ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

フェルミウム

索引 フェルミウム

フェルミウム(fermium)は、元素記号Fm、原子番号100の人工放射性元素である。アクチノイドの1つである。フェルミウムはより軽い元素への中性子照射で生成する最も重い元素であり、そのためマクロ量で生成しうる最後の元素である。しかし、純粋な金属としてのフェルミウムはまだ生成されていない。19個の同位体が知られており、その中でフェルミウム257が100.5日と最長の半減期を持つ。 フェルミウムは、1952年の最初の水素爆発の塵の中から発見され、原子核物理学のパイオニアの1人でノーベル物理学賞受賞者のエンリコ・フェルミに因んで名付けられた。化学的性質はアクチノイド後半の元素に典型的なもので、原子価は+3が優占的だが、+2も取り得る。半減期が短く生成量が少ないため、現在は基礎科学研究用途以外ではほとんど用いられていない。他の人工放射性元素が全てそうであるように、フェルミウムの同位体は全て放射性であり、高い毒性を持つと考えられている。.

55 関係: 基準電極原子価原子番号原子核物理学半減期同位体塩化物中性子中性子捕獲人工放射性元素ノーベル物理学賞バークリウムポーラログラフィーメンデレビウムランタノイドラドンローレンス・バークレー国立研究所トリウムプルトニウムプルトニウムの同位体フェルミウムの同位体ベータ崩壊アメリカ軍アルファ崩壊アルファ粒子アインスタイニウムアイビー作戦アクチノイドイッテルビウムイオンクロマトグラフィーウラン238エルビウムエンリコ・フェルミエニウェトク環礁オークリッジ国立研究所オクロの天然原子炉カリフォルニア大学バークレー校カリホルニウムカリホルニウムの同位体キュリウム冷戦元素記号国際放射線防護委員会硝酸塩自発核分裂金属酸解離定数電子捕獲水素爆発未発見元素の一覧...有効核電荷放射性降下物1 E4 s1 E5 s1 E6 s インデックスを展開 (5 もっと) »

基準電極

基準電極(きじゅんでんきょく、reference electrode)とは、電極電位の測定時に電位の基準点を与える電極のこと。 参照電極(さんしょうでんきょく)、照合電極(しょうごうでんきょく)ともいう。 電位の基準点を与えるという性質上、基準電極にはその電極電位の安定性と再現性が要求される。 すなわち、.

新しい!!: フェルミウムと基準電極 · 続きを見る »

原子価

原子価(げんしか)とはある原子が何個の他の原子と結合するかを表す数である。学校教育では「手の数」や「腕の本数」と表現することがある。 元素によっては複数の原子価を持つものもあり、特に遷移金属は多くの原子価を取ることができるため、多様な酸化状態や反応性を示す。.

新しい!!: フェルミウムと原子価 · 続きを見る »

原子番号

原子番号(げんしばんごう)とは、原子において、その原子核の中にある陽子の個数を表した番号である。電荷をもたない原子においては、原子中の電子の数に等しい。量記号はZで表すことがあるが、これはドイツ語のZahlの頭文字で数・番号という意味である。現在、元素の正式名称が決定している最大の原子番号は118である。.

新しい!!: フェルミウムと原子番号 · 続きを見る »

原子核物理学

原子核物理学(げんしかくぶつりがく、英語:nuclear physics、単に核物理とも言う):強い相互作用に従う粒子の多体問題を研究する学問領域。主に原子核の核構造、核反応(核分裂反応、核融合反応)などを扱う分野のこと。また、核物質・ハドロン物質の性質を調べるハドロン物理学も、この分野の一部である。 構成要素が2種類(注・ハイパー核はさらに数種類の構成要素が加わる)であるにもかかわらず、陽子・中性子それぞれの数や励起のさせ方により、様々な構造を取るのが特徴である。核子の主要な相互作用である「強い相互作用」が未だ完全に解明されていないこと、物性理論のように構成粒子が無限であるという近似が許されないこと、表面の効果が重要であること等により、発見から1世紀近く経つにもかかわらず、未知の部分が残されており、理論実験ともに盛んに研究が行われている。.

新しい!!: フェルミウムと原子核物理学 · 続きを見る »

半減期

半減期(はんげんき、half-life)とは、ある放射性同位体が、放射性崩壊によってその内の半分が別の核種に変化するまでにかかる時間を言う。.

新しい!!: フェルミウムと半減期 · 続きを見る »

同位体

同位体(どういたい、isotope;アイソトープ)とは、同一原子番号を持つものの中性子数(質量数 A - 原子番号 Z)が異なる核種の関係をいう。この場合、同位元素とも呼ばれる。歴史的な事情により核種の概念そのものとして用いられる場合も多い。 同位体は、放射能を持つ放射性同位体 (radioisotope) とそうではない安定同位体 (stable isotope) の2種類に分類される。.

新しい!!: フェルミウムと同位体 · 続きを見る »

塩化物

塩化物(えんかぶつ、chloride)とは、塩素がそれより陽性な元素または原子団と形成する化合物である。塩素 (Cl2) は第18族元素以外のほとんどの元素と反応し塩化物を形成する。 塩素の結合がイオン結合性の場合、容易に塩素の陰イオン (Cl&minus) を遊離するのでこのイオンは塩化物イオン(えんかぶつイオン、chloride ion)または塩素イオン(えんそイオン、現在この呼び方は推奨されていない)と称する。また命名法において後置せずに前置する場合は塩化 (— chloride) と称する。いずれも陰性の塩素原子を意味する名称である。.

新しい!!: フェルミウムと塩化物 · 続きを見る »

中性子

中性子(ちゅうせいし、neutron)とは、原子核を構成する粒子のうち、無電荷の粒子の事で、バリオンの1種である。原子核反応式などにおいては記号 n で表される。質量数は原子質量単位で約 、平均寿命は約15分でβ崩壊を起こし陽子となる。原子核は、陽子と中性子と言う2種類の粒子によって構成されている為、この2つを総称して核子と呼ぶ陽子1個で出来ている 1H と陽子3個で出来ている 3Li の2つを例外として、2015年現在の時点で発見報告のある原子の内、最も重い 294Og までの全ての"既知の"原子核は陽子と中性子の2種類の核子から構成されている。。.

新しい!!: フェルミウムと中性子 · 続きを見る »

中性子捕獲

原子核物理学における中性子捕獲(ちゅうせいしほかく、neutron capture)とは、核反応の一種で、中性子が原子核に吸収されたのちにガンマ線を放出する現象〔(n, γ)反応〕を言う。.

新しい!!: フェルミウムと中性子捕獲 · 続きを見る »

人工放射性元素

人工放射性元素(じんこうほうしゃせいげんそ, Synthetic element)は、人工的に合成された元素(同位体)の総称である。 天然には存在しない4つの元素(テクネチウム、プロメチウム、アスタチン、フランシウム)と、超ウラン元素(アメリシウム、キュリウムなど)はほぼすべて人工放射性元素であり、広義では人工の放射性同位体も含む。これらは半減期の短い放射性元素であるため、自然界には極めて僅かしか存在が確認されない。通常は、原子核に高いエネルギーを持たせた荷電粒子や、γ線、中性子などをぶつけて合成する。 人工の放射性同位体としては1934年にフレデリック・ジョリオ=キュリーとイレーヌ・ジョリオ=キュリーの夫妻が放射性リン (30P) を得たのが最初で、元素としては1937年に得られたテクネチウムが最初である。.

新しい!!: フェルミウムと人工放射性元素 · 続きを見る »

ノーベル物理学賞

ノーベル物理学賞(ノーベルぶつりがくしょう、Nobelpriset i fysik)は、ノーベル賞の一部門。アルフレッド・ノーベルの遺言によって創設された6部門のうちの一つ。物理学の分野において重要な発見を行った人物に授与される。 ノーベル物理学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には宝箱を持ち雲の中から現れた自然の女神のベールを科学の神が持ち上げて素顔を眺めている姿(化学賞と共通)がデザインされている。.

新しい!!: フェルミウムとノーベル物理学賞 · 続きを見る »

バークリウム

バークリウム (berkelium) は原子番号97の元素。元素記号は Bk。アクチノイド元素の一つ。超ウラン元素でもある。安定同位体は存在しない。比重は14.78、融点は986℃(1000K程度)。原子価は+3、+4価(+3価が安定)。物理的、化学的性質の詳細は良く分かっていない。.

新しい!!: フェルミウムとバークリウム · 続きを見る »

ポーラログラフィー

ポーラログラフィー (polarography) は、電気化学における測定法のひとつ。ボルタンメトリーとして最初に考案された方法で、作用電極として滴下水銀電極を用い、直線的に電極電位を掃引して応答電流を測定する。 ヤロスラフ・ヘイロフスキーらによって考案・発展され、ヘイロフスキーはこの業績によって1959年のノーベル化学賞を受賞した。歴史的に重要な手法であるが、取扱いが面倒な水銀を使用すること、他にすぐれた固体電極や測定法が開発されたことなどにより、今日ではあまり使用されない。.

新しい!!: フェルミウムとポーラログラフィー · 続きを見る »

メンデレビウム

メンデレビウム (mendelevium) は原子番号101の元素。元素記号は Md。アクチノイド元素で、超ウラン元素でもある。安定同位体は存在せず、半減期も短い。このため物理的、化学的性質の詳細は不明である。原子価は+2、+3価が知られている。発見された中で最も半減期が長い同位体は、メンデレビウム258の51日。同位体に関しては、メンデレビウムの同位体を参照。.

新しい!!: フェルミウムとメンデレビウム · 続きを見る »

ランタノイド

ランタノイド (lanthanoid) とは、原子番号57から71、すなわちランタンからルテチウムまでの15の元素の総称Shriver & Atkins (2001), p.12。。 「ランタン (lanthan)」+「-もどき (-oid)」という呼称からも分かるように、各々の性質がよく似ていることで知られる。 スカンジウム・イットリウムと共に希土類元素に分類される。周期表においてはアクチノイドとともに本体の表の下に脚注のような形で配置されるのが一般的である。.

新しい!!: フェルミウムとランタノイド · 続きを見る »

ラドン

ラドン(radon)は、原子番号86の元素。元素記号は Rn。.

新しい!!: フェルミウムとラドン · 続きを見る »

ローレンス・バークレー国立研究所

ーレンス・バークレー国立研究所(、略称:LBLまたはLBNL)は、アメリカ合衆国カリフォルニア州にあるアメリカ合衆国エネルギー省(、略名:DOE)の研究所。単にバークレー研究所、バークレーラボとも。 LBLは、物理、化学、生命科学、コンピュータ・サイエンス、エネルギー工学、ナノテクノロジー、環境工学などの広い分野にわたって研究を行っている。 運営は米国エネルギー省が直接行っているのではなく、カリフォルニア大学システムが代行している。またカリフォルニア大学バークレー校の所有地内に設置されているが、同校の付属研究所ではなく独立した組織である。 研究所ではスタッフ研究者(約千名)を含め、4,000人以上の人が雇用されており、カリフォルニア大学バークレー校からも多くの大学院生、大学生を受け入れて、研究を遂行している。.

新しい!!: フェルミウムとローレンス・バークレー国立研究所 · 続きを見る »

トリウム

トリウム (thorium 、漢字:釷) は原子番号90の元素で、元素記号は Th である。アクチノイド元素の一つで、銀白色の金属。 1828年、スウェーデンのイェンス・ベルセリウスによってトール石 (thorite、ThSiO4) から発見され、その名の由来である北欧神話の雷神トールに因んで命名された。 モナザイト砂に多く含まれ、多いもので10 %に達する。モナザイト砂は希土類元素(セリウム、ランタン、ネオジム)資源であり、その副生産物として得られる。主な産地はオーストラリア、インド、ブラジル、マレーシア、タイ。 天然に存在する同位体は放射性のトリウム232一種類だけで、安定同位体はない。しかし、半減期が140.5億年と非常に長く、地殻中にもかなり豊富(10 ppm前後)に存在する。水に溶けにくく海水中には少ない。 トリウム系列の親核種であり、放射能を持つ(アルファ崩壊)ことは、1898年にマリ・キュリーらによって発見された。 トリウム232が中性子を吸収するとトリウム233となり、これがベータ崩壊して、プロトアクチニウム233となる。これが更にベータ崩壊してウラン233となる。ウラン233は核燃料であるため、その原料となるトリウムも核燃料として扱われる。.

新しい!!: フェルミウムとトリウム · 続きを見る »

プルトニウム

プルトニウム(英Plutonium)は、原子番号94の元素である。元素記号は Pu。アクチノイド元素の一つ。.

新しい!!: フェルミウムとプルトニウム · 続きを見る »

プルトニウムの同位体

プルトニウム(Pu)は安定同位体を持たない。そのため標準原子量を定めることはできない。.

新しい!!: フェルミウムとプルトニウムの同位体 · 続きを見る »

フェルミウムの同位体

フェルミウム(Fm)は安定同位体を持たない。そのため標準原子量を定めることはできない。.

新しい!!: フェルミウムとフェルミウムの同位体 · 続きを見る »

ベータ崩壊

ベータ崩壊(ベータほうかい、beta decay)とは、放射線としてベータ線(電子)を放出する放射性崩壊の一種である。 後にベータ線のみを放出するとするとベータ線のエネルギーレベルの連続性を説明できないことから、電子(ベータ線)と同時にニュートリノと呼ばれる粒子も放出する弱い相互作用の理論として整理された。.

新しい!!: フェルミウムとベータ崩壊 · 続きを見る »

アメリカ軍

アメリカ軍(アメリカぐん、United States Armed Forces)は、アメリカ合衆国が有する軍隊。アメリカ合衆国軍(アメリカがっしゅうこくぐん)、合衆国軍(がっしゅうこくぐん)とも呼ばれ、日本では米軍(べいぐん)と略される。.

新しい!!: フェルミウムとアメリカ軍 · 続きを見る »

アルファ崩壊

アルファ崩壊(アルファほうかい、α崩壊、alpha decay)とは、放射線としてアルファ線(α線)を放出する放射性崩壊の一種である。アルファ崩壊が発生する原因は量子力学におけるトンネル効果である。.

新しい!!: フェルミウムとアルファ崩壊 · 続きを見る »

アルファ粒子

フレミング左手の法則 ベータ線の実態である電子やガンマ線と異なり、ヘリウム4の原子核であるアルファ粒子は一枚の紙すら通過できない。 原子核がアルファ崩壊してアルファ粒子を放出している アルファ粒子(アルファりゅうし、α粒子、alpha particle)は、高い運動エネルギーを持つヘリウム4の原子核である。陽子2個と中性子2個からなる。放射線の一種のアルファ線(α線、alpha ray)は、アルファ粒子の流れである。 固有の粒子記号は持たず、ヘリウム4の2価陽イオンとして (より厳密には )と表される。.

新しい!!: フェルミウムとアルファ粒子 · 続きを見る »

アインスタイニウム

アインスタイニウム (einsteinium) は原子番号99の元素。元素記号は Es。 アクチノイド元素の一つ。超ウラン元素でもある。安定同位体は存在しない。銀色の金属。融点は860 。原子価は+3価。詳細な物理的、化学的性質は不明。.

新しい!!: フェルミウムとアインスタイニウム · 続きを見る »

アイビー作戦

アイビー作戦(アイビーさくせん、Operation Ivy)は、アメリカ合衆国が1952年11月にマーシャル諸島のエニウェトク環礁で行なった核実験である。本実験はタンブラー・スナッパー作戦に続いて実施されたもので、本作戦に引き続いてはアップショット・ノットホール作戦が実施されている。 11月1日のマイク実験 (Mike) と11月16日のキング実験 (King) の2回が行なわれた。 マイク実験は史上初の水素爆弾の実験であり、テラー・ウラム型に基づく多段階式核融合兵器であった。核融合燃料には液体重水素が用いられている。そのため、極低温に冷却する必要があり、機材は非常に大掛かりで、マイク実験装置は73.8トンもの重量があった。マイク実験の際、直径5kmの火球が出現し、キノコ雲は最大で高さ37km、幅161kmにも達した。実験後、爆弾が設置されたエルゲラブ島は跡形もなく消滅し、直径1.9km、深さ50mにも及ぶ巨大なクレーターが残された。 キング実験は大威力核分裂兵器・Mark 18の実験であり、それまでの核分裂兵器としては最大威力の実験となった。これは核融合兵器のバックアップとしての大威力兵器の意味合いがあった。B-36によりルニット島の北方610m地点から投下され、上空450mで炸裂した。.

新しい!!: フェルミウムとアイビー作戦 · 続きを見る »

アクチノイド

アクチノイド (Actinoid) とは、原子番号89から103まで、すなわちアクチニウムからローレンシウムまでの15の元素の総称を言う。.

新しい!!: フェルミウムとアクチノイド · 続きを見る »

イッテルビウム

イッテルビウム (ytterbium) は原子番号70の元素。元素記号は Yb。希土類元素の一つ(ランタノイドにも属す)。.

新しい!!: フェルミウムとイッテルビウム · 続きを見る »

イオンクロマトグラフィー

イオンクロマトグラフィー(Ion Chromatography、IC) またはイオン交換クロマトグラフィー (Ion-exchange chromatography)は、イオンや極性分子のような電荷をもつ分子を分離するクロマトグラフィーである。大きなタンパク質、小さな核酸、そしてアミノ酸などを含むほとんどの電荷分子でこの方法を使うことができ、タンパク質の洗浄、水の分析、品質の調整などに使われている。.

新しい!!: フェルミウムとイオンクロマトグラフィー · 続きを見る »

ウラン238

ウラン238(uranium-238、U)とはウランの同位体の一つ。ウラン238は中性子が衝突するとウラン239となる。ウラン239は不安定でβ-崩壊しネプツニウム239になり、さらにβ-崩壊(半減期2.355日)しプルトニウム239となる。 天然のウランの99.284%がウラン238である。半減期は4.468 × 109年(44億6800万年)。劣化ウランはほとんどがウラン238である。濃縮ウランは天然ウランを濃縮して、よりウラン235の濃度を高めたものである。 ウラン238は核兵器や原子力発電と関係がある。.

新しい!!: フェルミウムとウラン238 · 続きを見る »

エルビウム

ルビウム (erbium) は原子番号68の元素。元素記号は Er。希土類元素の一つ(ランタノイドにも属す)。灰色の金属で、常温、常圧で安定な結晶構造は六方最密充填構造 (HCP)。比重は9.05、融点は1497 ℃ (1529 ℃という実験値もあり)、沸点は2863 ℃ (2900 という実験値もあり)。空気中で表面が酸化され、高温で燃えて Er2O3 となる。水にゆっくりと溶ける。酸に易溶。ハロゲンと反応する。常温で常磁性を示す。安定な原子価は3価。.

新しい!!: フェルミウムとエルビウム · 続きを見る »

エンリコ・フェルミ

ンリコ・フェルミ(Enrico Fermi、1901年9月29日 – 1954年11月28日)は、イタリア、ローマ出身の物理学者。統計力学、核物理学および量子力学の分野で顕著な業績を残しており、中性子による元素の人工転換の実験をして、多くの放射性同位元素を作り1938年のノーベル物理学賞を受賞している。フェルミに由来する用語は数多く、フェルミ推定のような方法論やフェルミのパラドックスといった問題、フェルミ粒子のような粒子の分類やフェルミウムといった元素名にその名を残している。他にも物理学の用語にフェルミに因むものが多く存在する。実験家と理論家との2つの顔を持ち、双方において世界最高レベルの業績を残した、史上稀に見る物理学者であった 。.

新しい!!: フェルミウムとエンリコ・フェルミ · 続きを見る »

エニウェトク環礁

ニウェトク環礁 上空から見たエニウェトク環礁 エニウェトク環礁(Eniwetok Atoll)とは中部太平洋、マーシャル諸島にある環礁。円周80kmのラグーンとその周囲のおよそ40の島からなり、島の面積は合計6km2以下である。ラリック列島で2番目に西にある環礁で北緯11度30分、東経162度20分に位置する。人口は1990年現在で820人である。エニウェタク環礁とも呼ばれる。 エニウェトク環礁は1794年にイギリスの商船Walpoleが訪れるまでヨーロッパ人には知られていなかった。そして、1885年にドイツ領となるまでにも数十隻しか船は訪れなかった。他のマーシャル諸島の島同様、第一次世界大戦中の1914年に日本が占領する。1920年に日本の委任統治領となり、ブラウン環礁とも呼ばれた。 第二次世界大戦まで日本はこの環礁をほとんど無視していた。1942年11月、日本はEngebi島に飛行場を建設し、これはカロリン諸島や他のマーシャル諸島の島へ向かう飛行機が利用した。ギルバート諸島の陥落後、1944年1月4日に日本陸軍は島の防衛のため海上機動第一旅団を派遣したが、2月のアメリカ軍の侵攻の前に防御を固めることはできず、環礁はアメリカ軍が占領した(エニウェトクの戦い)。 戦後住人は立ち退かされ、環礁は太平洋核実験場の一部となり、1948年から1962年までアメリカ合衆国の核実験に使われた。1948年4月30日のサンドストーン作戦(エックスレイ実験)を皮切りに、1952年には最初の水爆実験アイビー作戦(Operation Ivy)が行われた。 核爆発による雲の調査のため1957年、1958年には幾つかのロケットが打ち上げられた。 1970年代に住民が島に戻り始めた。1977年5月15日、アメリカ政府は汚染された土壌などの除去を開始した。そして1980年に安全宣言が出されたが、30年を経ても島ではヤシの木や穀物が育たなかった。現在も島の北半分は放射能汚染レベルが高く活用できず、南半分で生活している。取り除いた放射能汚染物質をコンクリートで格納したルニットドームも存在する。プルトニウムの半減期は2万4000年だが、コンクリートの耐用年数は長くて100年であり、すでにひび割れも始まっている。.

新しい!!: フェルミウムとエニウェトク環礁 · 続きを見る »

オークリッジ国立研究所

ークリッジ国立研究所(オークリッジこくりつけんきゅうじょ、英:Oak Ridge National Laboratory、ORNL)は、アメリカ合衆国エネルギー省の管轄下でテネシー大学とバテル記念研究所が運営する科学技術に関する国立研究所。テネシー州オークリッジ(ノックスビル近郊)にある。基礎研究から応用の研究開発まで、多方面にわたって活動している。クリーンで豊富なエネルギーの研究、自然環境の保全の研究、安全保障に関する研究などである。 エネルギー省以外からの業務も請け負っており、同位体の生成、情報管理、技術的プログラムマネジメントなどの研究や、他の研究組織への研究や技術的な援助を提供している。.

新しい!!: フェルミウムとオークリッジ国立研究所 · 続きを見る »

オクロの天然原子炉

の天然原子炉(オクロのてんねんげんしろ)とは、ガボン共和国オートオゴウェ州オクロにある天然原子炉である。 天然原子炉とは、過去に自律的な核分裂反応が起こっていたことが同位体比からわかるウラン鉱床のことである。このような現象の実例は、フランスの物理学者Francis Perrinが1972年に発見した。天然原子炉が形成される可能性は、1956年にアーカンソー大学の助教授だった黒田和夫が予想している。オクロで発見された条件は予想された条件に極めて近かった。 天然原子炉の知られている唯一の場所は、オクロにある3つの鉱床で、自律的な核分裂反応のあった場所が16箇所見つかっている。20億年ほど前、数十万年にわたって、平均で100 kW相当の出力の反応が起きていた。.

新しい!!: フェルミウムとオクロの天然原子炉 · 続きを見る »

カリフォルニア大学バークレー校

バークレー校はカリフォルニア大学 (University of California) の発祥地であり、10大学からなるカリフォルニア大学システム(UCシステム)の中で最も古い歴史を持つ。ハーバード大学など同国東部の名門私立大学群の集まりである「アイビーリーグ」に対し名門公立大学の集まりである「パブリック・アイビー」の一校である。アメリカの公立大学ランキングでは長期間にわたり1位を維持している。同じ米国西海岸サンフランシスコ近郊のベイエリアに位置するスタンフォード大学とはスポーツ分野を中心に長年ライバル関係にある。 シリコンバレーにも近く位置しておりIT系やコンピューター分野でも多数の大企業から出資を受け研究、開発を行っている。UNIXシステムの一つ、BSDもこの大学の研究室で開発された。元サン・マイクロシステムズ技術者のビル・ジョイは、UCバークレーの学生時代に、viエディタと Cシェル (csh) など様々な基本的なツール・ユーティリティを設計、実装している。 第二次世界大戦当時バークレー校の物理学部教授だったロバート・オッペンハイマーやノーベル化学賞受賞者のグレン・シーボーグを筆頭にバークレー校の多くの学者が原子爆弾開発計画であるマンハッタン計画に携わり、米国における原子力爆弾および水素爆弾の開発に大きく貢献した。現在(2014年)まで70人以上のノーベル賞受賞者を輩出している。化学に関する研究が世界的に有名で、周期表の元素のうち6つが本校で発見された。 現在、アメリカの公立大学においてランキング第1位である。.

新しい!!: フェルミウムとカリフォルニア大学バークレー校 · 続きを見る »

カリホルニウム

リホルニウム (californium) は原子番号98の元素。元素記号は Cf。アクチノイド元素の一つ。超ウラン元素でもある。比重は15.1、融点は900 である。安定同位体は存在しない。物理的、化学的性質も不明な部分が多い。原子価は+3価。実用的な用途がある最も原子番号の大きい元素でもある。.

新しい!!: フェルミウムとカリホルニウム · 続きを見る »

カリホルニウムの同位体

リホルニウム(Cf)は安定同位体を持たない。そのため標準原子量を定めることはできない。.

新しい!!: フェルミウムとカリホルニウムの同位体 · 続きを見る »

キュリウム

ュリウム (curium) は原子番号96の元素。元素記号は Cm。アクチノイド元素の一つ。超ウラン元素でもある。安定同位体は存在しない。 銀白色の金属で、常温、常圧で安定な結晶構造は面心立方構造 (FCC)。比重は理論値で13.51、融点は1340 (1350)、沸点は3520 。原子価は+3、+4価。.

新しい!!: フェルミウムとキュリウム · 続きを見る »

冷戦

ワルシャワ条約 (WT) 加盟国朱色.

新しい!!: フェルミウムと冷戦 · 続きを見る »

元素記号

在の元素記号(硫黄) ドルトンの元素記号(硫黄) 元素記号(げんそきごう)とは、元素、あるいは原子を表記するために用いられる記号のことであり、原子記号(げんしきごう)とも呼ばれる。現在は、1、2、ないし3文字のアルファベットが用いられる。 なお、現在正式な元素記号が決定している最大の元素は原子番号118のOg(オガネソン)である。 分子の組成をあらわす化学式や、分子の変化を記述する化学反応式などで利用される。 現在使用されている元素記号は1814年にベルセリウスが考案したものに基づいており、ラテン語などから1文字または2文字をとってつくられている。 全ての元素記号がラテン語名と一致しているが、ギリシア語、英語、ドイツ語(その他スペイン語やスウェーデンの地名からの採用もある)などからの採用も多く、ラテン語名との一致は偶然または語源を通した間接的なものである。元素名が確定されていない超ウラン元素については、3文字の系統名が用いられる。 物質の構成要素を記号であらわすことはかつての錬金術においてもおこなわれていた。 化学者ジョン・ドルトンも独自の記号を開発して化学反応を記述していたが、現在はアルファベットでの表記が国際的に使われている。 原子番号16番で質量数35の放射性硫黄原子1つと酸素原子4つからなる2価の陰イオンの硫酸イオンのイオン式。 原子番号や質量数を付記する場合、原子番号は左下に (13Al)、質量数は左上に (27Al)、イオン価は右肩に (Al3+)、原子数は右下に (N2) 付記する。.

新しい!!: フェルミウムと元素記号 · 続きを見る »

国際放射線防護委員会

国際放射線防護委員会(こくさいほうしゃせんぼうごいいんかい、、)は、専門家の立場から放射線防護に関する勧告を行う民間の国際学術組織である。ICRPはイギリスの非営利団体(NPO)として公認の慈善団体であり、科学事務局の所在地はカナダのオタワに設けられている。 助成金の拠出機関は、国際原子力機関や経済協力開発機構原子力機関などの原子力機関をはじめ、世界保健機構、ISRや国際放射線防護学会(International Radiation Protection Association; IRPA)などの放射線防護に関する学会、イギリス、アメリカ、欧州共同体、スウェーデン、日本、アルゼンチン、カナダなどの各国内にある機関からなされている。.

新しい!!: フェルミウムと国際放射線防護委員会 · 続きを見る »

硝酸塩

静電ポテンシャル面。赤い部分は黄色の部分よりも静電エネルギーが高いことを示す。負電荷は主に酸素原子上に分布している 硝酸イオンの構造式。N−O結合は単結合と二重結合の中間の長さ、強さを持つ 無機化学において、硝酸塩(しょうさんえん、)は、1個の窒素原子と3個の酸素原子からなる硝酸イオン NO3− を持つ塩である。食物、特に野菜から得られる硝酸塩は消化器で亜硝酸塩に変換され、魚に多い2級アミンと反応し、ラットなどの小動物実験では発がん性をもつニトロソアミンを生成するという(硝酸態窒素、亜硝酸塩も参照のこと)。しかし人間が対象の臨床試験や医学論文などでは発がんに関わるという有意なデータが出ておらず、国連食糧農業機関(FAO)と世界保健機関(WHO)が合同で運営する、添加物、汚染物質について科学的データに基づくリスク評価を行っているFAO/WHO合同食品添加物専門家会議(JECFA)は、硝酸塩の摂取と発がんリスクとの間に関連があるという証拠にはならないという見解を発表した。 有機化学では、硝酸とアルコールが脱水縮合してできたNO3基を持つ化合物(例:硝酸メチル)は硝酸塩とは呼ばず、硝酸エステルと呼ぶ。英語では硝酸塩も硝酸エステルも nitrate である。.

新しい!!: フェルミウムと硝酸塩 · 続きを見る »

自発核分裂

自発核分裂(じはつかくぶんれつ、spontaneous fission、SF)とは質量数が非常に大きな同位体に特徴的に見られる放射性崩壊の一種である。自発核分裂は理論的には質量が100amu程度(ルテニウム付近)を超えるどのような原子核にも起こりうるが、エネルギー的に実際に自発核分裂が可能なのは原子量が約230amu(トリウム付近)以上の原子に限られる。 ウランとトリウムの場合、自発核分裂は起きないわけではないが放射性崩壊のモードの主たる過程ではなく、これらの元素を含む試料の放射能を測る際に崩壊の分岐比を正確に考える必要があるような場合を除いて、通常は無視される。自発核分裂が起こる条件は以下の式で近似的に与えられる。 ここで Z は原子番号、A は質量数である。 式の表すように、自発核分裂の部分半減期は陽子数Zが増大すると急激に減少する。例えば陽子数92のウランでは自発核分裂の部分半減期が1016年になるのに対して、陽子数100のフェルミウムでは部分半減期は1年前後である。このように、自発核分裂が最も起こりやすい元素はラザホージウムのような超アクチノイド元素である。 自発核分裂はその名の通り原子核分裂反応と全く同じ物理過程であるが、中性子やその他の粒子による衝撃を受けることなく分裂が始まる点が通常の核分裂と異なっている。陽子が多く中性子があまり多くない核種では陽子同士に働くクーロン力の影響で原子核全体が不安定な状態にある。このような原子核が量子力学的な揺らぎによって自発的に核分裂を引き起こす過程が自発核分裂である。 自発核分裂では他の全ての核分裂反応と同様に中性子が放出される。そのため、臨界量以上の核分裂性物質が存在する場合には自発核分裂が核分裂の連鎖反応を引き起こしうる。また、自発核分裂が崩壊モードの中で無視できない確率で起こる放射性同位元素は中性子線源として用いられる。この目的ではカリホルニウム252(半減期2.645年、自発核分裂分岐比 3.09%)がしばしば用いられている。このような線源から放出される中性子線は、航空貨物に隠された爆発物の検査や建設業界での土壌の水分含有量の測定、サイロに貯蔵された物資の湿度の測定、その他様々な用途に使われている。 自発核分裂による分裂性原子核自身の数の減少が無視できる範囲では、ベクレルが一定となるため自発核分裂は平均値が等しい指数到着であり、ポアソン過程と見なすことができる。すなわち、非常に短い時間尺度では、自発核分裂の確率は着目する時間の長さに比例する。 ウランを含む鉱物では、ウラン238の自発核分裂によって生じた分裂後の原子核が結晶構造の中に反跳した飛跡を残す。これらの飛跡はフィッション・トラックと呼ばれ、フィッション・トラック法と呼ばれる放射年代測定に利用される。 超重元素の探索において、ある元素を合成したと認められる基準は、当該原子核群の少なくとも一部が既知の原子核に崩壊することとされている。それらが全て自発核分裂してしまった場合は、その原子核を合成したとはみなされない。.

新しい!!: フェルミウムと自発核分裂 · 続きを見る »

金属

リウム の結晶。 リチウム。原子番号が一番小さな金属 金属(きんぞく、metal)とは、展性、塑性(延性)に富み機械工作が可能な、電気および熱の良導体であり、金属光沢という特有の光沢を持つ物質の総称である。水銀を例外として常温・常圧状態では透明ではない固体となり、液化状態でも良導体性と光沢性は維持される。 単体で金属の性質を持つ元素を「金属元素」と呼び、金属内部の原子同士は金属結合という陽イオンが自由電子を媒介とする金属結晶状態にある。周期表において、ホウ素、ケイ素、ヒ素、テルル、アスタチン(これらは半金属と呼ばれる)を結ぶ斜めの線より左に位置する元素が金属元素に当たる。異なる金属同士の混合物である合金、ある種の非金属を含む相でも金属様性質を示すものは金属に含まれる。.

新しい!!: フェルミウムと金属 · 続きを見る »

酸解離定数

酸解離定数(さんかいりていすう、acidity constant)は、酸の強さを定量的に表すための指標のひとつ。酸性度定数ともいう。酸から水素イオンが放出される解離反応を考え、その平衡定数 Ka またはその負の常用対数 によって表す。 が小さいほど強い酸であることを示す(Ka が大きいことになる)。 同様に、塩基に対しては塩基解離定数 pKb が使用される。共役酸・塩基の関係では、酸解離定数と塩基解離定数のどちらかが分かれば、溶媒の自己解離定数を用いることで、互いに数値を変換することができる。 酸解離定数は、通常は電離すると考えない有機化合物の水素に対しても使用することができる。アルドール反応など、水素の引き抜きを伴う有機化学反応を考える際に有効となる。.

新しい!!: フェルミウムと酸解離定数 · 続きを見る »

電子捕獲

電子捕獲(でんしほかく、electron capture、EC)とは、原子核の放射性崩壊の一種である。電子捕獲では、電子軌道の電子が原子核に取り込まれ、捕獲された電子は原子核内の陽子と反応し中性子となり、同時に電子ニュートリノが放出される。捕獲される電子は普通はK軌道の電子であるが、L軌道やM軌道の電子が捕獲される場合もある。.

新しい!!: フェルミウムと電子捕獲 · 続きを見る »

水素爆発

水素.

新しい!!: フェルミウムと水素爆発 · 続きを見る »

未発見元素の一覧

未発見元素の一覧(みはっけんげんそのいちらん)では、第9周期までのIUPAC(国際純正・応用化学連合)で認定されていない元素の一覧を載せる。なお、これらの元素の名称(IUPAC名)はIUPAC命名法に基づく暫定的な元素の系統名である。.

新しい!!: フェルミウムと未発見元素の一覧 · 続きを見る »

有効核電荷

有効核電荷(ゆうこうかくでんか、effective nuclear charge)とは、多電子原子系において、最外殻電子(または着目する電子)が感じる中心原子核の電荷のこと。別名カーネル電荷。他の個々の電子から受ける静電反発ポテンシャルを原子核をおおうひとつの殻として扱い、原子核本来の正電荷を部分的に遮蔽すると近似する。これを有効核遮蔽(ゆうこうかくしゃへい)という。.

新しい!!: フェルミウムと有効核電荷 · 続きを見る »

放射性降下物

放射性降下物(ほうしゃせいこうかぶつ、nuclear fallout)またはフォールアウト(fallout)とは核兵器や原子力事故などで生じた放射性物質を含んだ塵を言う。広域な放射能汚染を引き起こす原因はこの放射性降下物である。 一般には死の灰という俗称で知られる。日本では第五福竜丸事件が有名である。.

新しい!!: フェルミウムと放射性降下物 · 続きを見る »

1 E4 s

104 - 105 s(2.78 時間 - 27.8 時間)の時間のリスト.

新しい!!: フェルミウムと1 E4 s · 続きを見る »

1 E5 s

105 - 106 s(27.8 時間 - 11.6 日)の時間のリスト.

新しい!!: フェルミウムと1 E5 s · 続きを見る »

1 E6 s

106 - 107 s(11.6 日 - 116 日)の時間のリスト.

新しい!!: フェルミウムと1 E6 s · 続きを見る »

ここにリダイレクトされます:

ヘルミウム

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »