ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

フッ化黒鉛リチウム電池

索引 フッ化黒鉛リチウム電池

フッ化(弗化)黒鉛リチウム電池(ふっかこくえんリチウムでんち)は、一次電池のうち、負極に金属リチウムを使用するリチウム系電池の一種。.

18 関係: 一次電池ミリメートルリチウムリチウム電池リアルタイムクロックパナソニック オートモーティブ&インダストリアルシステムズ社フッ化物グラファイトコイン形リチウム電池公称電圧元素記号国際電気標準会議火災報知機自然放電電解質電極電気化学放電容量

一次電池

一次電池(いちじでんち)とは、直流電力の放電のみができる電池(化学電池)であり、二次電池に対するそれ以外の電池のことである。二次電池が登場した際にレトロニムとして区分された呼称である。 放電が進むと放電生成物が生じ、逆起電力によって電圧が下がる。放電に伴って生成した放電生成物を減極剤と反応させることにより放電に無害な物質に変える。 使用に伴って放電電圧は徐々に低下し、ある一定限度以下では実際上役に立たなくなるためその時点で寿命となる。この点では、充放電を繰り返す間での性能低下を寿命とする二次電池とは対照的である。充電すると実際には電圧が回復するが、液漏れや破裂の危険を伴うためメーカーでは推奨しておらず行わない方が良い。化学反応であるため、温かな環境では反応が進み放電電圧も維持できる傾向があり、逆に寒冷地では電圧が低下する。 19世紀初頭、商用電力の普及以前には、二次電池である鉛蓄電池などを充電するにはダニエル電池のような一次電池からの充電が唯一の手段であったため、充電電力を供給する側の電池に対し一次電池 (Primary Cell)、充電される側の電池に対し、二次電池 (Secondary Cell) の名が与えられた。.

新しい!!: フッ化黒鉛リチウム電池と一次電池 · 続きを見る »

ミリメートル

ミリメートル(記号mm)は、国際単位系の長さの単位で、1/1000メートル(m)である。.

新しい!!: フッ化黒鉛リチウム電池とミリメートル · 続きを見る »

リチウム

リチウム(lithium、lithium )は原子番号 3、原子量 6.941 の元素である。元素記号は Li。アルカリ金属元素の一つで白銀色の軟らかい元素であり、全ての金属元素の中で最も軽く、比熱容量は全固体元素中で最も高い。 リチウムの化学的性質は、他のアルカリ金属元素よりもむしろアルカリ土類金属元素に類似している。酸化還元電位は全元素中で最も低い。リチウムには2つの安定同位体および8つの放射性同位体があり、天然に存在するリチウムは安定同位体である6Liおよび7Liからなっている。これらのリチウムの安定同位体は、中性子の衝突などによる核分裂反応を起こしやすいため恒星中で消費されやすく、原子番号の近い他の元素と比較して存在量は著しく小さい。 1817年にヨアン・オーガスト・アルフェドソンがペタル石の分析によって発見した。アルフェドソンの所属していた研究室の主催者であったイェンス・ベルセリウスによって、ギリシャ語で「石」を意味する lithos に由来してリチウムと名付けられた。アルフェドソンは金属リチウムの単離には成功せず、1821年にウィリアム・トマス・ブランドが電気分解によって初めて金属リチウムの単離に成功した。1923年にドイツのメタルゲゼルシャフト社が溶融塩電解による金属リチウムの工業的生産法を発見し、その後の金属リチウム生産へと繋がっていった。第二次世界大戦の戦中戦後には航空機用の耐熱グリースとしての小さな需要しかなかったが、冷戦下には水素爆弾製造のための需要が急激に増加した。その後冷戦の終了により核兵器用のリチウムの需要が大幅に冷え込んだものの、2000年代までにはリチウムイオン二次電池用のリチウム需要が増加している。 リチウムは地球上に広く分布しているが、非常に高い反応性のために単体としては存在していない。地殻中で25番目に多く存在する元素であり、火成岩や塩湖かん水中に多く含まれる。リチウムの埋蔵量の多くはアンデス山脈沿いに偏在しており、最大の産出国はチリである。海水中にはおよそ2300億トンのリチウムが含まれており、海水からリチウムを回収する技術の研究開発が進められている。世界のリチウム市場は少数の供給企業による寡占状態であるため、資源の偏在性と併せて需給ギャップが懸念されている。 リチウムは陶器やガラスの添加剤、光学ガラス、電池(一次電池および二次電池)、耐熱グリースや連続鋳造のフラックスとして利用される。2011年時点で最大の用途は陶器やガラス用途であるが、二次電池用途での需要が将来的に増加していくものと予測されている。リチウムの同位体は水素爆弾や核融合炉などにおいて核融合燃料であるトリチウムを生成するために利用されている。 リチウムは腐食性を有しており、高濃度のリチウム化合物に曝露されると肺水腫が引き起こされることがある。また、妊娠中の女性がリチウムを摂取することでの発生リスクが増加するといわれる。リチウムは覚醒剤を合成するためのバーチ還元における還元剤として利用されるため、一部の地域ではリチウム電池の販売が規制の対象となっている。リチウム電池はまた、短絡によって急速に放電して過熱することで爆発が起こる危険性がある。.

新しい!!: フッ化黒鉛リチウム電池とリチウム · 続きを見る »

リチウム電池

リチウム電池(リチウムでんち)は、負極に金属リチウムを使った化学電池である。.

新しい!!: フッ化黒鉛リチウム電池とリチウム電池 · 続きを見る »

リアルタイムクロック

Dallas Semiconductor リアルタイムクロック(旧世代 PC より)。バックアップ用一次電池を内蔵しているため高さがある。内蔵電池が消耗した際は搭載しているマザーボードの寿命時期を意味した。 リアルタイムクロック(real-time clock、RTCと略記RTCといった場合、リアルタイム・コンピューティングを指すこともある。)は、コンピュータなどが内蔵する時計や、その機能が実装されている集積回路(IC)のことを指す。リアルタイムクロックはシステムの電源が切られていてもバッテリバックアップなどにより「時刻」を刻み続けることが特徴である。これに対し、オペレーティングシステムが持つ時刻機能(以下システム時刻)はタイマーにより「時間」を測定しそれを積算するもので、分解能はリアルタイムクロックに勝るが、シャットダウンすると時刻情報が失われ、次にシステムを起動したときにRTCを参照して設定する必要がある。.

新しい!!: フッ化黒鉛リチウム電池とリアルタイムクロック · 続きを見る »

パナソニック オートモーティブ&インダストリアルシステムズ社

ートモーティブ&インダストリアルシステムズ社は、パナソニックの社内カンパニーの一つで、パナソニックグループにおいて「パナソニック」ブランドの電池、充電器、電池応用製品、車載製品、半導体を開発、製造、販売している。.

新しい!!: フッ化黒鉛リチウム電池とパナソニック オートモーティブ&インダストリアルシステムズ社 · 続きを見る »

フッ化物

フッ化物(フッかぶつ、弗化物、fluoride)とはフッ素とほかの元素あるいは原子団とから構成される化合物である。フッ素は最大の電気陰性度を持つ元素であるため、HF3 などごく一部の例外を除き、化合物の中では酸化数が -1 とされる。イオン性あるいは分子性のフッ化物が知られているが分子性フッ化物は液体のものが多く、常温で気体や固体のものも少数見られる。イオン性のフッ化物でも一般に融点の低いものが多い長倉三郎ら(編)、「フッ化物」、『岩波理化学辞典』、第5版 CD-ROM版、岩波書店、1998年。。 イオン性のフッ化物の構成要素となる、フッ素原子が電子を1個得て単独でイオン化した陰イオン (F-) はフッ化物イオンと呼ばれる。フッ素イオンと言う名称は、現在推奨されていない。.

新しい!!: フッ化黒鉛リチウム電池とフッ化物 · 続きを見る »

グラファイト

ラファイト(graphite、石墨文部省『学術用語集 地学編』(日本学術振興会、1984年、ISBN 4-8181-8401-2、)の表記は「(1) セキボク、石墨【鉱物】 (2) 黒鉛【鉱石】」。、黒鉛)は、炭素から成る元素鉱物。六方晶系(結晶対称性はP63/mmc)、六角板状結晶。構造は亀の甲状の層状物質、層毎の面内は強い共有結合(sp2的)で炭素間が繋がっているが、層と層の間(面間)は弱いファンデルワールス力で結合している。それゆえ、層状に剥離する(へき開完全)。電子状態は、半金属的である。 グラファイトが剥がれて厚さが原子1個分しかない単一層となったものはグラフェンと呼ばれ、金属と半導体の両方の性質を持つことから現在研究が進んでいる。採掘は、スリランカのサバラガムワ、メキシコのソノラ、カナダのオンタリオ州、北朝鮮、マダガスカル、アメリカのニューヨーク州などで商業的に行われている。日本でも、かつて富山県で千野谷黒鉛鉱山が稼働していた。.

新しい!!: フッ化黒鉛リチウム電池とグラファイト · 続きを見る »

コイン形リチウム電池

イン形リチウム電池 CR2032 コイン形リチウム電池(コインがたリチウムでんち)は、リチウム電池、ボタン型電池の一種で「二酸化マンガンリチウム一次電池」の日本における一般的呼称。コイン型の外形をしているため、コイン電池(Coin Cell)とも呼ばれる。 (電池メーカのソニーなどでは、リチウムコイン電池と呼称している。) コイン形リチウム電池の中ではCR20**タイプの電池がよく使われている。これらは直径が20mmである(1円玉と同じ)。直径が11.6mmのアルカリ電池などと総称してボタン電池と呼ばれる事も多い。 用途は多岐に渡り、時計、電卓、小型電子ゲーム、ICタグ、ICカード、各種メモリーバックアップ、電子体温計、キーレスエントリー(車載用機器)、電子手帳(PDA)、LEDライトなど、様々な小型機器に用いられている。 国際電気標準会議(IEC)によって定義された小型電池共通の英数字コードの最初の文字「C」は、以下の電気化学的系統を表す。 正極(陽極):二酸化マンガン 電解質:有機 負極(陰極):リチウム 公称電圧:3 終止電圧:2.0 円形を示す「R」の後に、3~4桁の数字でサイズを表す。最初の1~2桁は直径(mm単位)、最後の2桁は高さ(0.1mm単位)を表す。 (例).

新しい!!: フッ化黒鉛リチウム電池とコイン形リチウム電池 · 続きを見る »

公称電圧

公称電圧(こうしょうでんあつ)とは、電池を通常の状態で使用した場合に得られる端子間の電圧の目安として定められている値である。新しい(あるいは満充電に近い)電池では、公称電圧より高い端子電圧(初期電圧)が得られるが、放電が進んだ場合や、負荷に大きな電流を供給する場合には、公称電圧より低い端子電圧となる。.

新しい!!: フッ化黒鉛リチウム電池と公称電圧 · 続きを見る »

元素記号

在の元素記号(硫黄) ドルトンの元素記号(硫黄) 元素記号(げんそきごう)とは、元素、あるいは原子を表記するために用いられる記号のことであり、原子記号(げんしきごう)とも呼ばれる。現在は、1、2、ないし3文字のアルファベットが用いられる。 なお、現在正式な元素記号が決定している最大の元素は原子番号118のOg(オガネソン)である。 分子の組成をあらわす化学式や、分子の変化を記述する化学反応式などで利用される。 現在使用されている元素記号は1814年にベルセリウスが考案したものに基づいており、ラテン語などから1文字または2文字をとってつくられている。 全ての元素記号がラテン語名と一致しているが、ギリシア語、英語、ドイツ語(その他スペイン語やスウェーデンの地名からの採用もある)などからの採用も多く、ラテン語名との一致は偶然または語源を通した間接的なものである。元素名が確定されていない超ウラン元素については、3文字の系統名が用いられる。 物質の構成要素を記号であらわすことはかつての錬金術においてもおこなわれていた。 化学者ジョン・ドルトンも独自の記号を開発して化学反応を記述していたが、現在はアルファベットでの表記が国際的に使われている。 原子番号16番で質量数35の放射性硫黄原子1つと酸素原子4つからなる2価の陰イオンの硫酸イオンのイオン式。 原子番号や質量数を付記する場合、原子番号は左下に (13Al)、質量数は左上に (27Al)、イオン価は右肩に (Al3+)、原子数は右下に (N2) 付記する。.

新しい!!: フッ化黒鉛リチウム電池と元素記号 · 続きを見る »

国際電気標準会議

国際電気標準会議(こくさいでんきひょうじゅんかいぎ、International Electrotechnical Commission、IEC)は、電気工学、電子工学、および関連した技術を扱う国際的な標準化団体である。国際規格作成のための規則群(Directives)、規格適合(ISO/IEC 17000シリーズ)、IT技術(ISO/IEC JTC1)など一部は国際標準化機構(ISO)と共同で開発している。公用語は、英語とフランス語。.

新しい!!: フッ化黒鉛リチウム電池と国際電気標準会議 · 続きを見る »

火災報知機

火災報知機(かさいほうちき)は感知器によって火災を感知若しくは火災を発見した人間が発信機を操作することで警報を発したり、消防機関に通報する機器の総称である。自動火災報知設備や住宅用火災警報器、消防機関に通報する火災報知設備がこれに含まれる。なお、一般に火災報知器と表記されることがあるが、日本の消防法規および業界団体では火災報知機と表記している。.

新しい!!: フッ化黒鉛リチウム電池と火災報知機 · 続きを見る »

自然放電

自然放電(しぜんほうでん)とは、化学電池において、蓄えられている電気の量が、時間の経過と共に徐々に減少する現象を言う。自己放電(じこほうでん)とも言う。殊に、二次電池では、この現象が大きく現れる傾向がある。.

新しい!!: フッ化黒鉛リチウム電池と自然放電 · 続きを見る »

電解質

電解質(でんかいしつ、英語:electrolyte)とは溶媒中に溶解した際に、陽イオンと陰イオンに電離する物質のことである。これに対し、溶媒中に溶解しても電離しない物質を非電解質という。 一般に電解液は電気分解が起こる以上の電圧をかければ電気伝導性を示すが、電解液でないものは電気抵抗が大きい。また、ほとんど溶媒中に溶解しないものは電解質にも非電解質にも含まれない。 溶融した電解質や固体の電解質というものも存在する。 つまり、物質を水に溶かしたとき、イオンになるものとならないものがあり、電気を通す物質はイオンになるものである。これを電解質という。 電解質溶液は十分に高い電圧(一般に数ボルト程度)をかけると電気分解することが可能である。「電解質」という名称はこのことから付けられた。電気分解を起こすことのできる理論分解電圧 V ′ はギブス自由エネルギー変化と以下の関係にある。実際には過電圧のため理論分解電圧より高い電圧を必要とする。.

新しい!!: フッ化黒鉛リチウム電池と電解質 · 続きを見る »

電極

電極(でんきょく)とは、受動素子、真空管や半導体素子のような能動素子、電気分解の装置、電池などにおいて、その対象物を働かせる、あるいは電気信号を測定するなどの目的で、電気的に接続する部分のことである。 また、トランジスタのベース、FETのゲートなど、ある電極から別の電極への電荷の移動を制御するための電極もある。.

新しい!!: フッ化黒鉛リチウム電池と電極 · 続きを見る »

電気化学

電気化学(でんきかがく、electrochemistry)は、物質間の電子の授受と、それに付随する諸現象を扱う化学の分野である。物理化学、分析化学、化学工業などとの繋がりが深い。.

新しい!!: フッ化黒鉛リチウム電池と電気化学 · 続きを見る »

放電容量

放電容量(ほうでんようりょう)は、電池の容量である。 電池は、その使い始めには起電力として公称電圧よりやや高めの電圧(初期電圧)を出力し、放電を行うにつれて電圧は徐々に降下し公称電圧より低めになる。やがてある電圧を境にその低下の度合いが急激なものとなり、電池を電源として動作していた機器は停止に至る。このときの電圧を終止電圧(しゅうしでんあつ)といい、これに達した時点で電池は使い切られたものとみなされる。 電池の容量は、使い始めから使い終えるまでに電池から取り出し、放電した電気量である。具体的には、放電時の電流(消費電流) I と終止電圧に達するまでの時間 t の積である。量記号は W、単位としてアンペア時(アンペアじ、アンペアアワー) が用いられる。 小型の電池では、ミリアンペア時(ミリアンペアじ、ミリアンペアアワー) も用いられる。 例えば 540 とは、540 の電流を 1 、流すことができることを表している。 また、計算上は放電容量 W を消費電流 I で除したものが、その電池の使用可能時間 t であるといえる。 例えば、放電容量が850 、消費電流が325 だとすると、 ただし、実際は時間放電率(次節)を考慮する必要があるため、単純にこのような計算で使用可能時間を算出することはできない。.

新しい!!: フッ化黒鉛リチウム電池と放電容量 · 続きを見る »

ここにリダイレクトされます:

弗化黒鉛リチウム電池

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »