ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

スプライン曲線

索引 スプライン曲線

プライン曲線(スプラインきょくせん、spline curve)とは、スプラインを使用して表現された曲線のこと。スプラインとは区分多項式(区分的に定義された多項式)の事。数学的な背景や曲線あてはめのようなモデルの推定といった側面もあるが、図学や造形デザインで使われることが多い。.

25 関係: ばね塑性多項式多項式補間定規対角行列弾性微分区分的ラグランジュ補間ルンゲ現象ベジェ曲線コンピュータグラフィックスB-スプライン曲線CAD線形補間製図論雲形定規造形連立方程式NURBS折れ線グラフ滑らかな関数曲線曲線あてはめ

ばね

ばねとは、力が加わると変形し、力を取り除くと元に戻るという、物体の弾性という性質を利用する機械要素である。広義には、弾性の利用を主な目的とするものの総称ともいえる。ばねの形状や材質は様々で、日用品から車両、電気電子機器、構造物に至るまで、非常に多岐にわたって使用される。 ばねの種類の中ではコイルばねがよく知られ、特に圧縮コイルばねが広く用いられてる。他には、板ばね、渦巻ばね、トーションバー、皿ばねなどがある。ばねの材料には金属、特に鉄鋼が広く用いられているが、用途に応じてゴム、プラスチック、セラミックスといった非金属材料も用いられている。空気を復元力を生み出す材料とする空気ばねなどもある。ばねの荷重とたわみの関係も、荷重とたわみが比例する線形のものから、比例しない非線形のものまで存在する。ばねばかりのように荷重を変形量で示させたり、自動車の懸架装置のように振動や衝撃を緩和したり、ぜんまい仕掛けのおもちゃのように弾性エネルギーの貯蔵と放出を行わせたりなど、色々な用途のためにばねが用いられる。 「ばね」は和語の一種だが、平仮名ではわかりにくいときは片仮名でバネとも表記される。現在使用されている漢字表記では発条と書かれる。英語に由来するスプリング(spring)という名称でもよく呼ばれる。語源は諸説あるが、「跳ね」「跳ねる」から転じて「ばね」という語になったとされる。 人類におけるばねの使用の歴史は太古に遡り、原始時代から利用されてきた弓はばねそのものである。カタパルト、クロスボウ、機械式時計、馬車の懸架装置といった様々な機械や器具で利用され、ばねは発展を遂げていった。1678年にはイギリスのロバート・フックが、ばねにおいて非常に重要な物理法則となるフックの法則を発表した。産業革命後には、他の工業と同じくばねも大きな発展を遂げ、理論的な設計手法も確立していった。今日では、ばねの製造は機械化された大量生産が主だが、一方で特殊なばねに対しては手作業による製造も行われる。現在のばねへの要求は多様化し、その実現に高度な技術も求められるようになっている。.

新しい!!: スプライン曲線とばね · 続きを見る »

塑性

塑性(そせい、英語:plasticity)は、力を加えて変形させたとき、永久変形を生じる物質の性質のことを指す。延性と展性がある。荷重を完全に除いた後に残るひずみ(伸び、縮みのこと)を永久ひずみあるいは残留ひずみという。この特性は加工しやすさを意味し金属が世界中に普及した大きな要因である。またこの特性を結晶学的に説明することに成功したのがOrowanらによる転位論である。 金属材料の展性および延性についての明確な定義は多岐に渡り一言には説明しづらいが、実用的には、次のように考えられている。金属材料の塑性変形抵抗を示す代表的指標に硬さがあり、さらには機械的性質を調べる代表的な方法として、引張試験があるが、低強度域(破壊力学的欠陥の作用しない領域)では硬さと比例関係にある。 この際、得られる特性値として、次のようなものがある。.

新しい!!: スプライン曲線と塑性 · 続きを見る »

多項式

数学における多項式(たこうしき、poly­nomial)は、多数を意味するpoly- と部分を意味する -nomen あるいは nomós を併せた語で、定数および不定元(略式ではしばしば変数と呼ぶ)の和と積のみからなり、代数学の重要な対象となる数学的対象である。歴史的にも現代代数学の成立に大きな役割を果たした。 不定元がひとつの多項式は、一元多項式あるいは一変数多項式 と呼ばれ、不定元を とすれば のような形をしている。各部分 "", "", "", "" のことを項(こう、)と呼ぶ。一つの項だけからできている式を単項式 (monomial)、同様に二項式 (binomial)、三項式 (trinomial) などが、-nomial にラテン配分数詞を付けて呼ばれる。すなわち、多項式とは「多数」の「項」を持つものである。単項式の語が頻出であることに比べれば、二項式の語の使用はやや稀、三項式あるいはそれ以上の項数に対する語の使用はごく稀で一口に多項式として扱う傾向があり、それゆえ単項式のみ多項式から排他的に分類するものもある。また多項式のことを整式 (integral expression) と呼ぶ流儀もある。 多項式同士の等式として与えられる方程式は多項式方程式と呼ばれ、特に有理数係数の場合において代数方程式という。多項式方程式は多項式函数の零点を記述するものである。 不定元がふたつならば二元 (bivariate), 三つならば三元 (trivariate) というように異なるアリティを持つ多元多項式が同様に定義できる。算術あるいは初等代数学において、数の計算の抽象化として実数(あるいは必要に応じてより狭く有理数、整数、自然数)を代表する記号としての「文字」変数を伴う「」およびその計算を扱うが、それは大抵の場合多変数の多項式である。 本項では主として一元多項式を扱い、多元の場合にも多少触れるが、詳細は多元多項式の項へ譲る。.

新しい!!: スプライン曲線と多項式 · 続きを見る »

多項式補間

多項式補間(たこうしきほかん、polynomial interpolation)は、数値解析において、与えられたデータ群を多項式で内挿(補間)することである。言い換えれば、標本調査などで得たデータ群について、それらを正確に通る多項式を見つけることである。.

新しい!!: スプライン曲線と多項式補間 · 続きを見る »

定規

さまざまな素材の定規 定規(じょうぎ、定木)は、直線や曲線、角を引くために用いる文房具。物を切断する時にあてがって用いることもある。素材は主に合成樹脂、アルミニウムやステンレスなどの金属、竹など伸縮や狂いの少ない素材が用いられる。.

新しい!!: スプライン曲線と定規 · 続きを見る »

対角行列

数学、特に線型代数学において、対角行列(たいかくぎょうれつ、diagonal matrix)とは、正方行列であって、その対角成分(-要素)以外が零であるような行列のことである。 \end この対角行列は、クロネッカーのデルタを用いて (ci δij) と表現できる。また、しばしば のようにも書かれる。 単位行列やスカラー行列は対角行列の特殊例である。.

新しい!!: スプライン曲線と対角行列 · 続きを見る »

弾性

弾性(だんせい、elasticity)とは、応力を加えるとひずみが生じるが、除荷すれば元の寸法に戻る性質をいう。一般には固体について言われることが多い。 弾性は性質を表す語であって、それ自体は数値で表される指標ではない。弾性の程度を表す指標としては、弾性限界、弾性率等がある。弾性限界は、応力を加えることにより生じたひずみが、除荷すれば元の寸法に戻る応力の限界値である。弾性率は、応力とひずみの間の比例定数であって、ヤング率もその一種である。 一般的にはゴム等の材料に対して「高弾性」という表現が用いられる。この場合の「高弾性」とは弾性限界が大きいことを指す。しかしながら、前述の通り、弾性に関する指標は弾性限界だけでなく弾性率等があって、例えば、ゴムの場合には弾性限界は大きいが弾性率は小さいため、「高弾性」という表現は混同を生じる恐れがある。 英語で弾性をというが、この語源はギリシャ語の「ελαστικος(elastikos:推進力のある、弾みのある)」からきている。また、一般的には弾力や弾力性等の語が使われるが、これらはほぼ弾性と同義である。 現実に存在する物質は必ず弾性の他に粘性を持ち、粘弾性体である。物質が有する粘弾性のうち弾性に特に着目した場合、弾性を有する物質を弾性体と呼ぶ。.

新しい!!: スプライン曲線と弾性 · 続きを見る »

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: スプライン曲線と微分 · 続きを見る »

区分的

数学における区分定義写像(くぶんていぎしゃぞう、piecewise-defined function; 区分的に定義された函数)あるいは区分(ごとの)写像 (piecewise function) は、独立変数の値によってその写像を定義する「対応規則」が変化するような写像である。つまり区分定義写像は、その定義域の分割の各小片(定義域片)上で定義された複数の写像の寄せ集めとして定義される。 区分ごとに考えるというのは写像そのものの性質ではなく実際には表示法を言っているのであるが、適当な仮定を追加して写像の性質を記述することに利用できる。たとえば、「区分的に微分可能」や「区分的に連続的微分可能」な函数は、定義域片上ではいずれも微分可能だが、全体としては(つまり定義域片の「境界」で)微分可能でないことが起こり得る。凸解析では、そのような点をも含むように微分係数の概念を一般化するために、区分定義函数の劣微分が考えられる。.

新しい!!: スプライン曲線と区分的 · 続きを見る »

ラグランジュ補間

数値解析におけるラグランジュ補間(ラグランジュほかん、Lagrange polynomial)は多項式補間に用いられる。相異なる点の集合 および数値 に対し、そのラグランジュ補間多項式は、各 において対応する値として をとるような次数最小の多項式である。このように次数最小の多項式は一意に決まるが、決定する方法は複数存在するため、「ラグランジュ補間多項式」という名称をその一意な多項式の「ラグランジュ形」というふうに言及するのは正確でない。 名称はジョセフ・ルイ・ラグランジュに因んだものだが、ラグランジュの発表する1795年よりも以前に、この方法を初めて発見したのは1779年のエドワード・ワーリングである。ラグランジュの結果はレオンハルト・オイラーが1783年に発表したより複雑な形の公式の簡単な帰結となるものであった ラグランジュ補間多項式は数値積分法の一種ニュートン–コーツ法でも用いられ、また有限体上で計算されたラグランジュ補間多項式は暗号理論におけるでも用いられる。 ラグランジュ補間は巨大振幅に関するルンゲ現象の影響を受けやすい。また評価点 の変更に関して補間の計算を全くやり直す必要があるから、そのような目的では変更が容易にできるニュートン補間がしばしば用いられる。.

新しい!!: スプライン曲線とラグランジュ補間 · 続きを見る »

ルンゲ現象

赤はルンゲ関数。青は5次の補間多項式。緑は9次の補間多項式(補間点は等間隔)。 補間点では関数と補間多項式は誤差が(定義上)ゼロである。補間点と補間点の間(特に 1 や -1 に近い部分)では、補間多項式を高次にした方が誤差が大きくなっている。 ルンゲ現象(英: Runge's phenomenon)は、数値解析で高次の多項式で多項式補間する際に発生する問題である。カール・ルンゲが、ある関数を多項式補間で近似したときの誤差を調べていて発見した。.

新しい!!: スプライン曲線とルンゲ現象 · 続きを見る »

ベジェ曲線

ベジェ曲線(ベジェきょくせん、)またはベジエ曲線とは、 個の制御点から得られる 次曲線である。フランスの自動車メーカー、シトロエン社の とルノー社のピエール・ベジェにより独立に考案された。ド・カステリョの方が先んじていたが、その論文が公知とならなかったためベジェの名が冠されている。コンピューター上で滑らかな曲線を描くのに2次ベジェ曲線 や 3次ベジェ曲線 などが広く利用されている。 原語(フランス語)における の発音はベズィエに近く、「ベジェ曲線」より「ベジエ曲線」の方がこれに忠実と言えるが、いずれの呼称も用いられている。.

新しい!!: スプライン曲線とベジェ曲線 · 続きを見る »

コンピュータグラフィックス

ンピュータグラフィックス(computer graphics、略称: CG)とは、コンピュータを用いて作成される画像である。日本では、和製英語の「コンピュータグラフィック」も使われる。.

新しい!!: スプライン曲線とコンピュータグラフィックス · 続きを見る »

B-スプライン曲線

B-スプライン曲線(Bスプラインきょくせん、B-spline curve)とは、与えられた複数の制御点とノットベクトルから定義される滑らかな曲線である。区分多項式により表現されているため、一部を変更しても曲線全体に影響は及ばない等の性質がある。ベジェ曲線とともに、コンピュータグラフィックスの世界で広く利用されている。なお、B-splineはBasis spline(Basis=基底)の省略形である(:en:B-Spline)。曲線は必ずしも制御点を通らない。.

新しい!!: スプライン曲線とB-スプライン曲線 · 続きを見る »

CAD

CAD(キャド、computer-aided design)は、コンピュータ支援設計とも訳され、コンピュータを用いて設計をすること、あるいはコンピュータによる設計支援ツールのこと(CADシステム)。人の手によって行われていた設計作業をコンピュータによって支援し、効率を高めるという目的からきた言葉である。 CADを「コンピュータを用いた製図(システム)」と解する場合は「computer-assisted drafting」、「computer-assisted drawing」を指し、同義として扱われることもある。 設計対象や目的によりCADD()、CAID()、CAAD()などと区分される場合もある。 日本での定義としてはJIS B3401に記載があり、「製品の形状、その他の属性データからなるモデルを、コンピュータの内部に作成し解析・処理することによって進める設計」となっている。 3次元の作業の場合でも、数値の精密さの必要がないコンピュータゲームや映画やアニメーションなどの制作関係の事柄については「3DCG」を参照。.

新しい!!: スプライン曲線とCAD · 続きを見る »

線形補間

区分的線形補間の例 区分線形補間の例 2次元の区分線形補間の例 線形補間(せんけいほかん、Linear interpolation, lerp)は、多項式補間の特殊なケースで、線形多項式(一次式)を用いた回帰分析の手法である。1次補間としても知られている。 なお、3つ以上のデータに対し線形補間といった場合、1つの線型近似によるフィッティングではなく、区分線形関数を使った区分線形補間(1次スプライン補間、いわゆる折れ線グラフ)のことである。 線形補間は数学の世界(特に数値解析)やコンピュータグラフィックスを含む多くの分野で非常によく使われている。補間の非常に単純な形式であり、これより単純なのは(0次補間)しかない。.

新しい!!: スプライン曲線と線形補間 · 続きを見る »

製図論

製図論(せいずろん)とは、製図に関する論。 城内進は、製図とは「設計者の描いた施設の像を、形状・寸法・仕様等を明らかにし、図面として客観化することで、設計は設計者が意図的に施設の具体的な形を創り出していくことであり、製図は設計図を作るため、頭の中に描いた施設の具体的な形を製図規範に従ってあらわすことである。それゆえ製図は設計者の描いた設計像を表現するという設計の一側面であると理解しなければならない」とした。 機械製図論を専門とした清家正は、1926年(大正15年)に最初の著書「科学的研究に基ける製図論」以降、「製図論」「製図論考」といった多くの製図論に関する著書を通して製図と製図論を追及し、工学設計における図面、製図と製図教育の重要性を説き、後進の育成にあたった。一方で日本工業標準調査会の委員として、JIS規格である製図通則や機械製図といった製図規格制定にも尽力している。.

新しい!!: スプライン曲線と製図論 · 続きを見る »

雲形定規

雲形定規(くもがたじょうぎ) は、曲線定規の一種。雲のような形をしている定規のセットで、CADにより曲線が自在に扱えるようになる以前にはよく使われていた、自由曲線の作図用の道具である。.

新しい!!: スプライン曲線と雲形定規 · 続きを見る »

造形

造形(ぞうけい)とは様々な物質を媒介として、形あるものを作りだすこと。またある概念によって生みだされた形・もの。 使用例として「造形美」「造形芸術」。東京造形大学の略称。.

新しい!!: スプライン曲線と造形 · 続きを見る »

連立方程式

連立方程式(れんりつほうていしき).

新しい!!: スプライン曲線と連立方程式 · 続きを見る »

NURBS

NURBSはNon-Uniform Rational B-Spline(非一様有理Bスプライン)の略で、曲線や曲面を生成するためにコンピュータグラフィックスで一般的に採用される数学的モデルである。その柔軟性と正確性からモデリング用の形状にも、解析的な用途にも向いている。.

新しい!!: スプライン曲線とNURBS · 続きを見る »

折れ線グラフ

折れ線グラフ(おれせんグラフ、line chart, line graph)は、散布図の一種であり、プロットされた点を直線でつないだものをいう。線形補間をグラフにした物。なお、英語では最良あてはめ曲線を描いた散布図を一般に Line Chart または Line Graph と呼び、折れ線グラフはその特殊ケースと解釈される。.

新しい!!: スプライン曲線と折れ線グラフ · 続きを見る »

滑らかな関数

数学において、関数の滑らかさ(なめらかさ、smoothness)は、その関数に対して微分可能性を考えることで測られる。より高い階数の導関数を持つ関数ほど滑らかさの度合いが強いと考えられる。.

新しい!!: スプライン曲線と滑らかな関数 · 続きを見る »

曲線

数学における曲線(きょくせん、curve, curved line)は、一般にまっすぐとは限らない幾何学的対象としての「線」を言う。 つまり、曲線とは曲率が零とは限らないという意味での直線の一般化である。 数学の様々な分野において、その研究領域に応じたそれぞれやや異なる意味で「曲線」の語が用いられる(から、精確な意味は文脈に即して捉えるべきである)が、それらの意味の多くは以下に挙げる定義の特別な実例になっているはずである。すなわち、曲線とは局所的に直線と同相であるような位相空間を言う。それは日常語で言えば、曲線は点の集合であって、それらの点が十分近くであれば直線のように見えるが、変形があってもよいというような意味である。数学の各分野で扱われる。 最初に触れる曲線の簡単な例というのはほとんどの場合「平面曲線」(例えば平らな紙の上に描いた曲がった線)であろうが、螺旋のように三次元的なものもある。幾何学的な必要性や、例えば古典力学からの要請で任意次元の空間に埋め込まれた曲線の概念も必要とされる。一般相対論において世界線とは時空内の曲線である。; 注: 一般用語として、「曲線」が(成長曲線やフィリップス曲線の例に見るように)函数のグラフ、あるいはより多様なの意味で用いられることがあるが、本項で言う意味とは(近い関連はあるにせよ)異なるものと理解すべきである。.

新しい!!: スプライン曲線と曲線 · 続きを見る »

曲線あてはめ

曲線あてはめ(きょくせんあてはめ)またはカーブフィッティング(curve fitting)本間 仁,春日屋 伸昌「次元解析・最小二乗法と実験式」コロナ社(1989)加川 幸雄,霜山 竜一「入門数値解析」朝倉書店(2000)John R. Taylor、林 茂雄、 馬場 凉「計測における誤差解析入門 」東京化学同人(2000)吉沢 康和「新しい誤差論―実験データ解析法 」共立出版 (1989/10) は、実験的に得られたデータまたは制約条件に最もよく当てはまるような曲線を求めること。最良あてはめ、曲線回帰とも。一般に内挿や回帰分析を用いる。場合によっては外挿も用いる。回帰分析で曲線を求める場合、その曲線はデータ点を必ず通るわけではなく、曲線とデータ点群の距離が最小になるようにする。曲線あてはめによって得られた曲線を、近似曲線という。特に回帰分析を用いた場合には回帰曲線という。現実の実験データは直線的ではないことが多いため散布図、近似曲線を求める必要性は高い。.

新しい!!: スプライン曲線と曲線あてはめ · 続きを見る »

ここにリダイレクトされます:

スプライン補間

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »