ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

ヒトゲノム計画

索引 ヒトゲノム計画

ヒトゲノム計画(Human Genome Project)は、ヒトのゲノムの全塩基配列を解析するプロジェクト。1953年のDNAの二重らせん構造の発見から50周年となる2003年に完了した。 プロジェクトは、各国のゲノムセンターや大学などによる国際ヒトゲノム配列コンソーシアムによって組織され、これまでにワーキング・ドラフトを発表し、現在もその改良版の発表が継続して行われている。解読されたゲノムは、NCBIやUCSC、及び Sanger Centerなどの研究機関で参照することができる。 解読された全ヒトゲノムの上製本.

45 関係: 塩基配列二重らせん形式文法医学ハツカネズミバイオインフォマティクスモデル生物リボソームトニー・ブレアプログラム (コンピュータ)ヒトヒトゲノムビル・クリントンデオキシリボ核酸分子生物学アルツハイマー病オーダメイド医療カリフォルニア大学サンタクルーズ校クレイグ・ヴェンターゲノミクスゲノムゲノムプロジェクトショットガン・シークエンシング法ショウジョウバエセレラゼブラフィッシュ免疫系国立生物工学情報センター線形動物生物工学DNAの日DNAマイクロアレイ遺伝子遺伝学計算機科学脊椎動物酵母進化World Wide Web情報工学悪性腫瘍1000人ゲノムプロジェクト1953年2003年

塩基配列

生物学における塩基配列(えんきはいれつ)とは、DNA、RNAなどの核酸において、それを構成しているヌクレオチドの結合順を、ヌクレオチドの一部をなす有機塩基類の種類に注目して記述する方法、あるいは記述したもののこと。 核酸の塩基配列のことを、単にシークエンスと呼ぶことも多い。ある核酸の塩基配列を調べて明らかにする操作・作業のことを、塩基配列決定、あるいはシークエンシングと呼ぶ。.

新しい!!: ヒトゲノム計画と塩基配列 · 続きを見る »

二重らせん

二重らせん(にじゅうらせん)は、.

新しい!!: ヒトゲノム計画と二重らせん · 続きを見る »

形式文法

形式文法(けいしきぶんぽう、Formal Grammar)は、形式的に与えられた(形式体系を参照)文法である。「言語」をその言語における文の集合として与えるものとして、ここでは、(有限の)文字群上の有限長の文字列の(通常無限な)集合が、形式的に記述される。 形式文法にはふたつの捉えかたがある。それは「生成」と「分析」である。#チョムスキー階層の節および単独記事に詳細があるが、両者は対応するので、ある意味では同じものをそれぞれ逆の側から見たものにすぎない。 以下で「文法の規則(構文規則)の集まり」と呼んでいるのは、具体的には、句構造規則#基本モデルにあるようなものである。また終端記号と非終端記号の記事も参照のこと。.

新しい!!: ヒトゲノム計画と形式文法 · 続きを見る »

医学

医学(いがく、英:Medicine, Medical science)とは、生体(人体)の構造や機能、疾病について研究し、疾病を診断・治療・予防する方法を開発する学問である広辞苑「医学」。 医学は、病気の予防および治療によって健康を維持、および回復するために発展した様々な医療を包含する。.

新しい!!: ヒトゲノム計画と医学 · 続きを見る »

ハツカネズミ

ハツカネズミ(二十日鼠、廿日鼠、鼷、House mouse)は、ネズミ目(齧歯目)ネズミ科 ハツカネズミ属の1種である。学名は Mus musculus。.

新しい!!: ヒトゲノム計画とハツカネズミ · 続きを見る »

バイオインフォマティクス

バイオインフォマティクス(英語:bioinformatics)または生命情報科学(せいめいじょうほうかがく)は、生命科学と情報科学の融合分野のひとつで、DNAやRNA、タンパク質の構造などの生命が持っている「情報」といえるものを情報科学や統計学などのアルゴリズムを用いて分析することで生命について解き明かしていく学問である。機械学習による遺伝子領域予測や、タンパク質構造予測、次世代シーケンサーを利用したゲノム解析など、大きな計算能力を要求される課題が多く存在するため、スーパーコンピュータの重要な応用領域の一つとして認識されている。 主な研究対象分野に、遺伝子予測、遺伝子機能予測、遺伝子分類、配列アラインメント、ゲノムアセンブリ、タンパク質構造アラインメント、タンパク質構造予測、遺伝子発現解析、タンパク質間相互作用の予測、進化のモデリングなどがある。 近年多くの生物を対象に実施されているゲノムプロジェクトによって大量の情報が得られる一方、それらの情報から生物学的な意味を抽出することが困難であることが広く認識されるようになり、バイオインフォマティクスの重要性が注目されている。 この一方遺伝子情報は核酸の配列というデジタル情報に近い性格を持っているために、コンピュータとの親和性が高いことが本分野の発展の理由になっている。 さらにマイクロアレイなどの網羅的な解析技術の発展に伴って、遺伝子発現のプロファイリング、クラスタリング、アノテーション(注釈)、大量のデータを視覚的に表現する手法などが重要になってきている。こういった個別の遺伝子、タンパク質の解析等から更に一歩進み、生命を遺伝子やタンパク質のネットワークとして捉え、その総体をシステムとして理解しようとするシステム生物学という分野もある。.

新しい!!: ヒトゲノム計画とバイオインフォマティクス · 続きを見る »

モデル生物

モデル生物(モデルせいぶつ)とは生物学、特に分子生物学とその周辺分野において、普遍的な生命現象の研究に用いられる生物のこと。.

新しい!!: ヒトゲノム計画とモデル生物 · 続きを見る »

リボソーム

典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) '''リボソーム'''、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) ミトコンドリア、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体 リボソームまたはリボゾーム(; ライボソーム)は、あらゆる生物の細胞内に存在する構造であり、粗面小胞体 (rER) に付着している膜結合リボソームと細胞質中に存在する遊離リボソームがある。mRNAの遺伝情報を読み取ってタンパク質へと変換する機構である翻訳が行われる場である。大小2つのサブユニットから成り、これらはタンパク質(リボソームタンパク、ribosomal protein)とRNA(リボソームRNA、rRNA; ribosomal RNA)の複合体である。細胞小器官に分類される場合もある。2000年、X線構造解析により立体構造が決定された。.

新しい!!: ヒトゲノム計画とリボソーム · 続きを見る »

トニー・ブレア

アントニー・チャールズ・リントン・ブレア(、1953年5月6日 - )、通称トニー・ブレア(Tony Blair)は、イギリスの政治家、弁護士。 首相(第73代)、労働党党首(第18代)、下院議員(7期)を歴任する。いまだ前近代的・封建的な慣習や制度が残存していたイギリス貴族院において、世襲議員議席数の制限とイギリス最高裁判所の権能独立という二大改革を成し遂げ、本来のあり方に近い権力分立制の確立を達成した。また、2000年捜査権限規定法を成立させた。.

新しい!!: ヒトゲノム計画とトニー・ブレア · 続きを見る »

プログラム (コンピュータ)

ンピュータプログラム(英:computer programs)とは、コンピュータに対する命令(処理)を記述したものである。コンピュータが機能を実現するためには、CPUで実行するプログラムの命令が必要である。 コンピュータが、高度な処理を人間の手によらず遂行できているように見える場合でも、コンピュータは設計者の意図であるプログラムに従い、忠実に処理を行っている。実際には、外部からの割り込み、ノイズなどにより、設計者の意図しない動作をすることがある。また設計者が、外部からの割り込みの種類を網羅的に確認していない場合もある。.

新しい!!: ヒトゲノム計画とプログラム (コンピュータ) · 続きを見る »

ヒト

ヒト(人、英: human)とは、広義にはヒト亜族(Hominina)に属する動物の総称であり、狭義には現生の(現在生きている)人類(学名: )を指す岩波 生物学辞典 第四版 p.1158 ヒト。 「ヒト」はいわゆる「人間」の生物学上の標準和名である。生物学上の種としての存在を指す場合には、カタカナを用いて、こう表記することが多い。 本記事では、ヒトの生物学的側面について述べる。現生の人類(狭義のヒト)に重きを置いて説明するが、その説明にあたって広義のヒトにも言及する。 なお、化石人類を含めた広義のヒトについてはヒト亜族も参照のこと。ヒトの進化については「人類の進化」および「古人類学」の項目を参照のこと。 ヒトの分布図.

新しい!!: ヒトゲノム計画とヒト · 続きを見る »

ヒトゲノム

ヒトゲノムは、その名の通りヒト (Homo sapiens) のゲノム、すなわち、遺伝情報の1セットである。ヒトゲノムは核ゲノムとミトコンドリアゲノムから成る。.

新しい!!: ヒトゲノム計画とヒトゲノム · 続きを見る »

ビル・クリントン

ウィリアム・ジェファーソン・"ビル"・クリントン(William Jefferson "Bill" Clinton, 1946年8月19日 - )は、アメリカ合衆国の政治家。アーカンソー州司法長官、アーカンソー州知事、第42代アメリカ合衆国大統領を歴任。愛称はババ(Bubba, 南部英語で「兄弟」)。身長185cm。.

新しい!!: ヒトゲノム計画とビル・クリントン · 続きを見る »

デオキシリボ核酸

DNAの立体構造 デオキシリボ核酸(デオキシリボかくさん、deoxyribonucleic acid、DNA)は、核酸の一種。地球上の多くの生物において遺伝情報の継承と発現を担う高分子生体物質である。.

新しい!!: ヒトゲノム計画とデオキシリボ核酸 · 続きを見る »

分子生物学

分子生物学(ぶんしせいぶつがく、:molecular biology)は、生命現象を分子を使って説明(理解)することを目的とする学問である。.

新しい!!: ヒトゲノム計画と分子生物学 · 続きを見る »

アルツハイマー病

アルツハイマー病(アルツハイマーびょう、Alzheimer's disease、AD)とは、脳が萎縮していく病気である。アルツハイマー型認知症(アルツハイマーがたにんちしょう、Major Neurocognitive Disorder Due to Alzheimers Disease)はその症状であり、認知機能低下、人格の変化を主な症状とする認知症の一種であり、認知症の60-70%を占める。日本では、認知症のうちでも脳血管性認知症、レビー小体病と並んで最も多いタイプである。「認知症」の部分は訳語において変化はないが、原語がDSM-IVでは Dementia であり、DSM-5では Major Neurocognitive Disorder である。Dementia of Alzheimer's type、DAT、Alzheimer's dementia、ADとも呼ばれていた。 症状は進行する認知障害(記憶障害、見当識障害、学習障害、注意障害、視空間認知障害や問題解決能力の障害など)であり、生活に支障が出てくる。重症度が増し、高度になると摂食や着替え、意思疎通などもできなくなり最終的には寝たきりになる。階段状に進行する(すなわち、ある時点を境にはっきりと症状が悪化する)脳血管性認知症と異なり、徐々に進行する点が特徴的。症状経過の途中で、被害妄想や幻覚(とくに幻視)が出現する場合もある。暴言・暴力・徘徊・不潔行為などの問題行動(いわゆるBPSD)が見られることもあり、介護上大きな困難を伴うため、医療機関受診の最大の契機となる。 現在のところ、進行を止めたり、回復する治療法は存在していない。運動プログラムは日常生活動作を維持し、アウトカムを改善するという利益がある。罹患した人は、徐々に介護支援が必要となり、それは介護者にとって社会的、精神的、肉体的、経済的なプレッシャーとなっている。 全世界の患者数は210 - 350万人ほど(2010年)。大部分は65歳以上に発病するが、4-5%ほどは若年性アルツハイマー病 (Early-onset Alzheimer's disease) としてそれ以前に発病する。65歳以上人口の約6%が罹患しており、2010年では認知症によって48.6万人が死亡している。ADは先進国において、最も金銭的コストが高い疾患である。.

新しい!!: ヒトゲノム計画とアルツハイマー病 · 続きを見る »

オーダメイド医療

ーダーメイド医療(オーダーメイドいりょう、和製英語「」またはより)とは、個々人の個性にかなった医療を行うこと。なお「」(オーダーメイドメディシン)とは和製英語であり、他にはテーラーメイド医療()、個別化医療()、カスタムメイド医療()、ともいう。 これまで医療は疾患中心であり、疾患の原因を探索したりその治療法を開発することが主な目的であった。 しかし疾患の状態は個々人で千差万別であり、同じ病気であっても同じ治療法を適用することが必ずしも正しくないことは以前より知られてきた。 しかし一方でそのような治療効果の個人差は治療とその効果を観察しなければ分からないものであり、個々人に最適な治療計画を行うことは難しかった。 一方、ヒトゲノム計画によるDNA配列の解読や個々人で異なる一塩基多型 (SNP) の特定、DNAマイクロアレイなどによる大量の情報を瞬時に取得できる技術の発達によってある個人が他人とどのように異なるかを観測できるようになってきた。そこでこれらの情報を利用して、ある患者個人に最適な治療方法を計画することをオーダーメイド医療という。 具体的にはある治療薬がその患者に有効であるかどうか、あるいは投薬量や副作用について見積もることでどの治療薬を用いるのが正しいか、どの程度の投与を行うかと行ったことが分かるようになると期待されている。.

新しい!!: ヒトゲノム計画とオーダメイド医療 · 続きを見る »

カリフォルニア大学サンタクルーズ校

リフォルニア大学サンタクルーズ校(University of California, Santa Cruz、UCSC)は、サンフランシスコ近郊のサンタクルーズにある総合大学。カリフォルニア大学群の一校として1965年に開校した。カリフォルニア大学の共通のモットーは "Fiat lux"(そこに光あれ/Let There Be Light)であり、大学のマスコットである黄色いナメクジ「バナナスラッグ」とかけた"Fiat Slug"の文言が散見される。.

新しい!!: ヒトゲノム計画とカリフォルニア大学サンタクルーズ校 · 続きを見る »

クレイグ・ヴェンター

ョン・クレイグ・ヴェンター(John Craig Venter、1946年10月14日 - )はアメリカ合衆国の分子生物学者、実業家。ゲノム研究とその産業利用において精力的に活動している。.

新しい!!: ヒトゲノム計画とクレイグ・ヴェンター · 続きを見る »

ゲノミクス

ノミクス(英語:genomics、ジェノミクス、ゲノム学、ゲノム科学)とは、ゲノムと遺伝子について研究する生命科学の一分野。 ゲノミクスは1980年代に現れ、1990年代のゲノムプロジェクトの開始とともに発展した。初めて完全長のゲノムが解読されたのはバクテリオファージFX174 (5,368 kb) で1980年のことである。自由生活生物としてはインフルエンザ菌で1995年。以来、猛烈な速さでゲノム解読が進行している。ヒトゲノムのおおまかな配列はヒトゲノムプロジェクトによって2001年前半に解読されている。 ポストゲノムプロジェクトのゲノミクスとして、さまざまな生物種のゲノムを比較することで、進化の解明を試みる比較ゲノミクスや、RNAiなどによる遺伝子阻害から、全体論的な機構解明を行う機能ゲノミクスなどがある。ゲノミクスではバイオインフォマティクスや遺伝学、分子生物学をツールとして用いるとともに、システム生物学のツールとしても用いられる。またゲノミクスは医療の分野に新たな治療法を提供してきている(ファーマコゲノミクス)。食品(ニュートリゲノミクス)や農業の分野へも応用される。.

新しい!!: ヒトゲノム計画とゲノミクス · 続きを見る »

ゲノム

ノム(Genom、genome, ジーノーム)とは、「遺伝情報の全体・総体」を意味するドイツ語由来の語彙であり、より具体的・限定的な意味・用法としては、現在、大きく分けて以下の2つがある。 古典的遺伝学の立場からは、二倍体生物におけるゲノムは生殖細胞に含まれる染色体もしくは遺伝子全体を指し、このため体細胞には2組のゲノムが存在すると考える。原核生物、細胞内小器官、ウイルス等の一倍体生物においては、DNA(一部のウイルスやウイロイドではRNA)上の全遺伝情報を指す。 分子生物学の立場からは、すべての生物を一元的に扱いたいという考えに基づき、ゲノムはある生物のもつ全ての核酸上の遺伝情報としている。ただし、真核生物の場合は細胞小器官(ミトコンドリア、葉緑体など)が持つゲノムは独立に扱われる(ヒトゲノムにヒトミトコンドリアのゲノムは含まれない)。 ゲノムは、タンパク質をコードするコーディング領域と、それ以外のノンコーディング領域に大別される。 ゲノム解読当初、ノンコーディング領域はその一部が遺伝子発現調節等に関与することが知られていたが、大部分は意味をもたないものと考えられ、ジャンクDNAとも呼ばれていた。現在では遺伝子発現調節のほか、RNA遺伝子など、生体機能に必須の情報がこの領域に多く含まれることが明らかにされている。.

新しい!!: ヒトゲノム計画とゲノム · 続きを見る »

ゲノムプロジェクト

ノムプロジェクトとは、DNAシークエンシングによって生物のゲノムの全塩基配列を解読し、タンパク質コード領域やその他のゲノム領域のアノテーションをつけることを目的としたプロジェクト。当初はヒトをはじめ、マウスや線虫などのモデル生物が主な対象であったが、多くの生物種に対象は拡大している。各国の公的研究機関がチームを組んでプロジェクトを進行させるケースが多いが、イネや小麦などの主要農産物については企業による解読もなされた。 塩基配列情報は重要なものではあるが、それだけでは生物の理解には不十分であり、遺伝子領域や制御領域の認識、それらの役割の解明などを進めていくことが望まれる。これらの研究をポストゲノムと総称する。.

新しい!!: ヒトゲノム計画とゲノムプロジェクト · 続きを見る »

ショットガン・シークエンシング法

ョットガン・シークエンシング法 は長いDNAの塩基配列の決定に対して適用される配列決定手法。 まず長い配列を短いランダムな断片としてクローニングし、最初にそれらの配列を決定する。 このとき一本の長いDNA鎖から沢山のコピーを取り、断片同士がオーバーラップするようにしておく。 最終的に、これらのオーバーラップ部分についてコンピュータ上でアライメントを行い、元の長い塩基配列を決定する。 簡略化した例として2本の断片の場合を以下に示す。 実際に適用する際は数千から数百万件の配列を扱うことになり、またデータ中には転写やシークエンシングなどのエラーも入ってくる。 このため実際のプロジェクトでこれらのアライメントの計算を行うには膨大な計算機資源が要求される。 2000年にはショットガン・シークエンシング法は、セレラ・ジェノミクス社によって ヒトのゲノム(ヒトゲノム計画)にも適用されており、そこではヒトのDNAを正確に アライメントするために幾つものスーパーコンピュータが数ヶ月にも亘ってフル稼働したとされる。.

新しい!!: ヒトゲノム計画とショットガン・シークエンシング法 · 続きを見る »

ショウジョウバエ

ョウジョウバエ(猩猩蠅)は、ハエ目(双翅目)・ショウジョウバエ科 (Drosophilidae) に属するハエの総称である。科学の分野では、その一種であるキイロショウジョウバエ (Drosophila melanogaster) のことをこう呼ぶことが多い。この種に関しては非常に多くの分野での研究が行われているが、それらに関してはキイロショウジョウバエの項を参照。本項ではこの科全般を扱う。.

新しい!!: ヒトゲノム計画とショウジョウバエ · 続きを見る »

セレラ

レラ社(Celera Corporation)は、遺伝子シークエンス及びその関連技術を専門的に扱う会社である。もともとアプレーラ社の一部門であったが、2008年7月に独立した株式会社となり、NASDAQにも上場したが(ティッカー:CRA)、2011年5月にクエスト・ダイアグノスティクス社の完全子会社になり、上場廃止となった。.

新しい!!: ヒトゲノム計画とセレラ · 続きを見る »

ゼブラフィッシュ

ブラフィッシュ またはゼブラ・ダニオ (学名:Danio rerio) は、インド原産の体長 5 cm ほどの小型の魚である。和名はシマヒメハヤ。コイ目コイ科ラスボラ亜科(ダニオ亜科、ハエジャコ亜科とも)に属し、オイカワ、コイや金魚などに近い。成体の体表に紺色の縦じまをもつことから、シマウマにみたててこの名がある。飼育、繁殖が容易な魚で、流通価格も安く、観賞魚としてよく飼われている。体色やヒレなどに変異のある改良品種が存在する。生物学では脊椎動物のモデル生物としてよく用いられる。モデル生物としてはゼブラフィッシュ、観賞魚としてはゼブラ・ダニオの名が一般的である。.

新しい!!: ヒトゲノム計画とゼブラフィッシュ · 続きを見る »

免疫系

免疫系(めんえきけい、immune system)とは、生体内で病原体などの非自己物質やがん細胞などの異常な細胞を認識して殺滅することにより、生体を病気から保護する多数の機構が集積した機構である。精密かつダイナミックな情報伝達を用いて、細胞、組織、器官が複雑に連係している。この機構はウイルスから寄生虫まで広い範囲の病原体を感知し、作用が正しく行われるために、生体自身の健常細胞や組織と区別しなければならない。 この困難な課題を克服して生き延びるために、病原体を認識して中和する機構が一つならず進化した。細菌のような簡単な単細胞生物でもウイルス感染を防御する酵素系をもっている。その他の基本的な免疫機構は古代の真核生物において進化し、植物、魚類、ハ虫類、昆虫に残存している。これらの機構はディフェンシンと呼ばれる抗微生物ペプチドが関与する機構であり、貪食機構であり、 補体系である。ヒトのような脊椎動物はもっと複雑な防御機構を進化させた。脊椎動物の免疫系は多数のタイプのタンパク質、細胞、器官、組織からなり、それらは互いに入り組んだダイナミックなネットワークで相互作用している。このようないっそう複雑な免疫応答の中で、ヒトの免疫系は特定の病原体に対してより効果的に認識できるよう長い間に適応してきた。この適応プロセスは適応免疫あるいは獲得免疫(あるいは後天性免疫)と呼ばれ、免疫記憶を作り出す。特定の病原体への初回応答から作られた免疫記憶は、同じ特定の病原体への2回目の遭遇に対し増強された応答をもたらす。獲得免疫のこのプロセスがワクチン接種の基礎である。 免疫系が異常を起こすと病気になる場合がある。免疫系の活動性が正常より低いと、免疫不全病が起こり感染の繰り返しや生命を脅かす感染が起こされる。免疫不全病は、重症複合免疫不全症のような遺伝病の結果であったり、レトロウイルスの感染によって起こされる後天性免疫不全症候群 (AIDS) や医薬品が原因であったりする。反対に自己免疫病は、正常組織に対しあたかも外来生物に対するように攻撃を加える、免疫系の活性亢進からもたらされる。ありふれた自己免疫病として、関節リウマチ、I型糖尿病、紅斑性狼瘡がある。免疫学は免疫系のあらゆる領域の研究をカバーし、ヒトの健康や病気に深く関係している。この分野での研究をさらに推し進めることは健康増進および病気の治療にも期待できる。.

新しい!!: ヒトゲノム計画と免疫系 · 続きを見る »

国立生物工学情報センター

国立生物工学情報センター(こくりつせいぶつこうがくじょうほうセンター、、NCBI)は、アメリカ合衆国の国立衛生研究所 (NIH) の下の国立医学図書館 (National Library of Medicine; NLM) の一部門として 1988年11月4日に設立された機関。本部はワシントンD.C.近郊のメリーランド州ベセスダ。.

新しい!!: ヒトゲノム計画と国立生物工学情報センター · 続きを見る »

線形動物

線形動物(せんけいどうぶつ、学名:Nematoda、英名:Nematode, Roundworm)は、線形動物門に属する動物の総称である。線虫ともいう。かつてはハリガネムシなどの類線形動物 (Nematomorpha) も含んだが、現在は別の門とするのが一般的。また、日本では袋形動物門の一綱として腹毛動物・鰓曳動物・動吻動物などとまとめられていたこともあった。回虫・鞭虫などが含まれる。 大半の種は土壌や海洋中で非寄生性の生活を営んでいるが、同時に多くの寄生性線虫の存在が知られる。植物寄生線虫学 (nematology) では農作物に被害をもたらす線虫の、寄生虫学 (parasitology) ではヒトや脊椎動物に寄生する物の研究が行われている。.

新しい!!: ヒトゲノム計画と線形動物 · 続きを見る »

生物工学

生物工学(せいぶつこうがく)は、生物学の知見を元にし、実社会に有用な利用法をもたらす技術の総称である。ただし定義は明確ではなく、バイオテクノロジー(biotechnology)やバイオニクス(bionics)の訳語として使われる場合が多く、この両方を含んだ学問の領域と捉えることに矛盾しない。また、特に遺伝子操作をする場合には、遺伝子工学と呼ばれる場合もある。.

新しい!!: ヒトゲノム計画と生物工学 · 続きを見る »

DNAの日

DNAの日(ディーエヌエーのひ)は、毎年4月25日に祝われる記念日。1953年4月25日にジェームズ・ワトソン、フランシス・クリック、モーリス・ウィルキンス、ロザリンド・フランクリンと同僚らが『ネイチャー』にデオキシリボ核酸(DNA)の構造を論文として出版したことを記念している。 更に、2003年の同日にヒトゲノム計画のほぼ完了を示す「残りわずかなギャップは、埋めるにはコストがかかりすぎると考えられる。」と宣言された日である。 アメリカ合衆国では、DNAの日は2003年4月25日に上院と下院の双方での決議により祝われた。しかしこれは1回限りの祝い事と宣言され、毎年の記念日とされなかった。2003年以降は(NHGRI)の主催で4月25日より少し早い4月23日(2010年)、4月15日(2011年)、4月20日(2012年)にDNAの日が祝われている。4月25日は「国際DNAの日」および「世界DNAの日」としていくつかの集団によって宣言されている。.

新しい!!: ヒトゲノム計画とDNAの日 · 続きを見る »

DNAマイクロアレイ

DNAマイクロアレイはDNAチップとも呼ばれ、細胞内の遺伝子発現量を測定するために、多数のDNA断片をプラスチックやガラス等の基板上に高密度に配置した分析器具のこと。 あらかじめ塩基配列の明らかな1本鎖のDNAを多種、基板上に配置しておき、これに検体を反応させれば、検体のDNA配列と相補的な塩基配列の部分にのみ検体のDNA鎖が結合する。結合位置を蛍光や電流によって検出し、最初の配置から検体に含まれるDNA配列を知る事が出来る。検体の塩基配列が予測できる場合には、効率的にその配列が特定できる。.

新しい!!: ヒトゲノム計画とDNAマイクロアレイ · 続きを見る »

遺伝子

遺伝子(いでんし)は、ほとんどの生物においてDNAを担体とし、その塩基配列にコードされる遺伝情報である。ただし、RNAウイルスではRNA配列にコードされている。.

新しい!!: ヒトゲノム計画と遺伝子 · 続きを見る »

遺伝学

遺伝学(いでんがく、)は、生物の遺伝現象を研究する生物学の一分野である。遺伝とは世代を超えて形質が伝わっていくことであるが、遺伝子が生物の設計図的なものであることが判明し、現在では生物学のあらゆる分野に深く関わるものとなっている。.

新しい!!: ヒトゲノム計画と遺伝学 · 続きを見る »

計算機科学

計算機科学(けいさんきかがく、computer science、コンピュータ科学)とは、情報と計算の理論的基礎、及びそのコンピュータ上への実装と応用に関する研究分野である。計算機科学には様々な下位領域がある。コンピュータグラフィックスのように特定の処理に集中する領域もあれば、計算理論のように数学的な理論に関する領域もある。またある領域は計算の実装を試みることに集中している。例えば、プログラミング言語理論は計算を記述する手法に関する学問領域であり、プログラミングは特定のプログラミング言語を使って問題を解決する領域である。.

新しい!!: ヒトゲノム計画と計算機科学 · 続きを見る »

胚(はい、独,英: Embryo)とは多細胞生物の個体発生におけるごく初期の段階の個体を指す。胚子ともいう。.

新しい!!: ヒトゲノム計画と胚 · 続きを見る »

脊椎動物

脊椎動物(せきついどうぶつ、Vertebrata)は、動物の分類のひとつ。現在主流の説では脊索動物門に属するとされ、脊索と置き換わった脊椎をもつ。魚類、鳥類、両生類、爬虫類、哺乳類の5類からなり、無脊椎動物に比べて(脊椎動物である)人間にとって類縁関係が近く、なじみの深い生物によって構成されているグループである。.

新しい!!: ヒトゲノム計画と脊椎動物 · 続きを見る »

酵母

酵母(こうぼ)またはイースト(英語:yeast)は、広義には生活環の一定期間において栄養体が単細胞性を示す真菌類の総称である。 狭義には、食品などに用いられて馴染みのある出芽酵母の一種 Saccharomyces cerevisiae を指し、一般にはこちらの意味で使われ、酵母菌と俗称されている。 広義の「酵母」は正式な分類群の名ではなく、いわば生活型を示す名称であり、系統的に異なる種を含んでいる。 狭義の酵母は、発酵に用いられるなど工業的に重要であり、遺伝子工学の主要な研究対象の1つでもある。明治時代にビール製法が輸入されたときに、yeast の訳として発酵の源を意味する字が当てられたのが語源であるが、微生物学の発展とともにその意味するところが拡大していった。.

新しい!!: ヒトゲノム計画と酵母 · 続きを見る »

進化

生物は共通祖先から進化し、多様化してきた。 進化(しんか、evolutio、evolution)は、生物の形質が世代を経る中で変化していく現象のことであるRidley(2004) p.4Futuyma(2005) p.2。.

新しい!!: ヒトゲノム計画と進化 · 続きを見る »

World Wide Web

World Wide Web(ワールド・ワイド・ウェブ、略名:WWW)とは、インターネット上で提供されるハイパーテキストシステム。Web、ウェブ、W3(ダブリュー スリー)とも呼ばれる。俗には「インターネット」という表現がワールド・ワイド・ウェブを指す場合もある。.

新しい!!: ヒトゲノム計画とWorld Wide Web · 続きを見る »

情報工学

情報工学(じょうほうこうがく)は情報分野についての工学である。語感としては、情報科学という語がもっぱらおおまかに「科学」という語が指す範囲を中心としているのに対し、「工学」的な分野に重心があるが、内実としてはどれもたいして変わらないことが多い(たとえば、大学の学部学科名などに関しては、個々の大学の個性による違いのほうが、名前による違いより大きい)。日本で、大学の工学部などにコンピュータ科学ないし情報関係の学科を設置する際に、「工学」部という語との整合のためだけに便利に使われた、という面が大きい(情報工学科の記事を参照)。 なお英語の information engineering はソフトウェア工学における一手法であり、日本語の「情報工学」とは対応しない。また似た言葉に情報学がある。.

新しい!!: ヒトゲノム計画と情報工学 · 続きを見る »

悪性腫瘍

悪性腫瘍(あくせいしゅよう、malignant tumor)は、遺伝子変異によって自律的で制御されない増殖を行うようになった細胞集団(腫瘍)のなかで周囲の組織に浸潤し、または転移を起こす腫瘍である。悪性腫瘍のほとんどは無治療のままだと全身に転移して患者を死に至らしめる大西『スタンダード病理学』第3版、pp.139-141Geoffrey M.Cooper『クーパー細胞生物学』pp.593-595とされる。 一般に癌(ガン、がん、cancer)、悪性新生物(あくせいしんせいぶつ、malignant neoplasm)とも呼ばれる。 「がん」という語は「悪性腫瘍」と同義として用いられることが多く、本稿もそれに倣い「悪性腫瘍」と「がん」とを明確に区別する必要が無い箇所は、同一語として用いている。.

新しい!!: ヒトゲノム計画と悪性腫瘍 · 続きを見る »

1000人ゲノムプロジェクト

1000人ゲノムプロジェクトは2008年1月に始まった国際研究協力の一つで、ヒトの遺伝的多様性に関する、現時点で最も詳細なカタログを確立するためのゲノムプロジェクトである。 これまで以上に高速かつ廉価な新開発技術(次世代シーケンシング)を用いて、科学者たちは3年以内に、異なる民族グループから少なくとも1000人分の匿名ゲノムの配列決定を行うことを目指している。 プロジェクトは学際的な研究チームで構成されており、世界中の研究機関が参加している。それぞれのチームが大量の配列データセットと詳細ヒトゲノムマップ作成に寄与している。それらのデータは、公共のデータベースを介して、一般市民が自由にアクセスできるようになる。 2010年、試験段階が終了し、その詳細はNatureに掲載された。 2012年10月、1092人のゲノムシーケンシングがNatureで発表された。 全てのヒト遺伝的変異について概要を提供することにより、医学のみならず、生物学分野においても有用な知見を得られると考えられる。特に、遺伝学、薬理学、生化学、バイオインフォマティクス、各分野の発展に寄与するだろう。.

新しい!!: ヒトゲノム計画と1000人ゲノムプロジェクト · 続きを見る »

1953年

記載なし。

新しい!!: ヒトゲノム計画と1953年 · 続きを見る »

2003年

この項目では、国際的な視点に基づいた2003年について記載する。.

新しい!!: ヒトゲノム計画と2003年 · 続きを見る »

ここにリダイレクトされます:

ヒューマン・ゲノム・プロジェクトヒューマンゲノムプロジェクトヒトゲノム・プロジェクトヒトゲノムプロジェクト人ゲノムプロジェクト人ゲノム計画

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »