ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

チャンパーノウン定数

索引 チャンパーノウン定数

チャンパーノウン定数(チャンパーノウンていすう、Champernowne constant)は、数学定数のひとつで、0 と小数点のあとに自然数を 1 から小さい順に並べた十進小数表示をもつ実数 である。名前の由来の は、この数が十進正規数であることを示した経済学者である。.

22 関係: 実数小数点乱数列乗法リウヴィル数プログラミングコープランド–エルデシュ定数冪乗素数経済学者無理数階乗記数法超越数近似値自然数連分数正規数擬似乱数数学定数01

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: チャンパーノウン定数と実数 · 続きを見る »

小数点

小数点(しょうすうてん、:en:Decimal separatorまたはdecimal marker)とは、実数を数字列で表記したときの整数部と小数部との境を表す記号であり、アラビア数字の場合、「ピリオド」(点:dot)または「コンマ」(comma)が用いられる。現代の日本では、ピリオドを用いることがほとんどであり、コンマを用いることはほぼ皆無である。.

新しい!!: チャンパーノウン定数と小数点 · 続きを見る »

乱数列

乱数列(らんすうれつ)とはランダムな数列のこと。 数学的に述べれば、今得られている数列 x1, x2,..., xn から次の数列の値 xn+1 が予測できない数列。乱数列の各要素を乱数という。.

新しい!!: チャンパーノウン定数と乱数列 · 続きを見る »

乗法

算術における乗法 (じょうほう、multiplication) は、算術の四則と呼ばれるものの一つで、整数では、一方の数 (被乗数、ひじょうすう、multiplicand) に対して他方の数 (乗数、じょうすう、multiplier) の回数だけ繰り返し和をとる(これを掛けるまたは乗じるという。)ことにより定義できる演算である。掛け算(かけざん)、乗算(じょうざん)とも呼ばれる。代数学においては、変数の前の乗数(例えば 3y の 3)は係数(けいすう、coefficient)と呼ばれる。 逆の演算として除法をもつ。乗法の結果を積 (せき、product) と呼ぶ。 乗法は、有理数、実数、複素数に対しても拡張定義される。また、抽象代数学においては、一般に可換とは限らない二項演算に対して、それを乗法、積などと呼称する(演算が可換である場合はしばしば加法、和などと呼ぶ)。.

新しい!!: チャンパーノウン定数と乗法 · 続きを見る »

リウヴィル数

リウヴィル数(リウヴィルすう、Liouville number)とは、以下の定義を満たす実数 のことである:任意の正整数 に対して、 を満たす有理数 が少なくとも一つ存在する。 例えば、 はリウヴィル数である。この数は、超越数であることが証明された初めての数である(ジョゼフ・リウヴィル、1844年)。特にこの数の場合、1が小数点以下、自然数の階乗の桁数に出現する(1!.

新しい!!: チャンパーノウン定数とリウヴィル数 · 続きを見る »

プログラミング

プログラミン.

新しい!!: チャンパーノウン定数とプログラミング · 続きを見る »

コープランド–エルデシュ定数

ープランド–エルデシュ定数(コープランド–エルデシュていすう、英:Copeland–Erdős constant)とは、数学定数のひとつで 0.235711131719232931…、すなわち一の位が 0 で小数第1位からは素数が小さい方から順に現れる実数である。コープランドとエルデシュにちなんで命名された。.

新しい!!: チャンパーノウン定数とコープランド–エルデシュ定数 · 続きを見る »

冪乗

冪演算(べきえんざん、英: 独: 仏: Exponentiation)は、底 (base) および冪指数 (exponent) と呼ばれる二つの数に対して定まる数学的算法である。通常は、冪指数を底の右肩につく上付き文字によって示す。自然数 を冪指数とする冪演算は累乗(るいじょう、repeated multiplication) に一致する。 具体的に、 および冪指数 を持つ冪 (power) は、 が自然数(正整数)のとき、底の累乗 で与えられる。このとき は の -乗とか、-次の -冪などと呼ばれる。 よく用いられる冪指数に対しては、固有の名前が与えられているものがある。例えば冪指数 に対して二次の冪(二乗) は の平方 (square of) あるいは -自乗 (-squared) と呼ばれ、冪指数 に対する三次の冪 は の立方 (cube of, -cubed) と呼ばれる。また冪指数 に対して冪 は であり の逆数(あるいは乗法逆元)と呼ばれる。一般に負の整数 に対して底 が零でないとき、冪 はふつう なる性質を保つように と定義される。 冪演算は任意の実数あるいは複素数を冪指数とするように定義を拡張することができる。底および冪指数が実数であるような冪において、底を固定して冪指数を変数と見なせば指数函数が、冪指数を固定して底を変数と見れば冪函数がそれぞれ生じる。整数乗冪に限れば、行列などを含めた非常に多種多様な代数的対象に対してもそれを底とする冪を定義することができるが、冪指数まで同種の対象に拡張するならばその上で定義された自然指数函数と自然対数函数を持つ完備ノルム環(例えば実数全体 や複素数全体 などはそう)を想定するのが自然である。.

新しい!!: チャンパーノウン定数と冪乗 · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

新しい!!: チャンパーノウン定数と素数 · 続きを見る »

経済学者

経済学者(けいざいがくしゃ、)とは、経済の研究をしたり、その結果得られた理論やその体系(経済学)を社会に提言・実践したりする経済の専門家のこと。エコノミストともいう。.

新しい!!: チャンパーノウン定数と経済学者 · 続きを見る »

無理数

無理数(むりすう、 irrational number)とは、有理数ではない実数、つまり分子・分母ともに整数である分数(比.

新しい!!: チャンパーノウン定数と無理数 · 続きを見る »

階乗

数学において非負整数 の階乗(かいじょう、factorial) は、1 から までのすべての整数の積である。例えば、 である。空積の規約のもと と定義する。 階乗は数学の様々な場面に出現するが、特に組合せ論、代数学、解析学などが著しい。階乗の最も基本的な出自は 個の相異なる対象を一列に並べる方法(対象の置換)の総数が 通りであるという事実である。この事実は少なくとも12世紀にはインドの学者によって知られていた。は1677年にへの応用として階乗を記述した。再帰的な手法による記述の後、Stedman は(独自の言葉を用いて)階乗に関しての記述を与えている: 感嘆符(!)を用いた、この "" という表記は1808年にによって発明された。 階乗の定義は、最も重要な性質を残したまま、非整数を引数とする函数に拡張することができる。そうすれば解析学における著しい手法などの進んだ数学を利用できるようになる。.

新しい!!: チャンパーノウン定数と階乗 · 続きを見る »

記数法

記数法(きすうほう)は、適当な文字や記号と一定の規則を用いて数を表現する方法のこと。.

新しい!!: チャンパーノウン定数と記数法 · 続きを見る »

超越数

超越数(ちょうえつすう、transcendental number)とは、代数的数でない数、すなわちどんな有理係数の代数方程式 のにもならないような複素数のことである。有理数は一次方程式の解であるから、超越的な実数はすべて無理数になるが、無理数 2 は の解であるから、逆は成り立たない。超越数論は、超越数について研究する数学の分野で、与えられた数の超越性の判定などが主な問題である。 よく知られた超越数にネイピア数(自然対数の底)や円周率がある。ただし超越性が示されている実数のクラスはほんの僅かであり、与えられた数が超越数であるかどうかを調べるのは難しい問題だとされている。例えば、ネイピア数と円周率はともに超越数であるにもかかわらず、それをただ足しただけの すら超越数かどうか分かっていない。 代数学の標準的な記号 \mathbb で有理数係数多項式全体を表し、代数的数全体の集合を、代数的数 algebraic number の頭文字を使って と書けば、超越数全体の集合は となる。 なお、本稿では を自然対数とする。.

新しい!!: チャンパーノウン定数と超越数 · 続きを見る »

近似値

近似値(きんじち)とは、必要とされる誤差の範囲内で、ある数を表していると思って構わない数値のこと。あるいはある数の情報を一部削って得られる値、すなわちある数値に対して端数処理を施した値(数値を「丸め」たもの)である。.

新しい!!: チャンパーノウン定数と近似値 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: チャンパーノウン定数と自然数 · 続きを見る »

連分数

連分数(れんぶんすう、)とは、分母に更に分数が含まれているような分数のことを指す。分子が全て 1 である場合には特に単純連分数または正則連分数()ということがある。単に連分数といった場合、正則連分数を指す場合が多い。具体的には次のような形である。 ここで a は整数、それ以外の a は正の整数である。正則連分数は、最大公約数を求めるユークリッドの互除法から自然に生じるものであり、古来からペル方程式の解法にも利用された。 連分数を式で表す際には次のような書き方もある。 または また、極限の概念により、分数を無限に連ねたものも考えられる。 二次無理数(整数係数二次方程式の根である無理数)の正則連分数展開は必ず循環することが知られている。逆に、正則連分数展開が循環する数は二次無理数である。.

新しい!!: チャンパーノウン定数と連分数 · 続きを見る »

正規数

数学における正規数(せいきすう、normal number)とは、無限小数表示において数字が一様に分布しており、数字の列が現れる頻度に偏りがないという性質を持つ実数である。より正確な定義については「定義」の節を参照のこと。 ''r'' 進法での表示についてこの性質を持つ数を r 進正規数という。単に正規数と述べた場合は、2 以上の任意の整数 r に対して r 進正規数であることを意味する。 一般論として「ほとんど全ての」実数が正規数であることが知られているが、その証明は構成的でないため、正規数であることが判明している具体的な数は非常に限られている。例えば、2の平方根、円周率、ネイピア数はそれぞれ正規数だと信じられているが、その通りか否かは未だ謎である。.

新しい!!: チャンパーノウン定数と正規数 · 続きを見る »

擬似乱数

擬似乱数(ぎじらんすう、pseudorandom numbers)は、乱数列のように見えるが、実際には確定的な計算によって求めている擬似乱数列による乱数。擬似乱数列を生成する機器を擬似乱数列生成器、生成アルゴリズムを擬似乱数列生成法と呼ぶ。 真の乱数列は本来、規則性も再現性もないものであるため、本来は確定的な計算によって求めることはできない(例:サイコロを振る時、今までに出た目から次に出る目を予測するのは不可能)。一方、擬似乱数列は確定的な計算によって作るので、その数列は確定的であるうえ、生成法と内部状態が既知であれば、予測可能でもある。 ある擬似乱数列を、真の乱数列とみなして良いかを確実に決定することはできない。シミュレーション等の一般的な用途には、対象とする乱数列の統計的な性質が、使用対象とする目的に合致しているかどうかを判断する。これを検定と言い、各種の方法が提案されている。 しかし、特に暗号に使用する擬似乱数列については注意が必要であり、シミュレーション等には十分な擬似乱数列生成法であっても、暗号にそのまま使用できるとは限らない。暗号で使用する擬似乱数列については暗号論的擬似乱数の節および暗号論的擬似乱数生成器の記事を参照。.

新しい!!: チャンパーノウン定数と擬似乱数 · 続きを見る »

数学定数

数学定数(すうがくていすう)とは、なんらかの"面白い"性質を持った定数である。 数学定数は、ふつうは実数体か複素数体の元である。数学定数と呼ばれうるものは、一つの変項を持ち、ZFC 集合論により証明可能な論理式により、それを満足するただ一つの数として決定可能 (definable) であり、ほとんどの場合はその値が計算可能 (computable) である。 変数を斜体で表すのに対し、定数であることを明示するために、立体を使うことがある。.

新しい!!: チャンパーノウン定数と数学定数 · 続きを見る »

0

0 |- | Divisors || all numbers |- | Roman numeral || N/A |- | Arabic || style.

新しい!!: チャンパーノウン定数と0 · 続きを見る »

1

一」の筆順 1(一、いち、ひと、ひとつ)は、最小の正の整数である。0 を自然数に含めない流儀では、最小の自然数とも言える。整数の通常の順序において、0 の次で 2 の前の整数である。1 はまた、実数を位取り記数法で記述するための数字の一つでもある。 「無」を意味する 0 に対して、1 は有・存在を示す最原初的な記号なので、物事を測る基準単位、つまり数や順序を数える際の初めである。英語の序数詞では、1st、first となる。ラテン語では unus(ウーヌス)で、接頭辞 uni- はこれに由来する。.

新しい!!: チャンパーノウン定数と1 · 続きを見る »

ここにリダイレクトされます:

チャンパノウン数

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »