ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ディラック定数

索引 ディラック定数

換算プランク定数(かんさんプランクていすう、reduced Planck constant)またはまれにディラック定数(ディラックていすう、Dirac's constant) は、プランク定数 を で割った値を持つ定数である。その値は である(2014CODATA推奨値)。 は「エイチ・バー」と読む。.

37 関係: 半径大辞泉Ħ不確かさ (測定)不確定性原理三省堂二原子分子位置マックス・プランクポール・ディラックボストンプランク単位系プランク定数周波数アメリカ国立標準技術研究所エネルギースピン角運動量回転準位現象科学技術データ委員会運動量観測角周波数角運動量軌道角運動量量子力学量子数電子JIS X 0213TeXUnicode極座標系波数文字参照慣性モーメント時間

半径

球の半径 半径(はんけい、radius)は、円や球体など中心(あるいは中心軸)をもつ図形の、中心(中心軸)から周に直交するように引いた線分のこと。また、その線分の長さを指すこともあり、この長さを数学や物理学では小文字の r で表すことがある。 円や球の場合は、差し渡しの長さを意味する径の半分の長さを持つために、これを半径といい、対して区別のために径を直径と呼ぶ。一方で、半径は中心に関する対称性を持つ図形にしか定義できないという特徴を持つため、半径と径とは直接的な関係を持つわけではない。.

新しい!!: ディラック定数と半径 · 続きを見る »

大辞泉

『大辞泉』(だいじせん)は小学館が発行する中型国語辞典。.

新しい!!: ディラック定数と大辞泉 · 続きを見る »

Ħ

Ħ, ħはラテン文字のHにバーを付した文字である。マルタ語で無声咽頭摩擦音を表すのに使用する(アラビア文字のحに相当)。.

新しい!!: ディラック定数とĦ · 続きを見る »

不確かさ (測定)

不確かさ(ふたしかさ、)とは、計測値のばらつきの程度を数値で定量的に表した尺度である。不確かさは通常、0 以上の非負の有効数字で表現され、不確かさの絶対値が大きいほど、測定結果として予想されるばらつきの程度も大きい。測定に不確かさを添付する場合には、それぞれの測定量または測定器などに、その測定の不確かさが添付される。「不確かさ」のかわりに、「相対不確かさ」という、不確かさを測定した値で割った量が用いられる場合もある。すべての測定は、不確かさの対象となる。.

新しい!!: ディラック定数と不確かさ (測定) · 続きを見る »

不確定性原理

不確定性原理(ふかくていせいげんり、Unschärferelation Uncertainty principle)は、量子力学に従う系の物理量\hatを観測したときの不確定性と、同じ系で別の物理量\hatを観測したときの不確定性が適切な条件下では同時に0になる事はないとする一連の定理の総称である。特に重要なのは\hat、\hatがそれぞれ位置と運動量のときであり、狭義にはこの場合のものを不確定性原理という。 このような限界が存在するはずだという元々の発見的議論がハイゼンベルクによって与えられたため、これはハイゼンベルクの原理という名前が付けられることもある。しかし後述するようにハイゼンベルグ自身による不確定性原理の物理的説明は、今日の量子力学の知識からは正しいものではない。 今日の量子力学において、不確定性原理でいう観測は日常語のそれとは意味が異なるテクニカル・タームであり、観測機のようなマクロな古典的物体とミクロな量子物体との間の任意の相互作用を意味する。したがって例えば、実験者が観測機に表示された観測値を実際に見たかどうかといった事とは無関係に定義される。また不確定性とは、物理量を観測した時に得られる観測値の標準偏差を表す。 不確定性原理が顕在化する現象の例としては、原子(格子)の零点振動(このためヘリウムは、常圧下では絶対零度まで冷却しても固化しない)、その他量子的なゆらぎ(例:遍歴電子系におけるスピン揺らぎ)などが挙げられる。.

新しい!!: ディラック定数と不確定性原理 · 続きを見る »

三省堂

株式会社三省堂(さんせいどう)は、日本の出版社である。辞典・事典・六法・教科書などの出版で知られる。 本社はJR水道橋駅と神田川に挟まれたエリアにある。この場所は、かつて自社印刷工場の倉庫として使われていた場所であった。.

新しい!!: ディラック定数と三省堂 · 続きを見る »

二原子分子

二原子分子(にげんしぶんし、diatomic molecule)は、2個の原子で作られた分子である。接頭辞の"di-"はギリシア語で2を意味する。  .

新しい!!: ディラック定数と二原子分子 · 続きを見る »

位置

位置(いち、position)とは、物体が空間の中のどこにあるかを表す量である。 原点 O から物体の位置 P へのベクトル(位置ベクトル (position vector))で表される。通常は x, r, s で表され、O から P までの各軸に沿った直線距離に対応する。 「位置ベクトル」という用語は、主に微分幾何学、力学、時にはベクトル解析の分野で使用される。 2次元または3次元空間で使用されることが多いが、任意の次元数のユークリッド空間に容易に一般化することができるKeller, F. J, Gettys, W. E. et al.

新しい!!: ディラック定数と位置 · 続きを見る »

マックス・プランク

マックス・カール・エルンスト・ルートヴィヒ・プランク(Max Karl Ernst Ludwig Planck, 1858年4月23日 - 1947年10月4日)は、ドイツの物理学者で、量子論の創始者の一人である。「量子論の父」とも呼ばれている。科学の方法論に関して、エルンスト・マッハらの実証主義に対し、実在論的立場から激しい論争を繰り広げた。1918年にノーベル物理学賞を受賞。.

新しい!!: ディラック定数とマックス・プランク · 続きを見る »

ポール・ディラック

ポール・エイドリアン・モーリス・ディラック(Paul Adrien Maurice Dirac, 1902年8月8日 - 1984年10月20日)はイギリスのブリストル生まれの理論物理学者。量子力学及び量子電磁気学の基礎づけについて多くの貢献をした。1933年にエルヴィン・シュレーディンガーと共にノーベル物理学賞を受賞している。 彼はケンブリッジ大学のルーカス教授職を務め、最後の14年間をフロリダ州立大学の教授として過ごした。.

新しい!!: ディラック定数とポール・ディラック · 続きを見る »

ボストン

ボストン(Boston、)は、アメリカ合衆国マサチューセッツ州北東部サフォーク郡にある世界都市。同州最大の都市かつ州都であり、同郡の郡庁所在地でもある。アメリカで最も歴史の古い街の一つであり、「ニューイングランドの首都」と言われることもある。2017年の調査によると、世界9位の金融センターであり、かつてのボストン金融街の名を冠するステート・ストリート、それからミューチュアル・ファンド大手のフィデリティ・インベストメンツの本社が立地する。.

新しい!!: ディラック定数とボストン · 続きを見る »

プランク単位系

プランク単位系(プランクたんいけい)は、マックス・プランクによって提唱された自然単位系である。 プランク単位系では以下の物理定数の値を 1 として定義している。 プランク単位系は物理学者によって「神の単位」と半ばユーモラスに言及される。自然単位系は「人間中心的な自由裁量が除かれた単位系」であり、ごく一部の物理学者は「地球外の知的生命体も同じ単位系を使用しているに違いない」と信じている。 プランク単位系は、物理学者が問題を再構成するのに役立つ。.

新しい!!: ディラック定数とプランク単位系 · 続きを見る »

プランク定数

プランク定数(プランクていすう、プランクじょうすう、)は、光子のもつエネルギーと振動数の比例関係をあらわす比例定数のことで、量子論を特徴付ける物理定数である。量子力学の創始者の一人であるマックス・プランクにちなんで命名された。作用の次元を持ち、作用量子とも呼ばれている。SIにおける単位はジュール秒(記号: J s)である。.

新しい!!: ディラック定数とプランク定数 · 続きを見る »

周波数

周波数(しゅうはすう 英:frequency)とは、工学、特に電気工学・電波工学や音響工学などにおいて、電気振動(電磁波や振動電流)などの現象が、単位時間(ヘルツの場合は1秒)当たりに繰り返される回数のことである。.

新しい!!: ディラック定数と周波数 · 続きを見る »

アメリカ国立標準技術研究所

アメリカ国立標準技術研究所(アメリカこくりつひょうじゅんぎじゅつけんきゅうじょ、National Institute of Standards and Technology, NIST)は、アメリカ合衆国の国立の計量標準研究所であり、アメリカ合衆国商務省配下の技術部門であり非監督(non-regulatory )機関である。1901年から1988年までは国立標準局 (National Bureau of Standards, NBS) と称していた。その公式任務は次の通り。 2007会計年度(2006年10月1日-2007年9月30日)の予算は約8億4330万ドルだった。2009年の予算は9億9200万ドルだが、アメリカ復興・再投資法の一部として6億1000万ドルを別に受け取っている。2013年現在、NISTには約3000人の科学者、工学者、技術者がいる(他にサポートスタッフと運営部門)。また、国内企業や海外から約2700人の科学者、工学者を受け入れている。さらに国内約400ヶ所の提携機関で1300人の製造技術の専門家やスタッフが関わっている。NISTの出版している Handbook 44 は「計測機器についての仕様、許容誤差、他の技術的要件」を提供している。.

新しい!!: ディラック定数とアメリカ国立標準技術研究所 · 続きを見る »

エネルギー

ネルギー(、)とは、.

新しい!!: ディラック定数とエネルギー · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

新しい!!: ディラック定数とスピン角運動量 · 続きを見る »

回転準位

回転準位(かいてんじゅんい、rotational state)は量子力学において、分子の重心の移動を伴わない回転運動を表す量子状態である。回転準位間の遷移を回転遷移と呼び、多くの場合、気相におけるマイクロ波(特に、テラヘルツ波、サブミリ波、ミリ波)分光法を用いて観測される。.

新しい!!: ディラック定数と回転準位 · 続きを見る »

現象

象(げんしょう φαινόμενoν- phainomenon, pl.

新しい!!: ディラック定数と現象 · 続きを見る »

科学技術データ委員会

科学技術データ委員会(かがくぎじゅつデータいいんかい、CODATA; Committee on Data for Science and Technology)は、国際科学会議(ICSU、旧名 国際学術連合)によって1966年に設立された学際的な科学委員会である。CODATAは、科学と技術に関するあらゆるデータについて、その質、信頼性、管理、検索性の向上を行っている。正式名称の科学技術データ委員会 よりは、CODATAと呼ばれることの方が多い。 CODATAは2年ごとにCODATA国際会議を開催している。.

新しい!!: ディラック定数と科学技術データ委員会 · 続きを見る »

運動量

運動量(うんどうりょう、)とは、初等的には物体の運動の状態を表す物理量で、質量と速度の積として定義される。この意味の運動量は後述する一般化された運動量と区別して、運動学的運動量(あるいは動的運動量、kinetic momentum, dynamical momentum)と呼ばれる。また、角運動量 という運動量とは異なる量と対比する上で、線型運動量 などと呼ばれることもある。 日常生活において、物体の持つ運動量は、動いている物体の止めにくさとして体感される。つまり、重くて速い物体ほど運動量が大きく、静止させるのに大きな力積が必要になる。 アイザック・ニュートンは運動量の時間的変化と力の関係を運動の第2法則として提示した。 解析力学では、上述の定義から離れ、運動量は一般化座標とオイラー=ラグランジュ方程式を通じて与えられる。この運動量は一般化座標系における一般化速度の対応物として、一般化運動量 と呼ばれる。 特にハミルトン形式の解析力学においては、正準方程式を通じて与えられる正準変数の一方を座標と呼び他方を運動量と呼ぶ。この意味の運動量は、他と区別して、正準運動量 と呼ばれる。また、正準運動量は、正準方程式において座標の対となるという意味で、共役運動量 と呼ばれる。運動量は、ハミルトン形式の力学では、速度よりも基本的な量であり、ハミルトン形式で記述される通常の量子力学においても重要な役割を果たす。 共役運動量と通常の運動学的運動量の違いが際立つ例として、磁場中を運動する電子の運動の例が挙げられる(#解析力学における運動量も参照)。電磁場中を運動する電子に対してはローレンツ力が働くが、このローレンツ力に対応する一般化されたポテンシャルエネルギーには電子の速度の項があるために、共役運動量はラグランジアンのポテンシャル項に依存した形になる。このとき共役運動量と運動学的運動量は一致しない。また、電磁場中の電子の運動を記述する古典的ハミルトニアンでは、共役運動量の部分がすべて共役運動量からベクトルポテンシャルの寄与を引いたものに置き換わる。.

新しい!!: ディラック定数と運動量 · 続きを見る »

観測

観測(かんそく)とは、.

新しい!!: ディラック定数と観測 · 続きを見る »

角(つの)とは、動物の主に頭部にある堅く突き出た構造のこと。また、それに似た形状のものを指して角と呼ぶこともある。.

新しい!!: ディラック定数と角 · 続きを見る »

角周波数

角周波数(かくしゅうはすう、角振動数、円振動数とも)は物理学(特に力学や電気工学)において、回転速度を表すスカラー量。角周波数は、ベクトル量である角速度の大きさにあたる(\omega.

新しい!!: ディラック定数と角周波数 · 続きを見る »

角運動量

角運動量(かくうんどうりょう、)とは、運動量のモーメントを表す力学の概念である。.

新しい!!: ディラック定数と角運動量 · 続きを見る »

軌道角運動量

軌道角運動量(きどうかくうんどうりょう、)とは、特に量子力学において、位置とそれに共役な運動量の積で表される角運動量のことである。 例えば原子の中で電子は、原子核が周囲に作る軌道を運動する。電子の全角運動量のうち、電子がその性質として持つスピン角運動量を除く部分が軌道角運動量である。.

新しい!!: ディラック定数と軌道角運動量 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: ディラック定数と量子力学 · 続きを見る »

量子数

量子力学において量子数 (りょうしすう、quantum number) とは、量子状態を区別するための数のこと。 量子数はただ1組とは限らず、原理的には多数存在しうる。状態を区別できるのであれば量子数はどのように選んでも良い。しかし系の物理量がとる値自身、またはそれを区別する数を量子数として採用するしか方法は無い。例えばN粒子系では、各粒子の位置\bold_1, \cdots, \bold_Nを量子数に選んでも良いし、運動量\bold_1, \cdots, \bold_Nを選ぶこともできる。このときは量子数は全部で3N個となる。また一次元調和振動子では、位置や運動量を選ぶこともできるが、エネルギー固有値E_nの番号nを選ぶこともできる。位置や運動量を量子数として選んだ場合は量子数は連続変数となるが、エネルギー固有値の番号を選んだ場合は量子数は離散値になる。.

新しい!!: ディラック定数と量子数 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: ディラック定数と電子 · 続きを見る »

JIS X 0213

JIS X 0213(ジス X 0213)はJIS X 0208:1997を拡張した、日本語用の符号化文字集合を規定する日本工業規格 (JIS) である。規格名称は「7ビット及び8ビットの2バイト情報交換用符号化拡張漢字集合」である。 2000年に制定、2004年、2012年に改正された。2000年に制定されたJIS X 0213:2000は通称「JIS2000」と呼ばれている。2004年に改正されたJIS X 0213:2004は通称「JIS2004」と呼ばれている。 JIS X 0208を拡張した規格で、JIS X 0208が規定する6879字の図形文字の集合に対して、日本語の文字コードで運用する必要性の高い4354字が追加され、計1万1233字の図形文字を規定する。JIS X 0208を拡張する点においてJIS X 0212:1990と同目的であるが、JIS X 0212とJIS X 0213との間に互換性はない。JIS X 0212がJIS X 0208にない文字を集めた文字集合であるのに対し、JIS X 0213はJIS X 0208を包含し更に第三・第四水準漢字などを加えた上位集合である。.

新しい!!: ディラック定数とJIS X 0213 · 続きを見る »

TeX

(TeX; テック、テフ)はアメリカ合衆国の数学者・計算機科学者であるドナルド・クヌース (Donald E. Knuth) により開発されている組版処理システムである。.

新しい!!: ディラック定数とTeX · 続きを見る »

Unicode

200px Unicode(ユニコード)は、符号化文字集合や文字符号化方式などを定めた、文字コードの業界規格である。文字集合(文字セット)が単一の大規模文字セットであること(「Uni」という名はそれに由来する)などが特徴である。 1980年代に、Starワークステーションの日本語化 (J-Star) などを行ったゼロックス社が提唱し、マイクロソフト、アップル、IBM、サン・マイクロシステムズ、ヒューレット・パッカード、ジャストシステムなどが参加するユニコードコンソーシアムにより作られた。1993年に、国際標準との一致が図られ、DIS 10646の当初案から大幅に変更されて、Unicodeと概ね相違点のいくつかはDIS 10646に由来する互換のISO/IEC 10646が制定された。.

新しい!!: ディラック定数とUnicode · 続きを見る »

極座標系

極座標系(きょくざひょうけい、polar coordinates system)とは、n 次元ユークリッド空間 R 上で定義され、1 個の動径 r と n − 1 個の偏角 θ, …, θ からなる座標系のことである。点 S(0, 0, x, …,x) を除く直交座標は、局所的に一意的な極座標に座標変換できるが、S においてはヤコビアン が 0 となってしまうから、一意的な極座標表現は不可能である。それは、S に於ける偏角が定義できないことからも明らかである。.

新しい!!: ディラック定数と極座標系 · 続きを見る »

波数

波数(はすう、wavenumber, wave-number)とは、波の個数のことで、物理化学および分光学の分野では が、波動力学では が記号として用いられる。 国際単位系における単位は毎メートルであるが、電磁波の波数の場合はCGS単位系の毎センチメートルを使う場合があり、カイザーという固有名称もある。.

新しい!!: ディラック定数と波数 · 続きを見る »

文字参照

文字参照(もじさんしょう、character reference)とはHTMLなどのSGML文書においては、直接記述できない文字や記号(マークアップで使われる、半角の不等号「<」や「>」など)を表記する際に用いられる方法である。SGML構成素のひとつとして定義されており、文書文字集合中の文字を参照する為の手段を提供する。HTMLにおける文字参照には、表記方法により数値文字参照と文字実体参照の二種が存在する。XMLにおいては、HTMLにおける「数値文字参照」を「文字参照」と呼ぶ。なおHTMLにおける「文字実体参照」は、XMLでは実体参照と呼び区別する。.

新しい!!: ディラック定数と文字参照 · 続きを見る »

慣性モーメント

慣性モーメント(かんせいモーメント、moment of inertia)あるいは慣性能率(かんせいのうりつ)、イナーシャ とは、物体の角運動量 と角速度 との間の関係を示す量である。.

新しい!!: ディラック定数と慣性モーメント · 続きを見る »

時間

人類にとって、もともとは太陽や月の動きが時間そのものであった。 アイ・ハヌム(紀元前4世紀~紀元前1世紀の古代都市)で使われていた日時計。人々は日時計の時間で生きていた。 砂時計で砂の流れを利用して時間を計ることも行われるようになった。また砂時計は、現在というものが未来と過去の間にあることを象徴している。くびれた部分(現在)を見つめる。すると時間というのは上(未来)から流れてきて下(過去)へと流れてゆく流れ、と感じられることになる。 時間(じかん)は、出来事や変化を認識するための基礎的な概念である。芸術、哲学、自然科学、心理学などの重要なテーマとなっている。それぞれの分野で異なった定義がなされる。.

新しい!!: ディラック定数と時間 · 続きを見る »

ここにリダイレクトされます:

換算プランク定数

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »