ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

スターリングの近似

索引 スターリングの近似

log ''n''! と ''n'' log ''n'' − ''n'' は ''n'' → ∞ のとき漸近する スターリングの近似(Stirling's approximation)またはスターリングの公式(Stirling's formula)は、階乗、あるいはその拡張の一つであるガンマ関数の漸近近似である。名称は数学者に因む。.

36 関係: 収束級数双曲線関数実数対数不確定性原理伏見康治マックス・プランクネイピア数ランダウの記号ルイ・ド・ブロイボーア・モレルップの定理トーマス・ベイズピーター・デバイテイラー展開ベルヌーイ数アルベルト・アインシュタインアブラーム・ド・モアブルアベル・プラナの和公式ウォリス積エントロピーオイラーの和公式ガンマ関数ガウス積分スピン角運動量サティエンドラ・ボース光子王立協会階乗階乗冪黒体量子もつれ量子論MathWorldPlanetMath漸近展開1763年

収束級数

数学において、級数が収束(しゅうそく、converge)あるいは収斂(しゅうれん)するとは、部分和の成す数列が収束することをいう。このとき、与えられた級数は「(有限な)和を持つ」とか「和が有限確定である」などともいい、収束する級数のことを短く、収束級数 (convergent series) などともよぶ。 ここで、級数とは数列の項の総和のことであり、与えられた数列 (a1, a2,..., an,...) の第 n-部分和とは最初の n-項の有限和 のことであった。.

新しい!!: スターリングの近似と収束級数 · 続きを見る »

双曲線関数

csch) のグラフ 数学において、双曲線関数(そうきょくせんかんすう、hyperbolic function)とは、三角関数と類似の関数で、標準形の双曲線を媒介変数表示するときなどに現れる。.

新しい!!: スターリングの近似と双曲線関数 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: スターリングの近似と実数 · 続きを見る »

対数

対数(たいすう、logarithm)とは、ある数 を数 の冪乗 として表した場合の冪指数 である。この は「底を とする の対数(x to base; base logarithm of )」と呼ばれ、通常は と書き表される。また、対数 に対する は(しんすう、antilogarithm)と呼ばれる。数 に対応する対数を与える関数を考えることができ、そのような関数を対数関数と呼ぶ。対数関数は通常 と表される。 通常の対数 は真数, 底 を実数として定義されるが、実数の対数からの類推により、複素数や行列などの様々な数に対してその対数が定義されている。 実数の対数 は、底 が でない正数であり、真数 が正数である場合この条件は真数条件と呼ばれる。 について定義される。 これらの条件を満たす対数は、ある と の組に対してただ一つに定まる。 実数の対数関数 はb に対する指数関数 の逆関数である。この性質はしばしば対数関数の定義として用いられるが、歴史的には対数の出現の方が指数関数よりも先であるネイピア数 のヤコブ・ベルヌーイによる発見が1683年であり、指数関数の発見もその頃である。詳細は指数関数#歴史と概観や を参照。。 y 軸を漸近線に持つ。.

新しい!!: スターリングの近似と対数 · 続きを見る »

不確定性原理

不確定性原理(ふかくていせいげんり、Unschärferelation Uncertainty principle)は、量子力学に従う系の物理量\hatを観測したときの不確定性と、同じ系で別の物理量\hatを観測したときの不確定性が適切な条件下では同時に0になる事はないとする一連の定理の総称である。特に重要なのは\hat、\hatがそれぞれ位置と運動量のときであり、狭義にはこの場合のものを不確定性原理という。 このような限界が存在するはずだという元々の発見的議論がハイゼンベルクによって与えられたため、これはハイゼンベルクの原理という名前が付けられることもある。しかし後述するようにハイゼンベルグ自身による不確定性原理の物理的説明は、今日の量子力学の知識からは正しいものではない。 今日の量子力学において、不確定性原理でいう観測は日常語のそれとは意味が異なるテクニカル・タームであり、観測機のようなマクロな古典的物体とミクロな量子物体との間の任意の相互作用を意味する。したがって例えば、実験者が観測機に表示された観測値を実際に見たかどうかといった事とは無関係に定義される。また不確定性とは、物理量を観測した時に得られる観測値の標準偏差を表す。 不確定性原理が顕在化する現象の例としては、原子(格子)の零点振動(このためヘリウムは、常圧下では絶対零度まで冷却しても固化しない)、その他量子的なゆらぎ(例:遍歴電子系におけるスピン揺らぎ)などが挙げられる。.

新しい!!: スターリングの近似と不確定性原理 · 続きを見る »

伏見康治

伏見 康治(ふしみ こうじ、1909年6月29日 - 2008年5月8日)は日本の理論物理学者、理学博士。公明党参議院議員(1期)。正四位勲二等(没時)。 本来の仕事である物理学、特に統計力学の分野で大きな研究業績を上げた他、戦後日本の科学研究体制の確立と発展にも力を尽くし、原子力平和利用研究を推進、さらには科学者の社会的責任のアピールと行動、一般向け書籍による物理の面白さの啓発・普及、そして対称性の美の追究など、多方面に大きな足跡を残した。.

新しい!!: スターリングの近似と伏見康治 · 続きを見る »

マックス・プランク

マックス・カール・エルンスト・ルートヴィヒ・プランク(Max Karl Ernst Ludwig Planck, 1858年4月23日 - 1947年10月4日)は、ドイツの物理学者で、量子論の創始者の一人である。「量子論の父」とも呼ばれている。科学の方法論に関して、エルンスト・マッハらの実証主義に対し、実在論的立場から激しい論争を繰り広げた。1918年にノーベル物理学賞を受賞。.

新しい!!: スターリングの近似とマックス・プランク · 続きを見る »

ネイピア数

1.

新しい!!: スターリングの近似とネイピア数 · 続きを見る »

ランダウの記号

ランダウの記号(ランダウのきごう、Landau symbol)は、関数の極限における値の変化度合いに、おおよその評価を与えるための記法である。 ランダウの漸近記法 (asymptotic notation)、ランダウ記法 (Landau notation) あるいは主要な記号として O (オーもしくはオミクロン Ο。数字の0ではない)を用いることから(ランダウの)O-記法、ランダウのオミクロンなどともいう。 記号 O は「程度」の意味のオーダー(Order)から。 なおここでいうランダウはエドムント・ランダウの事であり、『理論物理学教程』の著者であるレフ・ランダウとは別人である。 ランダウの記号は数学や計算機科学をはじめとした様々な分野で用いられる。.

新しい!!: スターリングの近似とランダウの記号 · 続きを見る »

ルイ・ド・ブロイ

ルイ・ド・ブロイこと、第7代ブロイ公爵ルイ=ヴィクトル・ピエール・レーモン(Louis-Victor Pierre Raymond, 7e duc de Broglie 、1892年8月15日 - 1987年3月19日)は、フランスの理論物理学者。 彼が博士論文で仮説として提唱したド・ブロイ波(物質波)は、当時こそ孤立していたが、後にシュレディンガーによる波動方程式として結実し、量子力学の礎となった。.

新しい!!: スターリングの近似とルイ・ド・ブロイ · 続きを見る »

ボーア・モレルップの定理

ボーア・モレルップの定理 (Bohr-Mollerup Theorem) は、ガンマ関数を特徴づける定理である。デンマーク人数学者のハラルト・ボーアとにより証明された。この定理によると、正の実軸上で対数凸であり、G(x+1).

新しい!!: スターリングの近似とボーア・モレルップの定理 · 続きを見る »

トーマス・ベイズ

トーマス・ベイズ(Thomas Bayes、1702年 - 1761年4月17日)はイギリスの長老派の牧師・数学者である。ベイズの定理の特殊な場合についての証明が死後発表されたことで知られる。.

新しい!!: スターリングの近似とトーマス・ベイズ · 続きを見る »

ピーター・デバイ

ピーター・デバイ(Peter Joseph William Debye, 1884年3月24日 - 1966年11月2日)は、オランダ・マーストリヒト出身の物理学者・化学者で、1936年のノーベル化学賞受賞者である。.

新しい!!: スターリングの近似とピーター・デバイ · 続きを見る »

テイラー展開

数学において、テイラー級数 (Taylor series) は関数のある一点での導関数たちの値から計算される項の無限和として関数を表したものである。そのような級数を得ることをテイラー展開という。 テイラー級数の概念はスコットランドの数学者ジェームズ・グレゴリーにより定式化され、フォーマルにはイギリスの数学者ブルック・テイラーによって1715年に導入された。0 を中心としたテイラー級数は、マクローリン級数 (Maclaurin series) とも呼ばれる。これはスコットランドの数学者コリン・マクローリンにちなんでおり、彼は18世紀にテイラー級数のこの特別な場合を積極的に活用した。 関数はそのテイラー級数の有限個の項を用いて近似することができる。テイラーの定理はそのような近似による誤差の定量的な評価を与える。テイラー級数の最初のいくつかの項として得られる多項式はと呼ばれる。関数のテイラー級数は、その関数のテイラー多項式で次数を増やした極限が存在すればその極限である。関数はそのテイラー級数がすべての点で収束するときでさえもテイラー級数に等しいとは限らない。開区間(あるいは複素平面の開円板)でテイラー級数に等しい関数はその区間上の解析関数と呼ばれる。.

新しい!!: スターリングの近似とテイラー展開 · 続きを見る »

ベルヌーイ数

ベルヌーイ数 (ベルヌーイすう、Bernoulli number) は数論における基本的な係数を与える数列であり、もともと、連続する整数のべき乗和を定式化する際の展開係数として1713年にヤコブ・ベルヌーイが著書 Ars Conjectandi (推測術) にて導入したことからこの名称がついた。ベルヌーイ数は、べき乗和の展開係数にとどまらず、級数展開の係数や剰余項、リーマンゼータ関数においても登場する。また、ベルヌーイ数はすべてが有理数である。.

新しい!!: スターリングの近似とベルヌーイ数 · 続きを見る »

アルベルト・アインシュタイン

アルベルト・アインシュタイン日本語における表記には、他に「アルト・アインシュタイン」(現代ドイツ語の発音由来)、「アルト・アインタイン」(英語の発音由来)がある。(Albert Einstein アルベルト・アインシュタイン、アルバート・アインシュタイン アルバ(ー)ト・アインスタイン、アルバ(ー)タインスタイン、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。 特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績などにより、世界的に知られている偉人である。 「20世紀最高の物理学者」や「現代物理学の父」等と評され、それまでの物理学の認識を根本から変えるという偉業を成し遂げた。(光量子仮説に基づく光電効果の理論的解明によって)1921年のノーベル物理学賞を受賞。.

新しい!!: スターリングの近似とアルベルト・アインシュタイン · 続きを見る »

アブラーム・ド・モアブル

アブラーム・ド・モアブル(Abraham de Moivre, 1667年5月26日 - 1754年11月27日)はフランスの数学者である。 シャンパーニュ地方に生まれたがカルヴァン派の新教徒(ユグノー)であったため、1685年にナントの勅令が破棄されるとイングランドへと亡命した。したがって彼の業績はイングランドにおけるものであり、また生涯を通じて困窮していた。 主な業績としてド・モアブルの定理を証明したことが知られている。また負の二項分布、(二項分布の極限としての)正規分布、今日スターリングの公式として知られる近似式なども彼の研究成果である。 次の世代のラプラスが、ド・モアブルの再帰級数の手続きが、ラグランジュがその後線形差分方程式の積分に用いたものと同じであると記述している。.

新しい!!: スターリングの近似とアブラーム・ド・モアブル · 続きを見る »

アベル・プラナの和公式

数学において、アベル・プラナの和公式(Abel-plana summation formula)は留数の性質を巧みに用いて級数の和を与える公式である。 &\sum_^f(n).

新しい!!: スターリングの近似とアベル・プラナの和公式 · 続きを見る »

ウォリス積

数学において、ウォリス積 (Wallis' product) とは無限積 \prod_^ \left(\frac \cdot \frac\right).

新しい!!: スターリングの近似とウォリス積 · 続きを見る »

エントロピー

ントロピー(entropy)は、熱力学および統計力学において定義される示量性の状態量である。熱力学において断熱条件下での不可逆性を表す指標として導入され、統計力学において系の微視的な「乱雑さ」「でたらめさ」と表現されることもある。ここでいう「でたらめ」とは、矛盾や誤りを含んでいたり、的外れであるという意味ではなく、相関がなくランダムであるという意味である。を表す物理量という意味付けがなされた。統計力学での結果から、系から得られる情報に関係があることが指摘され、情報理論にも応用されるようになった。物理学者ののようにむしろ物理学におけるエントロピーを情報理論の一応用とみなすべきだと主張する者もいる。 エントロピーはエネルギーを温度で割った次元を持ち、SIにおける単位はジュール毎ケルビン(記号: J/K)である。エントロピーと同じ次元を持つ量として熱容量がある。エントロピーはサディ・カルノーにちなんで一般に記号 を用いて表される。.

新しい!!: スターリングの近似とエントロピー · 続きを見る »

オイラーの和公式

数学において、オイラーの和公式(オイラー・マクローリンの公式)は級数の和を与える公式である。この公式は収束の遅い無限級数の和を求めるときに便利であるが、f(x)が多項式であるような場合を除き、m\to\inftyとすればベルヌーイ数が急速に大きくなって発散する。従って、漸近展開のように発散する前の適当なところで打ち切らなければならない。この公式は台形公式による数値積分の誤差を示すものとも考えられる。 但し、B_nはベルヌーイ数、B_n(x)はベルヌーイ多項式である。 なお、f^は導関数、\lfloor\rfloorは床関数を表す。.

新しい!!: スターリングの近似とオイラーの和公式 · 続きを見る »

ガンマ関数

1.

新しい!!: スターリングの近似とガンマ関数 · 続きを見る »

ガウス積分

π) がガウス積分を表す ガウス積分(がうす-せきぶん、Gaussian integral)あるいはオイラー=ポアソン積分(—せきぶん、Euler–Poisson integral)はガウス関数 の実数全体での広義積分: のことである。名称は、数学・物理学者のカール・フリードリヒ・ガウスに由来する。 この積分の応用は広い。例えば、変数の微小変化に伴う正規分布の正規化定数の計算に用いられる。積分の上の限界を有限な値に替えることで、誤差関数や正規分布の累積分布関数とも深く関連する。 誤差関数を表す初等関数は存在しないが、リッシュのアルゴリズムにより微分積分学の道具立てを用いてガウス積分の値が解析的に求まることが証明できる。つまり、初等関数としての不定積分 \textstyle\int e^ \, dx は存在しないが、定積分 \textstyle\int_^ e^ \, dx は評価することができるのである。 ガウス積分は物理学で非常に頻繁に現れ、またガウス積分の様々な一般化が場の量子論に現れる。.

新しい!!: スターリングの近似とガウス積分 · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

新しい!!: スターリングの近似とスピン角運動量 · 続きを見る »

サティエンドラ・ボース

ティエンドラ・ボース サティエンドラ・ナート・ボース(英語:Satyendra Nath Bose 、ベンガル語:ソッテンドロナート・ボスゥ সত্যেন্দ্রনাথ বসু 、ヒンディー語:サティエーンドラ・ナート・バスゥ सत्येन्द्र नाथ बसु 、1894年1月1日 - 1974年2月4日)は、インドの物理学者。ボース=アインシュタイン統計を光子の統計として導入。ボース粒子(ボソン、ボーズ粒子/ボゾンとも)として名を残す。 ボースは1894年に英領インドのカルカッタに生れた。1909年からカルカッタのプレジデンシー大学に入学した。1916年から教職に就き、ダッカ大学(1921年~1945年)を経てカルカッタ大学(1945年~1956年)の教授となった。 ボースはダッカ大学時代の1924年、アインシュタインのもとに「プランクの放射法則と光量子仮説」と題する論文を送った。それを読んだアインシュタインは非常に高く評価し、ドイツ語に翻訳して物理学雑誌に掲載させた。ここからボースによる光子の統計法の理論が広まり、アインシュタイン自身によって発展させられた。.

新しい!!: スターリングの近似とサティエンドラ・ボース · 続きを見る »

光子

|mean_lifetime.

新しい!!: スターリングの近似と光子 · 続きを見る »

王立協会

イヤル・ソサイエティ(Royal Society)は、現存する最も古い科学学会。1660年に国王チャールズ2世の勅許を得て設立された。正式名称は"The President, Council, and Fellows of the Royal Society of London for Improving Natural Knowledge"(自然知識を促進するためのロンドン王立協会)。日本語訳ではロンドン王立協会(-おうりつきょうかい)、王立学会(おうりつがっかい)など。 この会は任意団体ではあるが、イギリスの事実上の学士院(アカデミー)としてイギリスにおける科学者の団体の頂点にあたる。また、科学審議会(Science Council)の一翼をになうことによって、イギリスの科学の運営および行政にも大いに影響をもっている。1782年創立の王立アイルランドアカデミーと密接な関係があり、1783年創立のエジンバラ王立協会とは関係が薄い。.

新しい!!: スターリングの近似と王立協会 · 続きを見る »

階乗

数学において非負整数 の階乗(かいじょう、factorial) は、1 から までのすべての整数の積である。例えば、 である。空積の規約のもと と定義する。 階乗は数学の様々な場面に出現するが、特に組合せ論、代数学、解析学などが著しい。階乗の最も基本的な出自は 個の相異なる対象を一列に並べる方法(対象の置換)の総数が 通りであるという事実である。この事実は少なくとも12世紀にはインドの学者によって知られていた。は1677年にへの応用として階乗を記述した。再帰的な手法による記述の後、Stedman は(独自の言葉を用いて)階乗に関しての記述を与えている: 感嘆符(!)を用いた、この "" という表記は1808年にによって発明された。 階乗の定義は、最も重要な性質を残したまま、非整数を引数とする函数に拡張することができる。そうすれば解析学における著しい手法などの進んだ数学を利用できるようになる。.

新しい!!: スターリングの近似と階乗 · 続きを見る »

階乗冪

数学、とくに離散数学の各分野における階乗冪(かいじょうべき、factorial powerKnuth, The Art of Computer Programming, Vol. は、冪乗によく似た演算だが、階乗のように因子が 1 ずつずれていく。階乗冪には下降階乗冪 (falling factorial) 降冪、下方階乗冪とも。と上昇階乗冪 (rising factorial) 昇冪、上方階乗冪とも。とがある。また、両方向へずらしながら積をとる類似の概念に、中心階乗冪 (central factorial) がある。 階乗冪は冪あるいは冪函数の類似であり、特殊函数論あるいは組合せ論に広く応用を持つ。.

新しい!!: スターリングの近似と階乗冪 · 続きを見る »

黒体

黒体(こくたい、)あるいは完全放射体(かんぜんほうしゃたい)とは、外部から入射する電磁波を、あらゆる波長にわたって完全に吸収し、また熱放射できる物体のこと。.

新しい!!: スターリングの近似と黒体 · 続きを見る »

量子もつれ

量子もつれ(りょうしもつれ、quantum entanglement)とは、一般的に を漠然と指す用語として用いられる。しかし、量子情報理論においてはより限定的に、 を表す用語として用いられる。 (2)は(1)のある側面を緻密化したものであるが、捨象された部分も少なくない。例えば典型的な非局所効果であるベルの不等式の破れなどは(2)の枠組みにはなじまない。 どちらの意味においても、 複合系の状態がそれを構成する個々の部分系の量子状態の積として表せないときにのみ、量子もつれは存在する(逆は必ずしも真ではない)。このときの複合系の状態をエンタングル状態という。量子もつれは、量子絡み合い(りょうしからみあい)、量子エンタングルメントまたは単にエンタングルメントともよばれる。.

新しい!!: スターリングの近似と量子もつれ · 続きを見る »

量子論

量子論(りょうしろん)とは、ある物理量が任意の値を取ることができず、特定の離散的な値しかとることができない、すなわち量子化を受けるような全ての現象と効果を扱う学問である。粒子と波動の二重性、物理的過程の不確定性、観測による不可避な擾乱も特徴である。量子論は、マックス・プランクのまで遡る全ての理論、、概念を包括する。量子仮説は1900年に、例えば光や物質構造に対する古典物理学的説明が限界に来ていたために産まれた。 量子論は、相対性理論と共に現代物理学の基礎的な二つの柱である。量子物理学と古典物理学との間の違いは、微視的な(例えば、原子や分子の構造)もしくは、特に「純粋な」系(例えば、超伝導やレーザー光)において特に顕著である。しかし、様々な物質の化学的および物理的性質(色、磁性、電気伝導性など)のように日常的な事も、量子論によってしか説明ができない。 量子論には、量子力学と量子場理論と呼ばれる二つの理論物理学上の領域が含まれる。量子力学はの場の影響下での振る舞いを記述する。量子場理論は場も量子的対象として扱う。これら二つの理論の予測は、実験結果と驚くべき精度で一致する。唯一の欠点は、現状の知識状態では一般相対性理論と整合させることができないという点にある。.

新しい!!: スターリングの近似と量子論 · 続きを見る »

MathWorld

MathWorldはウルフラム・リサーチ社が運営している数学の解説のウェブサイト。.

新しい!!: スターリングの近似とMathWorld · 続きを見る »

PlanetMath

PlanetMath(プラネットマス)はユーザーが協力して作成するフリーの数学辞典のウェブサイト。人気の数学辞典サイトMathWorldが訴訟によって差し止められたことをきっかけに、2000年の秋から開設された。PlanetMath ではピアレビューと厳密性に重点をおき、教育に利用できるようなコンテンツをめざしている。各項目の分類は米国数学会(American Mathematical Society)の発行する数学科目分類(Mathematics Subject Classification)に準拠している。 ライセンスには クリエイティブ・コモンズ・ライセンス (CC-BY) を使用している。ウィキペディアなどとは異なり、各記事に責任者が存在し、それ以外のユーザが勝手にページを書き換えることはできない。ただし、サイト利用者はコメント機能を通して記事の責任者に意見を伝えることができるようになっている。なお、各ページは数学記号の使用を考慮してLaTeXで記述されており、コンテンツ管理には Noösphere という独自に開発されたソフトウェアを使用している。英語版ウィキペディアでは、PlanetMath の内容をウィキペディアに活用するプロジェクトがある。.

新しい!!: スターリングの近似とPlanetMath · 続きを見る »

漸近展開

漸近展開(ぜんきんてんかい、Asymptotic expansion)とは、与えられた関数を、より簡単な形をした関数列の級数として近似することをいう。テイラー展開は漸近展開の特別な場合であるが、漸近展開で得られた級数の値は、必ずしも元の関数の値に収束するとは言えない。しかし、関数の性質を調べる際、元の関数の形では扱いが難しい場合、漸近展開によって元の関数を級数の形で近似することにより、関数の性質が得られることがある。漸近展開は解析学では重要な手法の一つであり、確率論の基礎として用いることがある。.

新しい!!: スターリングの近似と漸近展開 · 続きを見る »

1763年

記載なし。

新しい!!: スターリングの近似と1763年 · 続きを見る »

ここにリダイレクトされます:

スターリングの公式

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »