ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ナビエ–ストークス方程式

索引 ナビエ–ストークス方程式

ナビエ–ストークス方程式(ナビエ–ストークスほうていしき、Navier–Stokes equations)は、流体の運動を記述する2階非線型偏微分方程式であり、流体力学で用いられる。アンリ・ナビエとジョージ・ガブリエル・ストークスによって導かれた。NS方程式とも略される。ニュートン力学における運動の第2法則に相当し、運動量の流れの保存則を表す。.

57 関係: 加速度偏微分方程式境界層寺沢寛一密度差分法乱流応力圧力ナビエ–ストークス方程式の解の存在と滑らかさミレニアム懸賞問題マクスウェルの方程式バーガース方程式レイノルズ数ブシネスク近似ニュートン力学ニュートン流体アルベルト・アインシュタインアンリ・ナビエエネルギー保存の法則オイラー方程式 (流体力学)カオス理論ジョージ・ガブリエル・ストークス回転 (ベクトル解析)CFL条件状態方程式 (熱力学)磁気流体力学移流拡散方程式粘度粒子法線型性無次元量物理学物質微分直交座標系直接数値シミュレーション発散 (ベクトル解析)運動の第2法則運動量保存の法則非圧縮性流れ表面張力重力電磁相互作用速度速度ポテンシャル連続の方程式渦度有限体積法有限要素法流体...流体力学浮力数学数値解析数値流体力学慣性拡散数 インデックスを展開 (7 もっと) »

加速度

加速度(かそくど、acceleration)は、単位時間当たりの速度の変化率。速度がベクトルなので、加速度も同様にベクトルとなる。加速度はベクトルとして平行四辺形の法則で合成や分解ができるのは力や速度の場合と同様であるが、法線加速度、接線加速度に分解されることが多い。法線加速度は向きを変え、接線加速度は速さを変える。 速度を v とすれば、加速度 a は速度の時間 t についての微分であり, と定義される。 平面運動を極座標(r,θ)で表した場合、動径方向・角方向成分はそれぞれ となる。 一般に「減速度(げんそくど)」と言われるのは、負(進行方向と反対)の加速度の事である。また、進行方向を変える(曲がる)のは、進行方向とは異なる方向への加速度を受けるという事である。 遠心力による加速度を遠心加速度という。 物体に加速度がかかることと、力が加わることとは等価である。(運動の第2法則) ちなみに、加速度の単位時間当たりの変化率は、加加速度あるいは躍度とよばれる。.

新しい!!: ナビエ–ストークス方程式と加速度 · 続きを見る »

偏微分方程式

偏微分方程式(へんびぶんほうていしき、partial differential equation, PDE)は、未知関数の偏微分を含む微分方程式である。.

新しい!!: ナビエ–ストークス方程式と偏微分方程式 · 続きを見る »

境界層

境界層(きょうかいそう、boundary layer)とは、ある粘性流れにおいて、粘性による影響を強く受ける層のことである。1904年、ドイツの物理学者ルートヴィヒ・プラントルによって発見された。.

新しい!!: ナビエ–ストークス方程式と境界層 · 続きを見る »

寺沢寛一

寺沢 寛一(てらざわ かんいち、1882年7月15日 - 1969年2月5日)は、日本の理論物理学者・数学者。日本学士院会員、東京帝国大学名誉教授、東京帝国大学総長事務取扱、理学部長、高等逓信講習所所長、千葉工業大学学長、電気通信大学学長などを歴任。多年にわたり東京帝国大学理学部物理学教室の運営に力があった。著書「自然科学者のための数学概論」は応用数学の名著として名高い。.

新しい!!: ナビエ–ストークス方程式と寺沢寛一 · 続きを見る »

密度

密度(みつど)は、広義には、対象とする何かの混み合いの程度を示す。ただし、科学において、単に密度といえば、単位体積あたりの質量である。より厳密には、ある量(物理量など)が、空間(3 次元)あるいは面上(2 次元)、線上(1 次元)に分布していたとして、これらの空間、面、線の微小部分上に存在する当該量と、それぞれ対応する体積、面積、長さに対する比のことを(それぞれ、体積密度、面密度、線密度と言う)言う。微小部分は通常、単位体積、単位面積、単位長さ当たりに相当する場合が多い。勿論、4 次元以上の仮想的な場合でも、この関係は成立し、密度を定義することができる。 その他の密度としては、状態密度、電荷密度、磁束密度、電流密度、数密度など様々な量(物理量)に対応する密度が存在する(あるいは定義できる)。物理量以外でも人口密度、個体群密度、確率密度、などの値が様々なところで用いられている。密度効果という語もある。.

新しい!!: ナビエ–ストークス方程式と密度 · 続きを見る »

差分法

数値解析における有限差分法(ゆうげんさぶんほう、finite-difference methods; FDM)あるいは単に差分法は、微分方程式を解くために微分を有限差分近似(差分商)で置き換えて得られる差分方程式<!-- ループリンク -->で近似するという離散化手法を用いる数値解法である。18世紀にオイラーが考案したと言われる。 今日ではFDMは偏微分方程式の数値解法として支配的な手法である.

新しい!!: ナビエ–ストークス方程式と差分法 · 続きを見る »

乱流

乱流(らんりゅう、turbulence)は、流体の流れ場の状態の一種。乱流でない流れ場は層流と呼ばれる。 乱流の確立した定義は現時点においても存在しないが、数学的にはナヴィエ・ストークス方程式の非定常解の集合であるということができる。層流と乱流のおおよその区別はレイノルズ数によって判断され、レイノルズ数の値が大きいと乱流と判断される。また、層流が乱流に遷移するときのレイノルズ数を臨界レイノルズ数という。 生活の中でのわかりやすい例としては水道の蛇口から流れる水がある。水道の水は流れが少ないときはまっすぐに落ちるが、少し多くひねると急に乱れ出す。このとき前者が層流、後者が乱流である。生活の中で見られる空気や水の流れはほぼ全てが乱流であるだけでなく、熱や物質を輸送し拡散する効果が非常に強いので工学的にも非常に重要である。 乱流の数値シミュレーションは、気象予報や自動車等の空力設計からノートパソコンの冷却まで工学的には非常に幅広く利用されている。しかし高い計算機性能を要求するため、スーパーコンピュータなどHPC(高性能計算)の重要な用途の一つになっている。.

新しい!!: ナビエ–ストークス方程式と乱流 · 続きを見る »

応力

応力(おうりょく、ストレス、stress)とは、物体連続体などの基礎仮定を満たすものとする。の内部に生じる力の大きさや作用方向を表現するために用いられる物理量である。物体の変形や破壊などに対する負担の大きさを検討するのに用いられる。 この物理量には応力ベクトル と応力テンソル の2つがあり、単に「応力」といえば応力テンソルのことを指すことが多い。応力テンソルは座標系などを特別に断らない限り、主に2階の混合テンソルおよび混合ベクトルとして扱われる(混合テンソルについてはテンソル積#テンソル空間とテンソルを参照)。応力ベクトルと応力テンソルは、ともに連続体内部に定義した微小面積に作用する単位面積あたりの力として定義される。そのため、それらの単位は、SIではPa (N/m2)、重力単位系ではkgf/mm2で、圧力と同じである。.

新しい!!: ナビエ–ストークス方程式と応力 · 続きを見る »

圧力

圧力(あつりょく、pressure)とは、.

新しい!!: ナビエ–ストークス方程式と圧力 · 続きを見る »

ナビエ–ストークス方程式の解の存在と滑らかさ

ナビエ–ストークス方程式の解の存在と滑らかさ(ナビエ–ストークスほうていしきのかいのそんざいとなめらかさ、英:Navier–Stokes existence and smoothness)問題は、(例えば乱流のような)流体力学の重要な柱の一つであるナビエ-ストークス方程式の解の数学的性質に関連している。これらの方程式は空間の中の流体(つまり、液体や気体)の運動を記述する。ナビエ–ストークス方程式の解は、多くの実践的な応用で使われる。しかしながら、これらの方程式の理論的な理解は不完全である。特に、ナビエ–ストークス方程式の解は、乱流となることがあり、科学や工学に対し計り知れない重要性があるにもかかわらず、乱流は最も難しい物理学の未解決問題の一つとして残っている。 ナビエ–ストークス方程式の解の基本的性質さえ、証明されていない。方程式の 3次元の系について初期条件が与えられたとき、滑らかな解が常に存在すること、もし存在するとしたらその解が質量当たり有界なエネルギーを持っているかということを、数学的にはいまだに証明されていない。この問題を解の存在と滑らかさの問題という。 ナビエ–ストークス方程式の理解が、乱流のとらえどころのない現象の理解という第一段階と考えられているので、Clay Mathematics Institute(クレイ数学研究所)は2000年5月にこの問題を、数学の 7つのミレニアム懸賞問題の一つとした。最初にこの問題の解を与えたものに$1,000,000を賞金として進呈すると約束した。, Clay Mathematics Institute.

新しい!!: ナビエ–ストークス方程式とナビエ–ストークス方程式の解の存在と滑らかさ · 続きを見る »

ミレニアム懸賞問題

ミレニアム懸賞問題(ミレニアムけんしょうもんだい、)とは、アメリカのクレイ数学研究所によって2000年に発表された100万ドルの懸賞金がかけられている7つの問題のことである。そのうち1つは解決済み、6つは2015年8月末の時点で未解決である。ミレニアム賞問題、ミレニアム問題とも呼ばれる。.

新しい!!: ナビエ–ストークス方程式とミレニアム懸賞問題 · 続きを見る »

マクスウェルの方程式

マクスウェルの方程式(マクスウェルのほうていしき、Maxwell's equations)は、電磁場のふるまいを記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理された。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれ、マクスウェルはマックスウェルとも表記される。 真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。 なお、電磁気学の単位系は、国際単位系に発展したMKSA単位系のほか、ガウス単位系などがあるが、以下では原則として、国際単位系を用いることとする。.

新しい!!: ナビエ–ストークス方程式とマクスウェルの方程式 · 続きを見る »

バーガース方程式

物理学、特に流体力学においてバーガース方程式(-ほうていしき、Burgers equation)とは、一次元の非線形波動を記述する二階偏微分方程式。方程式の名は、オランダの物理学者に因む。一次元のナビエ-ストークス方程式において、圧力を無視できる場合に相当する。非線形な偏微分方程式であるが、コール・ホップ変換と呼ばれる変換にて、線形な拡散方程式に帰着させることができる。.

新しい!!: ナビエ–ストークス方程式とバーガース方程式 · 続きを見る »

レイノルズ数

レイノルズ数(Reynolds number、Re)は流体力学において慣性力と粘性力との比で定義される無次元量である。流れの中でのこれら2つの力の相対的な重要性を定量している。 概念は1851年にジョージ・ガブリエル・ストークスにより紹介されたが、レイノルズ数はオズボーン・レイノルズ (1842–1912) の名にちなんで名づけられており、1883年にその利用法について普及させた。 流体力学上の問題について次元解析を行う場合にはレイノルズ数は便利であり、異なる実験ケース間での力学的相似性を評価するのに利用される。 また、レイノルズ数は層流や乱流のように異なる流れ領域を特徴づけるためにも利用される。層流については、低いレイノルズ数において発生し、そこでは粘性力が支配的であり、滑らかで安定した流れが特徴である。乱流については、高いレイノルズ数において発生し、そこでは慣性力が支配的であり、無秩序な渦や不安定な流れが特徴である。 実際には、レイノルズ数の一致のみで流れの相似性を保証するには十分ではない。流体流れは一般的には無秩序であり、形や表面の粗さの非常に小さな変化が異なる流れをもたらすことがある。しかしながら、レイノルズ数は非常に重要な指標であり、世界中で広く使われている。.

新しい!!: ナビエ–ストークス方程式とレイノルズ数 · 続きを見る »

ブシネスク近似

ブシネスク近似 (Boussinesq approximation)とは、流体力学の自然対流問題において、熱膨張による密度変化に比べて膨張圧縮による密度変化が無視できるとする解析上の近似手法である。この近似のもとでは、密度変化は重力に比例した浮力としてのみ流体の運動に影響を及ぼし、運動量の変化を無視する。.

新しい!!: ナビエ–ストークス方程式とブシネスク近似 · 続きを見る »

ニュートン力学

ニュートン力学(ニュートンりきがく、)は、アイザック・ニュートンが、運動の法則を基礎として構築した、力学の体系のことである『改訂版 物理学辞典』培風館。。 「ニュートン力学」という表現は、アインシュタインの相対性理論、あるいは量子力学などと対比して用いられる。.

新しい!!: ナビエ–ストークス方程式とニュートン力学 · 続きを見る »

ニュートン流体

ニュートン流体(ニュートンりゅうたい、Newtonian fluid)は、流れのせん断応力(接線応力)と流れの速度勾配(ずり速度、せん断速度)が比例した粘性の性質を持つ流体のこと。この流れのことをニュートン流動と言う。 比例関係が成立した粘性率は、流体の種類によって固有の物性値であることが表される。これをニュートンの粘性法則と言う。 直交座標による空間を考え、そこでx方向に流体による流れが存在すると考える。簡単のため境界等の効果は考えないものとする。x-y平面を考えると、その面を境にして流体は力(応力)を及ぼし合っていて、面に垂直な方向(法線方向)の単位面積当りに働く力が圧力であり、面に平行な方向(接線方向)の単位面積当りに働く力を接線応力と言う。 流れている流体の粘性率を&mu;として、x 方向の流れの速さをux とすると、接線応力&tau;xy は、 となる。この時、 \partial u_x / \partial y をずり速度と言う。ニュートン流体は、粘性率&mu;がこのずり速度に依存せず、接線応力が上式で表現できる。 3次元に一般化した場合、上式はテンソル表示され次のようになる。 &\tau.

新しい!!: ナビエ–ストークス方程式とニュートン流体 · 続きを見る »

アルベルト・アインシュタイン

アルベルト・アインシュタイン日本語における表記には、他に「アルト・アインシュタイン」(現代ドイツ語の発音由来)、「アルト・アインタイン」(英語の発音由来)がある。(Albert Einstein アルベルト・アインシュタイン、アルバート・アインシュタイン アルバ(ー)ト・アインスタイン、アルバ(ー)タインスタイン、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。 特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績などにより、世界的に知られている偉人である。 「20世紀最高の物理学者」や「現代物理学の父」等と評され、それまでの物理学の認識を根本から変えるという偉業を成し遂げた。(光量子仮説に基づく光電効果の理論的解明によって)1921年のノーベル物理学賞を受賞。.

新しい!!: ナビエ–ストークス方程式とアルベルト・アインシュタイン · 続きを見る »

アンリ・ナビエ

クロード・ルイ・マリー・アンリ・ナヴィエ(Claude Louis Marie Henri Navier、1785年2月10日- 1836年8月21日)は、フランスの数学者、物理学者。流体力学における基礎方程式、ナビエ-ストークス方程式に名前を残している。 ナヴィエは国立土木学校(École des Ponts et Chaussées)の機械工学の教授を務め、後にエコール・ポリテクニークの教授を務めた。1826年に材料力学の教科書を出版している。ガリレオ・ガリレイの梁の強度に関する論文の間違いを訂正している。 1822年に、粘性流体の運動方程式に関する論文をフランス科学アカデミーに提出した。1845年にジョージ・ガブリエル・ストークスが一般式を導いたのでナビエ-ストークスの式と呼ばれる。 Category:フランスの物理学者 Category:フランスの数学者 Category:19世紀の自然科学者 Category:数値解析研究者 Category:流体力学 850210 -850210 Category:水理学に関する人物 Category:国立土木学校の教員 Category:エコール・ポリテクニークの教員 Category:ディジョン出身の人物 Category:国立土木学校 Category:1785年生 Category:1836年没 Category:数学に関する記事.

新しい!!: ナビエ–ストークス方程式とアンリ・ナビエ · 続きを見る »

エネルギー保存の法則

ネルギー保存の法則(エネルギーほぞんのほうそく、law of the conservation of energy)とは、「孤立系のエネルギーの総量は変化しない」という物理学における保存則の一つである。しばしばエネルギー保存則とも呼ばれる。 任意の異なる二つの状態について、それらのエネルギー総量の差がゼロであることをいう。たとえば、取り得る状態がすべて分かっているとして、全部で つの状態があったとき、それらの状態のエネルギーを と表す。エネルギー保存の法則が成り立つことは、それらの差について、 が成り立っていることをいう。 時間が導入されている場合には、任意の時刻でエネルギー総量の時間変化量がゼロであることをいい、時間微分を用いて表現される。 エネルギー保存の法則は、物理学の様々な分野で扱われる。特に、熱力学におけるエネルギー保存の法則は熱力学第一法則 と呼ばれ、熱力学の基本的な法則となっている。 熱力学第一法則は、熱力学において基本的な要請として認められるものであり、あるいは熱力学理論を構築する上で成立すべき定理の一つである。第一法則の成立を前提とする根拠は、一連の実験や観測事実のみに基づいており、この意味で第一法則はいわゆる経験則であるといえる。一方でニュートン力学や量子力学など一般の力学において、エネルギー保存の法則は必ずしも前提とされない。.

新しい!!: ナビエ–ストークス方程式とエネルギー保存の法則 · 続きを見る »

オイラー方程式 (流体力学)

流体力学におけるオイラー方程式(オイラーほうていしき、Euler equations)とは、完全流体を記述する運動方程式である巽『連続体の力学』 p.142。 この方程式は1755年にレオンハルト・オイラーにより定式化された。完全流体とは粘性を持たない流体である。粘性がないため、境界条件として壁面でのすべりを許す必要がある。 高マッハ数の圧縮性流れでは、流速が大きいことから粘性や乱流の効果は壁面近くの小さな領域にしか現れないため、オイラー方程式を用いて流れの解析が行われる。 オイラー方程式は で表される。ここで は流体の速度場、 は密度場、 は圧力場で、 は流体の質量当たりにかかる外力場(加速度場)である。これはナビエ-ストークス方程式から粘性項を省いたものと同じである。 ベクトル解析の公式から と変形されるので、オイラー方程式は となる。ここで は流体の渦度である。 さらに密度が圧力だけで決まる順圧の場合には圧力関数 を導入すれば と表される。外力が重力のような保存力である場合には、外力のポテンシャルを として であり、オイラー方程式は となる。.

新しい!!: ナビエ–ストークス方程式とオイラー方程式 (流体力学) · 続きを見る »

カオス理論

論(カオスりろん、、、)は、力学系の一部に見られる、数的誤差により予測できないとされている複雑な様子を示す現象を扱う理論である。カオス力学ともいう。 ここで言う予測できないとは、決してランダムということではない。その振る舞いは決定論的法則に従うものの、積分法による解が得られないため、その未来(および過去)の振る舞いを知るには数値解析を用いざるを得ない。しかし、初期値鋭敏性ゆえに、ある時点における無限の精度の情報が必要であるうえ、(コンピューターでは無限桁を扱えないため必然的に発生する)数値解析の過程での誤差によっても、得られる値と真の値とのずれが増幅される。そのため予測が事実上不可能という意味である。.

新しい!!: ナビエ–ストークス方程式とカオス理論 · 続きを見る »

ジョージ・ガブリエル・ストークス

初代准男爵、サー・ジョージ・ガブリエル・ストークス(Sir George Gabriel Stokes, 1st Baronet, 1819年8月13日 - 1903年2月1日)は、アイルランドの数学者、物理学者である。 流体力学、光学、数学などの分野で重要な貢献をした。1851年に王立協会のフェローに選出され、1885年から1890年まで会長を務めた。1849年から死去する1903年まで、ルーカス教授職も務めている。.

新しい!!: ナビエ–ストークス方程式とジョージ・ガブリエル・ストークス · 続きを見る »

回転 (ベクトル解析)

ベクトル解析における回転(かいてん、rotation, curl)(または )は、三次元ベクトル場の無限小回転を記述するベクトル演算子である。ベクトル場の各点において、ベクトル場の回転はベクトルとして表され、このベクトルの寄与(大きさと向き)によってその点での回転が特徴付けられる。 回転ベクトルの向きは回転軸に沿って右手系となる方にとり、回転ベクトルの大きさは回転の大きさとなる。例えば、与えられたベクトル場が、動いている流体の流速を表すものであるとき、その回転とはその流体の循環密度のことになる。回転場が 0 となるベクトル場はであると言う。場の回転はベクトル場に対する導函数に相当し、これに対応して微分積分学の基本定理に相当するのは、ベクトル場の回転場の面積分をそのベクトル場の境界曲線上での線積分と関係づけるストークスの定理(ストークス=ケルビンの定理)であると考えられる。 回転演算に相当する用語は curl, rotation の他に rotor や rotational などがあり、記法 に相当する記法は や などがある。前者の rot 系の用語・記法を用いる流儀はヨーロッパ諸国の系統に多く、ナブラや交叉積を用いる記法はそれ以外の系統で使われる傾向にある。 勾配や発散とは異なり、回転の概念を単純に高次元化することはできない。ただし、三次元に限らないある種の一般化は可能で、それはベクトル場の回転がまたベクトル場となるように幾何学的に定義される。これは三次元交叉積がそうであるのと同様の現象であり、このことは回転を "∇&times;" で表す記法にも表れている。 回転 "curl" の名を最初に提示したものはジェームズ・クラーク・マクスウェルで1871年のことである。.

新しい!!: ナビエ–ストークス方程式と回転 (ベクトル解析) · 続きを見る »

CFL条件

CFL条件(シーエフエルじょうけん、)またはクーラン条件とは、コンピュータシミュレーションの計算(数値解析)において、「情報が伝播する速さ」を「実際の現象で波や物理量が伝播する速さ」よりも早くしなければならないという必要条件のことである。1928年にRichard Courant, Kurt Friedrichs, Hans Lewyによって提唱された。.

新しい!!: ナビエ–ストークス方程式とCFL条件 · 続きを見る »

状態方程式 (熱力学)

態方程式(じょうたいほうていしき、)とは、熱力学において、状態量の間の関係式のことをいう。巨視的な系の熱力学的性質を反映しており、系によって式の形は変化する田崎『熱力学』 pp.51-52。状態方程式の具体的な形は実験的に決定されるか、統計力学に基づいて計算され、熱力学からは与えられない。 広義には、全ての状態量の間の関係式のことであるが、特に、流体の圧力を温度、体積と物質量で表す式を指す場合が多い。 流体だけでなく固体に対しても、その熱力学的性質を表現する状態方程式を考えることが出来る。磁性体や誘電体でも状態方程式を考える場合もある。主に熱平衡における系の温度と他の状態量との関係を表す関係式を指すが、必ずしも温度との関係を表すとは限らない。温度依存性を考えない形の関係式は構成方程式と呼ばれることもある。.

新しい!!: ナビエ–ストークス方程式と状態方程式 (熱力学) · 続きを見る »

磁気流体力学

磁気流体力学または磁性流体力学(英語:magnetohydrodynamics)とは、電導性の流体を扱うように拡張された流体力学であって、電磁流体力学とも呼ばれ、またしばしばmagneto-hydro-dynamicsの頭文字をとってMHDと称せられる。.

新しい!!: ナビエ–ストークス方程式と磁気流体力学 · 続きを見る »

移流拡散方程式

移流拡散方程式とは、移流方程式と拡散方程式が組み合わされた、それらよりも一般的な流れを表す2階線型偏微分方程式である。物理量&phi;(t, x)が、速度c で流れ、かつ拡散係数D で拡散する場合の移流拡散方程式は次の式で表される:.

新しい!!: ナビエ–ストークス方程式と移流拡散方程式 · 続きを見る »

粘度

粘度(ねんど、Viskosität、viscosité、viscosity)は、物質のねばりの度合である。粘性率、粘性係数、または(動粘度と区別する際には) 絶対粘度とも呼ぶ。一般には流体が持つ性質とされるが、粘弾性などの性質を持つ固体でも用いられる。 量記号には&mu;または&eta;が用いられる。SI単位はPa&middot;s(パスカル秒)である。CGS単位系ではP(ポアズ)が用いられた。 動粘度(後述)の単位として、cm/s.

新しい!!: ナビエ–ストークス方程式と粘度 · 続きを見る »

粒子法

粒子法(りゅうしほう)とは、連続体に関する方程式を数値的に解くための離散化手法の一つで、計算対象物を粒子の集まりとして表すことからこのように呼ばれる。 主に流体解析,構造解析に用いられる手法で、代表的なものとしてDEM(Distinct Element Method)法, SPH(Smoothed Particle Hydrodynamics)法, MPS(Moving Particle Semi-implicit)法などがある。 流体解析においては、ラグランジュ法に属し、対流項を計算しないで済ませられるという特徴を持つ。 (有限体積法、有限要素法に代表されるオイラー法では対流項が最も煩雑で、かつ理解しにくい部分である。) その他の主なメリットとして、計算格子の作成を必要としない点が挙げられる。流体の挙動が計算格子に丸め込まれることがないため、さざ波や水しぶきなどの流体表面の細部の挙動も解析出来る。構造解析においては、大変形にも容易に対応できる。 その一方で、有限要素法、有限体積法に比べるとその歴史はまだ浅く、解析ソフトの数も少ない。また、乱流モデルなどの物理モデルの整備もまだ十分でないことから工学的な利用は現在のところ限定的である。 現実世界に極めて近い計算モデルで解析を行うため万能にも思われる粒子法であるが、従来の手法と比較した場合には幾つか欠点が存在する。従来から広く用いられてきた有限要素法では、注目したい解析領域内だけでメッシュを細かく切ることで、解析したい問題に合わせて計算量を削減する最適化ができる。しかし、粒子法では粒子の大きさを解析領域全体で一定にせざるを得ないため、計算精度を上げた場合には有限要素法と比較して計算効率が極めて悪くなる欠点がある。また、粒子法は未だに成熟した研究分野ではないため、粒子法そのものの安定性に関する研究課題も数多く残されている。 日本ではプロメテック社がGranuleworks(MPS法),Particleworks(DEM法)などの粒子法に基づく製品を開発して提供しており、産業用に広く用いられている。.

新しい!!: ナビエ–ストークス方程式と粒子法 · 続きを見る »

線型性

線型性(せんけいせい、英語: linearity)あるいは線型、線形、線状、リニア(せんけい、英語: linear、ラテン語: linearis)とは、直線そのもの、または直線のようにまっすぐな図形やそれに似た性質をもつ対象および、そのような性質を保つ変換などを指して用いられている術語である。対義語は非線型性(英語:Non-Linearity)である。 英語の数学用語のlinear にあてる日本語訳としては、線型が本来の表記であると指摘されることもあるが、他にも線形、線状などといった表記もしばしば用いられている。また一次という表記・表現もしばしば用いられている。というのはlinearは、(多変数の)斉一次函数を指していると考えて間違っていない場合も多いためである。.

新しい!!: ナビエ–ストークス方程式と線型性 · 続きを見る »

無次元量

無次元量(むじげんりょう、dimensionless quantity)とは、全ての次元指数がゼロの量である。慣習により無次元量と呼ばれるが無次元量は次元を有しており、指数法則により無次元量の次元は1である。 無次元数(むじげんすう、)、無名数(むめいすう、)とも呼ばれる。 無次元量の数値は単位の選択に依らないので、一般的な現象を特徴付けるパラメータとして数学、物理学、工学、経済など多くの分野で広く用いられる。このようなパラメータは現実には物質ごとに決まるなど必ずしも操作可能な量ではないが、理論や数値実験においては操作的な変数として取り扱うこともある。.

新しい!!: ナビエ–ストークス方程式と無次元量 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: ナビエ–ストークス方程式と物理学 · 続きを見る »

物質微分

物質微分(ぶっしつびぶん、material derivative)とは流れに乗って移動する流体粒子の物理量 (温度や運動量)の時間変化率のことで、連続体力学の概念の一つである。固定された場所での物理量の時間変化でなく、流れに乗って動く仮想的な「観測者」が観た物理量の時間変化を記述する。 物質微分はラグランジュ描像に基づく時間変化をオイラー描像に基づく時間変化で記述したものである。物体固有の時間変化を記述するものなので物質微分 \mathrm/\mathrmt は偏微分 \partial / \partial t と違いである吉澤徴『流体力学』東京大学出版、2001年9月6日初版発行、ISBN 4130626035。 名称としては他に、物質時間微分田村武『連続体力学入門』朝倉書店、2000年2月20日初版1刷発行、ISBN 4254201028、流れに乗って移動するときの微分日野幹雄『流体力学』朝倉書店、1992年12月10日初版1刷発行、ISBN 4254200668、実質微分中村育雄『流体解析ハンドブック』共立出版、1998年3月20日初版1刷発行、ISBN 4320081188、ラグランジュ微分巽友正 『新物理学シリーズ21 流体力学』 培風館、1982年 4月15日初版発行、ISBN 4-563-02421-Xなどとも呼ばれる。.

新しい!!: ナビエ–ストークス方程式と物質微分 · 続きを見る »

直交座標系

数学における直交座標系(ちょっこうざひょうけい、, )とは、互いに直交している座標軸を指定することによって定まる座標系のことである。平面上の直交座標系ではそれぞれの点に対して一意に定まる二つの実数の組によって点の位置が指定される。同様にして空間上の直交座標系では三つの実数の組によって座標が与えられる。 1637年に発表された『方法序説』において平面上の座標の概念を確立したルネ・デカルトの名を採ってデカルト座標系 (Cartesian coordinate system) とも呼ぶ。.

新しい!!: ナビエ–ストークス方程式と直交座標系 · 続きを見る »

直接数値シミュレーション

接数値シミュレーション(ちょくせつすうちシミュレーション、Direct Numerical Simulation、DNS)とは、流れ(層流や乱流)を数値的に解析するCFD手法の1つであり、以下の基礎方程式をそのまま(モデル化なしで)解き、流れに含まれる全ての大きさの渦をシミュレートすることである。.

新しい!!: ナビエ–ストークス方程式と直接数値シミュレーション · 続きを見る »

発散 (ベクトル解析)

ベクトル解析における発散(はっさん、divergence)は、各点においてベクトル場のの大きさを符号付きスカラーの形で測るベクトル作用素である。より技術的に言えば、発散が表すのは与えられた点の無限小近傍領域から出る流束の体積密度である。例えば、空気を熱したり冷ましたりするものとして考えると、各点において空気の移動速度を与えるベクトル場を例にとることができる。領域内で空気を熱すれば空気は全方向へ膨張していくから、速度場は領域の外側をさしていることになり、従って速度場の発散はこの領域で正の値をとり、この領域は流入(あるいは湧き出し、湧出、source)域であることが示される。空気を冷まして収縮させるなら、発散の値は負となり、この領域は流出(あるいは沈み込み、排出、sink)域と呼ばれる。.

新しい!!: ナビエ–ストークス方程式と発散 (ベクトル解析) · 続きを見る »

運動の第2法則

運動の第2法則(うんどうのだい2ほうそく、Newton's second law)は、ニュートン力学の基礎をなす三つの運動法則の一つ。第2法則は運動の第1法則が成り立つ座標系、すなわち慣性系における、物体の運動状態の時間変化と物体に作用する力の関係を示す法則である。ときに第2法則のみを指してニュートンの法則と呼ばれることもある。 運動の第2法則はアイザック・ニュートンによって発見され、1687年に出版した『自然哲学の数学的諸原理』において発表された。 運動の第2法則から、ニュートン力学における物体の運動方程式(ニュートンの方程式)が導かれる。ニュートン自身は運動方程式を明示的に用いてはおらず、ニュートンの方程式はレオンハルト・オイラーによって、1749年の (『天体の運動一般に関する研究』)で初めて公表された。.

新しい!!: ナビエ–ストークス方程式と運動の第2法則 · 続きを見る »

運動量保存の法則

運動量保存の法則(うんどうりょうほぞんのほうそく)とは、ある系に外部からの力が加わらないかぎり、その系の運動量の総和は不変であるという物理法則。運動量保存則ともいう。最初、デカルトが『哲学原理』の中で、質量と速さの積の総和を神から与えられた不変量として記述したが、ベクトルを用いて現在の形の運動量とその保存則を導いたのはホイヘンスである。 外部からの力が働かない問題の例としては、物体の衝突問題がある。二体の衝突問題は、エネルギー保存の法則と運動量保存の法則を考えることで解くことができる。完全弾性衝突のときのみ物体の運動エネルギーは保存される。.

新しい!!: ナビエ–ストークス方程式と運動量保存の法則 · 続きを見る »

非圧縮性流れ

非圧縮性流れ(ひあっしゅくせいながれ)とは流体力学において、流体粒子の内部で密度が一定の流体である。縮まない流体とも呼ばれる。連続体力学における非圧縮性の概念を流体に適用したものである。 言い換えると、非圧縮性とは流体の速度の発散が 0 になることである(この表現が等価である理由は後述)。 非圧縮性流れは、流体自体が非圧縮性であることを意味するものではない。圧縮性流体でも(適切な条件の下で)良い近似で非圧縮性流れとしてモデル化できる。非圧縮性流れは流体と同じ速度で移動する流体粒子の中で密度が一定であることを意味する。 非圧縮性流れに対して、密度が変化する流れを圧縮性流れという。厳密な意味での非圧縮性流れは自然界には存在しないが、一般的に流れのマッハ数(局所音速と流速との比)が小さい流れに対しては圧縮性の影響は無視できる。マッハ数が0.3を超えるか、または流体が非常に大きな圧力変化を受ける場合に、圧縮性の影響は考慮される。.

新しい!!: ナビエ–ストークス方程式と非圧縮性流れ · 続きを見る »

表面張力

表面張力(ひょうめんちょうりょく、)は、表面をできるだけ小さくしようとする性質のことで、界面張力の一種である。 界面とは、ある液体や固体の相が他の相と接している境界のことである。このうち、一方が液体や固体で、もう一方が気体の場合にその界面を表面という。.

新しい!!: ナビエ–ストークス方程式と表面張力 · 続きを見る »

重力

重力(じゅうりょく)とは、.

新しい!!: ナビエ–ストークス方程式と重力 · 続きを見る »

電磁相互作用

電磁相互作用(でんじそうごさよう)は、電場あるいは磁場から電荷が力を受ける相互作用のことをいい、基本相互作用の一つである。電磁気学によって記述される。場の理論においてラグランジアンに対してU(1)ゲージ対称性を付与することで現れるU(1)ゲージ場の成分が電磁気学におけるいわゆるスカラーポテンシャル及びベクトルポテンシャルと対応し、また自身についても対応する自由ラグランジアンを持っている。ラグランジュ形式で議論することで、物質に対応する変数でオイラーラグランジュ方程式を解くことで電磁場から物質に対しての影響を、逆に電磁場に対応する変数でオイラーラグランジュ方程式を解くことで物質側から電磁場に与える影響を導き出すことができ、それぞれ、通常の力学でのローレンツ力とマクスウェル方程式のうちのガウスの法則とアンペールマクスウェル方程式を導出することになる。.

新しい!!: ナビエ–ストークス方程式と電磁相互作用 · 続きを見る »

速度

速度(そくど、velocity)は、単位時間当たりの物体の位置の変化量である。.

新しい!!: ナビエ–ストークス方程式と速度 · 続きを見る »

速度ポテンシャル

速度ポテンシャル(そくどポテンシャル、Velocity potential)は、流体力学において、渦なし流れの解析に用いられる。速度ポテンシャルを持つ流れをポテンシャル流と呼ぶ。 速度ポテンシャル&Phi;は次式を満たすようなスカラー場である。 ただし、u は流体の速度であり、渦なし、つまり を満たす。これはベクトル解析における の性質を用いている(ナブラ#二階微分を参照)。 一般のポテンシャルと異なり、速度ポテンシャルの定義には負号がつかないことに注意。.

新しい!!: ナビエ–ストークス方程式と速度ポテンシャル · 続きを見る »

連続の方程式

連続の方程式(れんぞくのほうていしき、equation of continuity、連続方程式、連続の式、連続式などとも言う)は物理学で一般的に適用できる方程式で、「原因もなく物質が突然現れたり消えたりすることはない」という自然な考え方を表す。保存則と密接に関わっている。 狭義には流体力学における質量保存則 + \nabla \cdot (\rho \boldsymbol).

新しい!!: ナビエ–ストークス方程式と連続の方程式 · 続きを見る »

渦度

北半球における高気圧 (H) ・低気圧 (L) の回転方向 渦度(うずど、かど)は、流れの回転するありさまを表現する量である。渦度はベクトル量(さらに言えば擬ベクトル)であり、流れの速度ベクトルのなすベクトル場の回転である。 渦度ベクトル は流速ベクトル により、以下のように表される。 &.

新しい!!: ナビエ–ストークス方程式と渦度 · 続きを見る »

有限体積法

有限体積法(ゆうげんたいせきほう、finite volume method、FVM)とは、数値解析手法の一つである。領域を有限個のコントロールボリューム()に分割し、各ボリュームに対して積分形の物理量の保存方程式を適用するものである。 1960年代にロスアラモス国立研究所においてに基づく流体解析手法として開発され、現在では、多くの商用の流体解析コードに標準的な離散化解析手法として採用されている。.

新しい!!: ナビエ–ストークス方程式と有限体積法 · 続きを見る »

有限要素法

有限要素法(ゆうげんようそほう、Finite Element Method, FEM)は数値解析手法の一つ。解析的に解くことが難しい微分方程式の近似解を数値的に得る方法の一つである。方程式が定義された領域を小領域(要素)に分割し、各小領域における方程式を比較的単純で共通な補間関数で近似する。構造力学分野で発達し、他の分野でも広く使われている手法。その背景となる理論は、関数解析と結びついて、数学的に整然としている。.

新しい!!: ナビエ–ストークス方程式と有限要素法 · 続きを見る »

流体

流体(りゅうたい、fluid)とは静止状態においてせん断応力が発生しない連続体の総称である。大雑把に言えば固体でない連続体のことであり、物質の形態としては液体と気体およびプラズマが流体にあたる。.

新しい!!: ナビエ–ストークス方程式と流体 · 続きを見る »

流体力学

流体力学(りゅうたいりきがく、fluid dynamics / fluid mechanics)とは、流体の静止状態や運動状態での性質、また流体中での物体の運動を研究する、力学の一分野。.

新しい!!: ナビエ–ストークス方程式と流体力学 · 続きを見る »

浮力

浮力(ふりょく、)とは、水などの流体中にある物体に重力とは逆の方向に作用する力である。 浮力の原因はアルキメデスの原理によって説明される。物体は流体から圧力(静水圧)を受けている。このとき圧力は物体の上と下では異なり(富士山の頂上の気圧と麓の気圧のように)、下から受ける力の方が大きい。この物体が受ける上下の力の差が浮力である。すなわち、物体には上向きの力が作用する。.

新しい!!: ナビエ–ストークス方程式と浮力 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: ナビエ–ストークス方程式と数学 · 続きを見る »

数値解析

バビロニアの粘土板 YBC 7289 (紀元前1800-1600年頃) 2の平方根の近似値は60進法で4桁、10進法では約6桁に相当する。1 + 24/60 + 51/602 + 10/603.

新しい!!: ナビエ–ストークス方程式と数値解析 · 続きを見る »

数値流体力学

数値流体力学(すうちりゅうたいりきがく、computational fluid dynamics、略称:)とは、流体の運動に関する方程式(オイラー方程式、ナビエ-ストークス方程式、またはその派生式)をコンピュータで解くことによって流れを観察する数値解析・シミュレーション手法。計算流体力学とも。コンピュータの性能向上とともに飛躍的に発展し、航空機・自動車・鉄道車両・船舶等の流体中を移動する機械および建築物の設計をするにあたって風洞実験に並ぶ重要な存在となっている。.

新しい!!: ナビエ–ストークス方程式と数値流体力学 · 続きを見る »

慣性

慣性(かんせい、英語:inertia)とは、ある物体が外力を受けないとき、その物体の運動状態は慣性系に対して変わらないという性質を表す。惰性ともいう。 静止している物体に力が働かないとき、その物体は慣性系に対し静止を続ける。運動する物体に力が働かないとき、その物体は慣性系に対し運動状態を変えず、等速直線運動を続ける。これは慣性の法則(運動の第1法則)として知られている。 力が働いているときではニュートンの運動方程式より 慣性が大きければ、同じ力 \vec を加えても加速度 \vec は小さくなる。これは質量 \boldsymbol が大きいということである。この質量 \boldsymbol は、各物体の慣性の大小を表す量であり、慣性質量と呼ばれる。 物体の回転を考えるときにも、回転のしやすさの大小(慣性モーメント)として、広い意味での慣性を定義することが出来る。 アイザック・ニュートンは慣性を定式化することにより、鳥が何故、地球の表面から取り残されないのか、地球が何故止まらないで動き続けているのか、という地動説の疑問に答え、地動説の正しさを証明させた。.

新しい!!: ナビエ–ストークス方程式と慣性 · 続きを見る »

拡散数

拡散数(かくさんすう、diffusion number)とは、陽解法を用いた拡散方程式の数値解析に際して、その数値的安定性を議論する上で重要な無次元数のひとつ。拡散数d は次式で定義される。 ここで.

新しい!!: ナビエ–ストークス方程式と拡散数 · 続きを見る »

ここにリダイレクトされます:

NS方程式ナヴィエ-ストークス方程式ナヴィエ・ストークス方程式ナヴィエストークス方程式ナヴィエ=ストークス方程式ナビエ-ストークスの式ナビエ-ストークス方程式ナビエ・ストークス方程式ナビエ=ストークス方程式

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »