ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

セメンタイト

索引 セメンタイト

thumb セメンタイト(cementite)とは、鉄カーバイド(Fe3C 鉄炭化物)の組織である。アメリカの冶金学者ヘンリー・マリオン・ハウ(Henry Marion Howe)により命名された。現在ではあまり使用されないが、日本の冶金学者本多光太郎による脆面体という漢字の当て字がある。 非常に硬く(ビッカース硬度は約1340HV)、脆い組織で腐食しにくい。金属と非金属の化合物であり、セラミックスの一種である。融解した銑鉄を急冷すると、主成分がセメンタイトである白銑鉄となる。 結晶構造は斜方晶であり、鉄に囲まれた中央部分にCが位置する。 Fe-C系2元合金において、FeとCが結合できる範囲は、セメンタイトの炭素量の6.7までである。それ以上は炭素がグラファイトとして分離する。.

23 関係: 当て字マルテンサイトトルースタイトパーライトビッカース硬さフェライト相ベイナイトオーステナイトカーバイドグラファイトセラミックスソルバイト炭素直方晶系銑鉄非金属元素金属金属工学腐食漢字本多光太郎

当て字

宇田川榕菴が著した「舎密開宗」の化学実験図。ガスなどの外来語には、当て字を使って漢字表記をした上で振り仮名をつけている。 当て字(あてじ、宛字、充て字)とは、字の本来の用法を無視して、当座の用のために異なる語の表記に転用した漢字などの文字。字を当てるのではなく、代わりとなる字を充てるので、「充て字」と表記されることもある。.

新しい!!: セメンタイトと当て字 · 続きを見る »

マルテンサイト

マルテンサイト(martensite)は、Fe-C系合金(鋼や鋳鉄)を安定なオーステナイトから急冷する事によって得られる組織である。体心正方格子の鉄の結晶中に炭素が侵入した固溶体で、鉄鋼材料の組織の中で最も硬く脆い組織である。 1891年にドイツの冶金学者(Adolf Martens)により発見され、マルテンサイトという名称も、彼の名前に由来している。現在ではあまり使用されないが、組織形状が麻の葉に似ていることから、日本の冶金学者本多光太郎による麻留田(マルテン)という漢字の当て字がある。.

新しい!!: セメンタイトとマルテンサイト · 続きを見る »

トルースタイト

トルースタイト(troostite)とは、鋼の組織の一種であり、マルテンサイトを約400℃程度で焼戻しすることにより得られる、極微細なセメンタイトとフェライトの混合組織である。名称は発見したフランスのトルース(L.J.Troost)に由来する。焼戻しトルースタイト、二次トルースタイトとも呼ばれる。現在ではあまり使用されないが、マルテンサイトの地からセメンタイトの粒が吐き出されたような組織なので、日本の冶金学者本多光太郎による吐粒洲(トルース)という漢字の当て字がある。 以前は、焼入れの冷却時に約500℃で停止させてA1変態させた後に再冷却させて得られる組織が、一次トルースタイト、焼入れトルースタイト、結節状トルースタイトなどと呼ばれていた。現在では、このような組織は微細パーライトと呼ばれる。 フェライト中のセメンタイトは、光学顕微鏡では判別できないレベルの大きさの微細セメンタイトとなっている。ソルバイトよりもセメンタイトが微細なのが特徴である。 機械的性質については、硬さはマルテンサイトに次いで高く、ベイナイトと同レベルである。疲労限度もマルテンサイトに次いで高い。ビッカース硬さは約400 HVで、ロックウェル硬さは約51 HRCである。疲労限度を引張強さで除した値である疲労限度比は、0.40 - 0.54程度である。マルテンサイトに次ぐ硬さとある程度の靱性の高さを備えているので、刃物などに使用される。一方で錆びやすさが欠点である。.

新しい!!: セメンタイトとトルースタイト · 続きを見る »

パーライト

Fe-C状態図 パーライト とは、鋼の組織の一種であり、Fe-C状態図において、C.

新しい!!: セメンタイトとパーライト · 続きを見る »

ビッカース硬さ

ビッカース硬さの測定法の略図 ビッカース硬さ(ビッカースかたさ、Vickers hardness)は、硬さを表す尺度の一つであり、押込み硬さの一種である。ダイヤモンドでできた剛体(圧子)を被試験物に対して押込み、そのときにできるくぼみ(圧痕)の面積の大小で硬いか柔らかいかを判断する。圧子はピラミッドをひっくり返したような四角錐であるので、圧痕は理想的には正方形である。圧子を押し付ける荷重を一般的に試験力といい、試験力一定の下で硬い物質ほど圧痕は小さく、柔らかい物質ほど大きくなる。試験力は可変で、JIS規格では10gfから100kgfまで規定されているが、この範囲以外の試験力を用いることもある。.

新しい!!: セメンタイトとビッカース硬さ · 続きを見る »

フェライト相

フェライト(ferrite)は、純鉄(高純度の鉄)において、911℃以下の温度領域にある鉄の相(組織)である。この領域において、鉄は体心立方格子構造をとる。αFe『機械材料学』、日本材料学会、太洋堂、2000年、213頁、α鉄(アルファてつ)ともいう。名称はラテン語で鉄を意味する『Ferrum』に由来する。.

新しい!!: セメンタイトとフェライト相 · 続きを見る »

ベイナイト

ベイナイト(英: bainite、米国の冶金学者)に由来する)は炭素鋼や低合金鋼の等温保持或いは連続冷却の熱処理により生じる金属組織(相ではない)の一つである。 中間組織(独: Zwischenstufengefüge、英: intermediate structure)または中間段階変態生成物(組織)(独: Zwischenstufen Umwandlungsprodukt、英: intermediate stage transformation products)、或いはその頭文字Zwの語は特にドイツ語圏において「広義の」ベイナイトとほぼ同じ意味で用いられる。これはミクロ組織の生成する温度及び冷却速度がパーライト変態とマルテンサイト変態の間にあることによる。つまりZwは「狭義の」ベイナイトを含む変態組織の総称であるから、Zwの意味でベイナイトを用いるのは適切でない。ドイツ語圏では用語の問題を避けるために、以前からZwと呼ばれてきたのである。 この温度域においては、マルテンサイト変態の急激な結晶構造の変化(無拡散変態)と拡散変態が結びついて、異なる変態機構が起こりうる。冷却速度及び炭素量、合金元素とその結果としての変態温度への依存性から、「広義の」ベイナイトは固有の形態を持たない。ベイナイトには、パーライトと同様にフェライト相(α)とセメンタイト相(Fe3C)が含まれているものの、その形や大きさ、分散状況が大きく異なる。ベイナイト組織の形態として、上部ベイナイト(或いはグラニュラーベイナイト)及び下部ベイナイトの区別が知られている。 オーステンパー或いは等温変態におけるベイナイト変態は、オーステナイト(γ)化に続く焼入れ中のMs点(マルテンサイト変態開始温度)以上の温度(約250-550℃、合金元素にあまり依存しない)で起こる。この時パーライト変態が起きないレベルの冷却速度を選ばなければならない。Ms点以上の温度に保持することで、オーステナイトはほぼ全てベイナイトに変態する。 オーステナイト結晶粒界又は不完全性によるウムクラップ過程(熱ゆらぎ)から、炭素が過飽和した体心立方格子(Bcc格子)を持つフェライト粒が生成する。フェライト粒内の球状或いは楕円状セメンタイトが生成する際のBcc格子の速い拡散のために、下部ベイナイトでは速い速度で炭素が吐き出される。一方、上部ベイナイトにおいてはオーステナイトと同程度の速度で炭素の拡散と炭化物の生成が進む。 上部ベイナイトはベイナイト変態温度域の高い側で生成し、マルテンサイト組織を思わせるよく類似した針状組織を持つ。結晶粒界における炭素の拡散が有利であるために、針状のフェライトが拡散変態して生成される。このとき不規則かつ不連続なセメンタイトが生成される。この不規則な分布のために、このミクロ組織はたいてい粒状組織として観察される。このミクロ組織はしばしばパーライト組織或いはウイドマンステッテン組織と混同されることがあるが、不適切である。 下部ベイナイトは等温保持或いは連続冷却でベイナイト変態温度域の低い温度側で生成する。このミクロ組織においては、下部ベイナイトのフェライトとセメンタイトの生成が進んでいくとともに、残ったオーステナイトに炭素が濃縮され(てMs点が上昇し、オーステナイトがマルテンサイト変態す)るために、針状のベイナイト‐マルテンサイト混合組織となる。オーステンパーを用いた場合、残留応力が減少するとともに靱性が改善され、亀裂感受性が改善されるともに、複雑な形状のミクロ組織が得られる。 球状黒鉛鋳鉄を示す)(1) 焼入れマルテンサイト(2) 等温保持によるベイナイト(3) 連続冷却によるベイナイト(4) パーライト変態範囲(5) ベイナイト変態域.

新しい!!: セメンタイトとベイナイト · 続きを見る »

オーステナイト

面心立方格子構造(fcc構造)の'''γ鉄''' 左が'''オーステナイト'''の組織形状の模式図 オーステナイト(austenite)は、鉄のγ鉄に炭素や合金元素などの他の元素が固溶したもの。イギリスの冶金学者ロバーツ・オーステン(Sir William Chandler Roberts-Austen)によって発見され、オーステナイトという名称は、彼の名前から由来している。現在ではあまり使用されないが、組織形状が田んぼに似ていることから、日本の冶金学者本多光太郎による大洲田という漢字の当て字がある。.

新しい!!: セメンタイトとオーステナイト · 続きを見る »

カーバイド

ーバイド (carbide).

新しい!!: セメンタイトとカーバイド · 続きを見る »

グラファイト

ラファイト(graphite、石墨文部省『学術用語集 地学編』(日本学術振興会、1984年、ISBN 4-8181-8401-2、)の表記は「(1) セキボク、石墨【鉱物】 (2) 黒鉛【鉱石】」。、黒鉛)は、炭素から成る元素鉱物。六方晶系(結晶対称性はP63/mmc)、六角板状結晶。構造は亀の甲状の層状物質、層毎の面内は強い共有結合(sp2的)で炭素間が繋がっているが、層と層の間(面間)は弱いファンデルワールス力で結合している。それゆえ、層状に剥離する(へき開完全)。電子状態は、半金属的である。 グラファイトが剥がれて厚さが原子1個分しかない単一層となったものはグラフェンと呼ばれ、金属と半導体の両方の性質を持つことから現在研究が進んでいる。採掘は、スリランカのサバラガムワ、メキシコのソノラ、カナダのオンタリオ州、北朝鮮、マダガスカル、アメリカのニューヨーク州などで商業的に行われている。日本でも、かつて富山県で千野谷黒鉛鉱山が稼働していた。.

新しい!!: セメンタイトとグラファイト · 続きを見る »

セラミックス

伊万里焼の皿 高電圧用セラミック碍子 セラミックスまたはセラミック(ceramic)とは、狭義には陶磁器を指すが、広義では窯業製品の総称として用いられ、無機物を加熱処理し焼き固めた焼結体を指す。金属や非金属を問わず、酸化物、炭化物、窒化物、ホウ化物などの無機化合物の成形体、粉末、膜など無機固体材料の総称として用いられている。伝統的なセラミックスの原料は、粘土や珪石等の天然物である。なお、一般的に純金属や合金の単体では「焼結体」とならないためセラミックスとは呼ばれない。.

新しい!!: セメンタイトとセラミックス · 続きを見る »

ソルバイト

ルバイト(sorbite)とは、鋼の組織の一種であり、マルテンサイトを約500 - 650℃程度で焼戻しすることにより得られる、微細なセメンタイトとフェライトの混合組織である。名称は、1863年に発見したイギリスの顕微鏡学者ヘンリー・ソービーに由来する。以前は焼戻しソルバイトや一次ソルバイトと呼ばれていたが、現在では単にソルバイトと呼ばれる。また、同じく現在ではあまり使用されないが、トルースタイトよりセメンタイト粒が粗いことから、日本の冶金学者本多光太郎による粗粒陂(ソルビー)という漢字の当て字がある。 以前は、オーステナイトを空冷あるいは鉛浴焼入れして得られる組織のことが、ソルバイト、一次ソルバイト、焼入れソルバイトなどと呼ばれていた。現在では、これらはソルバイトとは呼ばれず、微細パーライトと呼ばれる。 フェライト中のセメンタイトは、光学顕微鏡約400倍程度で判別できる程度の大きさの微細な球状セメンタイトとなっている。トルースタイトよりもセメンタイトの粗大化が進んでいるのが特徴である。 機械的性質については、マルテンサイト、トルースタイトに比較すると、硬さ、疲労限度などは低いが、その分靱性、耐衝撃性が高い。ビッカース硬さは約280 HVで、 ロックウェル硬さは約34 HRCである。疲労限度を引張強さで除した値である疲労限度比は0.56 - 0.63程度となっている。靱性の高さを生かして、機械部品や搬送用部品などで使用される。.

新しい!!: セメンタイトとソルバイト · 続きを見る »

炭素

炭素(たんそ、、carbon)は、原子番号 6、原子量 12.01 の元素で、元素記号は C である。 非金属元素であり、周期表では第14族元素(炭素族元素)および第2周期元素に属する。単体・化合物両方において極めて多様な形状をとることができる。 炭素-炭素結合で有機物の基本骨格をつくり、全ての生物の構成材料となる。人体の乾燥重量の2/3は炭素である​​。これは蛋白質、脂質、炭水化物に含まれる原子の過半数が炭素であることによる。光合成や呼吸など生命活動全般で重要な役割を担う。また、石油・石炭・天然ガスなどのエネルギー・原料として、あるいは二酸化炭素やメタンによる地球温暖化問題など、人間の活動と密接に関わる元素である。 英語の carbon は、1787年にフランスの化学者ギトン・ド・モルボーが「木炭」を指すラテン語 carbo から名づけたフランス語の carbone が転じた。ドイツ語の Kohlenstoff も「炭の物質」を意味する。日本語の「炭素」という語は宇田川榕菴が著作『舎密開宗』にて用いたのがはじめとされる。.

新しい!!: セメンタイトと炭素 · 続きを見る »

直方晶系

方晶系(ちょくほうしょうけい、)は、7つの結晶系の1つ。対応するブラベー格子は、単純直方格子・体心直方格子・面心直方格子・底心直方格子の4種類。古くは「斜方晶系(しゃほうしょうけい)」の訳語があてられたが、現在は「直方晶系」の訳語が推奨される(後述)。 直方晶系の結晶構造は、直交する対のうちの2つに沿って正六面体格子を異なる因子で伸ばすことにより得られるものであり、その結果、長方形の底面(a×b)とこれらとは異なる高さ(c)を持つ直角の角柱となる。a、b、cは互いに異なる。3つ全ての底面は垂直に交わる。3つの格子ベクトルも互いに直交する。.

新しい!!: セメンタイトと直方晶系 · 続きを見る »

銑鉄

銑鉄 銑鉄(せんてつ、pig iron)は、高炉や電気炉などで鉄鉱石を還元して取り出した鉄のこと。銑鉄を生産するプロセスのことを製銑(せいせん)と呼ぶ。古くは銑(ずく)と呼ばれた。.

新しい!!: セメンタイトと銑鉄 · 続きを見る »

非金属元素

非金属元素(ひきんぞくげんそ、nonmetal)とは、金属元素以外の元素のこと。 元素のうち特定の性質(単体が光沢、導電性、延性・展性に富む、いわゆる金属結晶をつくる)を持つものを「金属(元素)」と呼んでおり、非金属元素とはそれ以外の元素である。 金属以外という定義上、非金属そのものを特徴づける性質は一概には言えないが、非金属元素は金属元素に比べて電子親和力が高い。このため、自由電子を放出して金属結晶を形作ることができない。.

新しい!!: セメンタイトと非金属元素 · 続きを見る »

金属

リウム の結晶。 リチウム。原子番号が一番小さな金属 金属(きんぞく、metal)とは、展性、塑性(延性)に富み機械工作が可能な、電気および熱の良導体であり、金属光沢という特有の光沢を持つ物質の総称である。水銀を例外として常温・常圧状態では透明ではない固体となり、液化状態でも良導体性と光沢性は維持される。 単体で金属の性質を持つ元素を「金属元素」と呼び、金属内部の原子同士は金属結合という陽イオンが自由電子を媒介とする金属結晶状態にある。周期表において、ホウ素、ケイ素、ヒ素、テルル、アスタチン(これらは半金属と呼ばれる)を結ぶ斜めの線より左に位置する元素が金属元素に当たる。異なる金属同士の混合物である合金、ある種の非金属を含む相でも金属様性質を示すものは金属に含まれる。.

新しい!!: セメンタイトと金属 · 続きを見る »

金属工学

金属工学、冶金学(きんぞくこうがく、やきんがく、英語:metallurgy)とは、材料工学の一分野であるが量的には人工物の大部分を担う分野であり、金属の物理的・化学的な性質についての評価や新しい金属の研究開発を行う学問である。本来は鉱石から有用な金属を採取・精製・加工して、種々の目的に応じた実用可能な金属材料・合金を製造する、いわゆる冶金を範囲とする学問であり、冶金学の名もこれにちなんだものである。.

新しい!!: セメンタイトと金属工学 · 続きを見る »

腐食

腐食(ふしょく、腐蝕とも。corrosion)とは、化学・生物学的作用により外見や機能が損なわれた物体やその状態をいう。 金属の腐食とは、周囲の環境(隣接している金属・気体など)と化学反応を起こし、溶けたり腐食生成物(いわゆる「さび」)を生成することを指す。これは、一般的に言われる、表面的に「さび」が発生することにとどまらず、腐食により厚さが減少したり、孔が開いたりすることも含む。;金属以外の腐食;生物学的な腐食 以下、金属の腐食を中心に述べる。.

新しい!!: セメンタイトと腐食 · 続きを見る »

鉄(てつ、旧字体/繁体字表記:鐵、iron、ferrum)は、原子番号26の元素である。元素記号は Fe。金属元素の1つで、遷移元素である。太陽や他の天体にも豊富に存在し、地球の地殻の約5%を占め、大部分は外核・内核にある。.

新しい!!: セメンタイトと鉄 · 続きを見る »

鋼(はがね、こう、釼は異体字、steel)とは、炭素を0.04~2パーセント程度含む鉄の合金。鋼鉄(こうてつ)とも呼ばれる。強靭で加工性に優れ、ニッケル・クロムなどを加えた特殊鋼や鋳鋼等とあわせて鉄鋼(てっこう)とも呼ばれ、産業上重要な位置を占める。.

新しい!!: セメンタイトと鋼 · 続きを見る »

漢字

漢字(かんじ)は、中国古代の黄河文明で発祥した表語文字。四大文明で使用された古代文字のうち、現用される唯一の文字体系である。また史上最も文字数が多い文字体系であり、その数は10万字を超え、他の文字体系を圧倒する。古代から周辺諸国家や地域に伝播して漢字文化圏を形成し、言語のみならず文化上の大きな影響を与えた。 現代では中国語、日本語、朝鮮語の記述に使われる。20世紀に入り、漢字文化圏内でも日本語と中国語以外は漢字表記をほとんど廃止したが、なお約15億人が使用し、約50億人が使うラテン文字についで、世界で2番目に使用者数が多い。.

新しい!!: セメンタイトと漢字 · 続きを見る »

本多光太郎

東北大学訪問記念写真。左から本多光太郎、アインシュタイン、愛知敬一、日下部四郎太 本多 光太郎(ほんだ こうたろう、1870年3月24日(明治3年2月23日) - 1954年(昭和29年)2月12日)は、日本の物理学者、金属工学者(冶金学者)。鉄鋼及び金属に関する冶金学・材料物性学の研究を、日本はもとより世界に先駆けて創始した。磁性鋼であるKS鋼、新KS鋼の発明者として知られる。文化勲章受章者。文化功労者。 「鉄の神様」「鉄鋼の父」などとも呼ばれ鉄鋼の世界的権威者として知られる。 1932年に日本人初のノーベル物理学賞の候補に挙がっていたものの、受賞を逸している。.

新しい!!: セメンタイトと本多光太郎 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »