ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ヒーグナー点

索引 ヒーグナー点

数学において、ヒーグナー点(ヘーグナー点)(Heegner point)とは、モジュラー曲線上の点であって、上半平面の quadratic imaginary point の像となっているようなものである。 (Bryan Birch) により定義され、 (Kurt Heegner) に因んで名づけられた。ヒーグナーは類数 1 の虚二次体上のガウスの予想を証明するために類似のアイデアを用いた。 グロス・ザギエの定理 は、点 s.

13 関係: 上半平面二次体モジュラー曲線アーベル多様体ケンブリッジ大学出版局類数問題L-函数Magma (数式処理システム)Mathematische AnnalenPARI/GP標準的高さ有理点数学

上半平面

数学、とくにリーマン幾何学あるいは(局所)コンパクト群の調和解析において上半平面(じょうはんへいめん、upper half plane)は、虚部が正である複素数全体の成す集合をいう。上半平面は連結な開集合であり、それがリーマン球面に埋め込まれているとみなしたとき、その閉包を閉上半平面と呼ぶ。閉上半平面は上半平面に実軸と無限遠点を含めたものである。(開いた)上半平面を慣例的に H や H あるいは \mathfrak と記す(このとき、下半平面は H− や H− などと書かれ、対比的に上半平面を H+ などと記すこともある)。上半平面は、リー群の表現論やロバチェフスキーの双曲幾何学などの舞台として数論・表現論的、幾何学的に重要な役割を果たす。 または.

新しい!!: ヒーグナー点と上半平面 · 続きを見る »

二次体

二次体 (にじたい、quadratic field) は、有理数体上、2次の代数体のことである。任意の二次体は、平方因子を含まない 0, 1 以外の整数 d を用いて、\scriptstyle\mathbb(\sqrt) と表現される。もし、d > 0 である場合、実二次体 (real quadratic field)、d \mathbb(\sqrt) は、d.

新しい!!: ヒーグナー点と二次体 · 続きを見る »

モジュラー曲線

モジュラー曲線(モジュラーきょくせん)とは複素上半平面 H の合同部分群 Γ の作用による商として定義されるリーマン面のことである。合同部分群 Γ とは、整数の 2 × 2 の行列 SL(2, Z) のある部分群のことである。モジュラー曲線はコンパクトとは限らないが、有限個の Γ のカスプと呼ばれる点を加えることでコンパクト化されたモジュラー曲線 X(Γ) を定めることができる。モジュラー曲線の点は、楕円曲線とそれに付随する群 Γ に関係するある構造をもったものの同型類の集合とみなすことができ、モジュラー曲線を代数幾何的に、また有理数体 Q や円分体の上でモジュラー曲線を定義することもできる。このことからモジュラー曲線は整数論で重要な対象である。.

新しい!!: ヒーグナー点とモジュラー曲線 · 続きを見る »

アーベル多様体

数学において、特に代数幾何学や複素解析や数論では、アーベル多様体(abelian variety)は、射影代数多様体であり、また正則函数(regular function)により定義することのできる群法則を持つ代数群でもある代数多様体を言う。アーベル多様体は、代数幾何の最も研究されている対象であり、同時に代数幾何学や数論やそれ以外の他の分野の研究の不可欠な道具である。 アーベル多様体は、任意の体に係数を持つ方程式により定義することができる。従って、多様体はその体の上で定義されると言う。歴史的には、最初研究されたアーベル多様体は複素数体上で定義された多様体であった。そのようなアーベル多様体はまさに複素射影空間へ埋め込むことができ複素トーラスであることが判明している。代数体上に定義されたアーベル多様体は、特別であり、数論の観点から重要である。環の局所化のテクニックは、数体上に定義されたアーベル多様体から有限体上や様々な局所体上に定義されたアーベル多様体を自然に導く。 アーベル多様体は代数多様体のヤコビ多様体(ピカール多様体のゼロ点の連結成分として)自然に現れてくる。アーベル多様体の群法則は必然的に可換となり、多様体は非特異となる。楕円曲線のアーベル多様体は次元が 1 である。アーベル多様体は小平次元が 0 である。.

新しい!!: ヒーグナー点とアーベル多様体 · 続きを見る »

ケンブリッジ大学出版局

ンブリッジ大学出版局(Cambridge University Press)は、ケンブリッジ大学の出版事業を手がける出版社である。1534年、ヘンリー8世により特許状が発せられたのを起こりとする世界最古の出版社、かつ世界第2の規模の大学出版局であり、聖書や学術誌の出版も手掛けている。 「出版活動を通して、大学の理念である全世界における学問、知識、研究の促進を推し進めること」を使命として掲げている。これは、ケンブリッジ大学規約中の「Statute J」に規定されている。そして、「公益のため継続的に出版活動を行い、ケンブリッジという名前の評価を高めること」を目的としている。 ケンブリッジ大学出版局は、学術、教育分野の書籍の出版を行なっており、ヨーロッパ、中東、アフリカ、アメリカ、アジア太平洋といった地域で事業を展開している。世界中に50以上の事業所を持ち、2000人近くの従業員を抱え、4万以上のタイトルの書籍を発行している。その種類は、専門書、教科書、研究論文、参考書、 300近くに及ぶ学術誌、聖書、祈祷書、英語教育教材、教育ソフト、電子出版など、多岐にわたる。.

新しい!!: ヒーグナー点とケンブリッジ大学出版局 · 続きを見る »

類数問題

数学では、(虚二次体の)ガウスの類数問題(Gauss class number problem)は、通常に理解されているように、 各々の n ≥ 1 に対し類数が n である虚二次体の完全なリストをもたらした。この問題の命名は偉大な数学者カール・フリードリヒ・ガウス(Carl Friedrich Gauss)にちなんでいる。この問題は、また、代数体の判別式の項で記述することもできる。実二次体にも関連した問題があり、その振る舞いは である。 この問題の困難な点は、限界の有効(effective)な計算である。与えられた判別式に対し、類数を計算することは易しく、類数の非有効(ineffective)な下界を求める方法はいくつかあるが(非有効とは、計算はできないが、定数であるということのみわかることを意味する)、しかし有効な限界を求め(リストの完全な証明)は難しい。 d \to -\infty.

新しい!!: ヒーグナー点と類数問題 · 続きを見る »

L-函数

数学で、L-函数(L-function)は複素平面上の有理型函数であり、いくつかの数学的対象のカテゴリから出てくる有理型函数に付帯している。L-級数(L-series)は、ディリクレ級数であり、大抵は半平面上で収束し、解析接続を通してL-函数を導くとみられる。 L-函数の理論は、非常に重要であり、未だ予想の段階のものも多く、現代の解析的整数論の分野である。そこでは、リーマンゼータ函数や、ディリクレ指標におけるL-級数の、広い一般化が構成されており、それらの一般的性質は、大半の場合が証明されていなく、系統的な方法なく研究されている。.

新しい!!: ヒーグナー点とL-函数 · 続きを見る »

Magma (数式処理システム)

Magma は代数学、数論、代数幾何学、組合せ数学の問題を解くために開発された計算機代数ソフトウェアである。Magma という名前は代数的構造のマグマから取られている。Magma は Unix 系あるいは Linux で実行できる。または Windows でも利用することができる。.

新しい!!: ヒーグナー点とMagma (数式処理システム) · 続きを見る »

Mathematische Annalen

Mathematische Annalen(略記はMath.

新しい!!: ヒーグナー点とMathematische Annalen · 続きを見る »

PARI/GP

PARI/GPは計算機代数アプリケーションであり、数論に関する様々な演算を行うために開発された。バージョン2.1.0からはフリーソフトウェアとしてGNU General Public Licenseにしたがって米フリーソフトウェア財団から公開、配布されている。PARI/GPはマルチプラットフォームであり、多くのプラットフォームで実行することができる。.

新しい!!: ヒーグナー点とPARI/GP · 続きを見る »

標準的高さ

数論では、ネロン・テイトの高さ(Néron–Tate height)(もしくは、標準的高さ (canonical height) ともいう)は、大域体上に定義されたアーベル多様体の有理点の上の二次形式である。この命名は、(André Néron)とジョン・テイト(John Tate)にちなんでいる。.

新しい!!: ヒーグナー点と標準的高さ · 続きを見る »

有理点

数論において有理点(ゆうりてん、rational point)とは、各座標の値が全て有理数であるような空間の点を言う。 例えば、点 (3, −67/4) は 3 も −67/4 も有理数であるため、2次元空間内の有理点である。有理点の特別な場合は、(integer point)、つまり、その座標が全て整数の点である。例えば、(1, −5, 0) は 3次元空間内の整数点である。より一般的に K を任意の体とするとき、K-有理点は点の各々の座標が体 K に属するような点と定義される。K-有理点に対応する特別な場合は K-整数点、すなわち各座標が(数体) K 内の代数的整数の環の元である場合である。.

新しい!!: ヒーグナー点と有理点 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: ヒーグナー点と数学 · 続きを見る »

ここにリダイレクトされます:

グロス・ザギヤの定理

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »