって定義される。 以下に述べるように、量子状態には、純粋状態と混合状態とがある。.

新しい!!: フビニ・スタディ計量と量子状態 · 続きを見る »

正則

正則(せいそく).

新しい!!: フビニ・スタディ計量と正則 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: フビニ・スタディ計量と数学 · 続きを見る »

ここにリダイレクトされます:

フビニ–スタディ計量

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »