ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

ドハース・ファンアルフェン効果

索引 ドハース・ファンアルフェン効果

ドハース・ファンアルフェン効果(ドハース・ファンアルフェンこうか、de Haas–van Alphen effect、dHvA効果)は、金属の磁化率(帯磁率)が、(十分に低温では)磁場の逆数に比例して振動する現象。この現象は1930年にドハース(:en:Wander Johannes de Haas)とファンアルフェン(PM van Alphen)によって実験で発見された。同年、レフ・ランダウは、実験のことは知らずに、この現象を理論的に予測した。 dHvA効果による磁化率の振動成分の周期は、 \Delta(H^).

8 関係: レフ・ランダウディングルフェルミ面磁場磁化率重い電子系金属有効質量

レフ・ランダウ

レフ・ダヴィドヴィッチ・ランダウ(、1908年1月22日 - 1968年4月1日)はロシアの理論物理学者。絶対零度近くでのヘリウムの理論的研究によってノーベル物理学賞を授与された。エフゲニー・リフシッツとの共著である『理論物理学教程』は、多くの言語に訳され、世界的にも標準的な教科書としてよく知られている。.

新しい!!: ドハース・ファンアルフェン効果とレフ・ランダウ · 続きを見る »

ディングル

ディングル(Dingle、An Daingean (アン・ダンガン)/ Daingean Uí Chúis (ダンガン・ウイ・フーイシュ)、「オー・フーイシュ砦」の意)は、アイルランドのケリー州にある町。大西洋に突き出たディングル半島唯一の町で、トラリーの南西49km、キラーニーの北西71kmに位置する。 基幹産業は観光業と農漁業で、「ディングル・マート」という農家のための家畜マーケットがある。人口は1920人(2006年)。アイルランド語を公用語とするゲールタハトの域内。.

新しい!!: ドハース・ファンアルフェン効果とディングル · 続きを見る »

フェルミ面

フェルミ面(フェルミめん)とは、 で定義される波数空間上の曲面のことである。ここで、 はフェルミエネルギー、 は粒子の分散関係である。自由粒子など、分散関係が線形となる場合には球面となるので、特にフェルミ球(フェルミきゅう )と呼び、その半径をフェルミ波数と呼ぶ。 定義から分かるように、固体中の電子のバンド構造においてフェルミ面を持つのは金属(半金属も含む)のみで、バンドギャップ中にフェルミエネルギーが存在する半導体や絶縁体にはフェルミ面は存在しない。 三次元空間における自由電子のフェルミ面は球形である。比較的自由電子に近いs軌道が価電子となっているアルカリ金属などのフェルミ面には、球形に近いものがある。 フェルミ面の形はフェルミエネルギー近傍のバンド構造に依存し、遷移金属や複雑な金属間化合物などでは非常に複雑なフェルミ面となることがある。 実験的にはサイクロトロン共鳴実験、ドハース・ファンアルフェン効果を使った実験、電子-陽電子消滅実験やコンプトン散乱実験によって求まる運動量密度(運動量分布→電荷密度参照)などからフェルミ面に関する情報が得られる。また、角度分解光電子分光により直接フェルミ面を観測することも可能となっている。.

新しい!!: ドハース・ファンアルフェン効果とフェルミ面 · 続きを見る »

磁場

磁場(じば、Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。 この項では一般的な磁場の性質、及びHを扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。.

新しい!!: ドハース・ファンアルフェン効果と磁場 · 続きを見る »

磁化率

磁化率(じかりつ、英語:magnetic susceptibility)とは、磁気分極の起こりやすさを示す物性値である。帯磁率、磁気感受率などとも言う。.

新しい!!: ドハース・ファンアルフェン効果と磁化率 · 続きを見る »

重い電子系

重い電子系(おもいでんしけい、Heavy fermion)は、ランタノイドやアクチノイドの化合物において、金属的な電気伝導を示すにもかかわらず、電気伝導を担う電子の有効質量が、自由電子の質量の数百倍~千倍も「重く」なっていると考えられる一連の物質群のことである。 電子は周りの電子や磁場との相互作用により動きにくくなり、見かけ上の重さ(有効質量)が重くなる。すなわち有効質量の増大は電子間斥力の効果(電子相関)に由来するものであり、数百倍~千倍もの大きい有効質量は、ランタノイドイオンやアクチノイドイオンの持つ局在性の高いf電子間の強い斥力に起因するものと考えられている。このため、重い電子系は強相関電子系の重要な研究対象の一つとして、現在も盛んに研究されている。 有効質量が大きいこと自体も重要な研究対象であるが、それに加えて、重い電子系物質群の多様な物性が興味を惹いている。有効質量が大きいということは、電子については、遍歴性よりも局在性が強くなっていることを示している。電子の局在性が強まると、電子の持つスピンの自由度が顕れて来て、系は磁性を示すようになる。実際、重い電子系の中には、低温で磁気秩序を示すものがある。多くは反強磁性秩序であるが、強磁性秩序やその他の磁気秩序を示すものもある。重い電子系状態からこれらの磁気秩序状態への変化や、各々の状態の関係などが研究されている。また、電子間斥力が非常に強いにもかかわらず、クーパー対が形成されて超伝導を示す物質もあり、そのクーパー対の形成機構の解明も続けられている。重い電子系は高温超電導体に必要な特殊な磁場を作ることで知られている。他にも、低温で半導体的・絶縁体的な電気伝導を示す物質群もあり、重い電子系の中でも、特に、近藤半導体または近藤絶縁体、近藤半金属と呼ばれている。その例としてはCeRhSb, CeRhAs, CePtSn, CeNiSn, YbB12, SmB6, Ce3Bi4Pt3などがあげられる。.

新しい!!: ドハース・ファンアルフェン効果と重い電子系 · 続きを見る »

金属

リウム の結晶。 リチウム。原子番号が一番小さな金属 金属(きんぞく、metal)とは、展性、塑性(延性)に富み機械工作が可能な、電気および熱の良導体であり、金属光沢という特有の光沢を持つ物質の総称である。水銀を例外として常温・常圧状態では透明ではない固体となり、液化状態でも良導体性と光沢性は維持される。 単体で金属の性質を持つ元素を「金属元素」と呼び、金属内部の原子同士は金属結合という陽イオンが自由電子を媒介とする金属結晶状態にある。周期表において、ホウ素、ケイ素、ヒ素、テルル、アスタチン(これらは半金属と呼ばれる)を結ぶ斜めの線より左に位置する元素が金属元素に当たる。異なる金属同士の混合物である合金、ある種の非金属を含む相でも金属様性質を示すものは金属に含まれる。.

新しい!!: ドハース・ファンアルフェン効果と金属 · 続きを見る »

有効質量

有効質量(ゆうこうしつりょう、effective mass)とは、何らかの物理現象を、「古典力学における質量を含む物理法則(比較的簡単な現象の場合が多い)」のアナロジーで現象論的に理解しようとしたときに出てくる、質量相当のパラメータの総称である。結晶中の電子の物性を用いる上で用いられる「有効質量」を指すことがほとんどだが、結晶中の電子の物性とは異なる物理現象にもこの概念を持ち込むことがある。 「結晶中の電子の有効質量」以外の「有効質量」としては、例えば、原子間力顕微鏡のカンチレバーの機械的な振動(古典力学の現象)を、よりやさしい(古典力学の)現象である、フックの法則に置き換えて考えるときに、フックの法則における質量に相当するパラメーターを有効質量と呼ぶことがあるhttp://spin100.imr.tohoku.ac.jp/oomichiNOTE.pdf。 以下、本節では、「結晶中の電子の有効質量」について説明する。.

新しい!!: ドハース・ファンアルフェン効果と有効質量 · 続きを見る »

ここにリダイレクトされます:

ドハースファンアルフェン効果

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »