ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ジョセフソン効果

索引 ジョセフソン効果

ョセフソン効果(ジョセフソンこうか、)は、弱く結合した2つの超伝導体の間に、超伝導電子対のトンネル効果によって超伝導電流が流れる現象である。1962年に、当時ケンブリッジ大学の大学院生だったブライアン・ジョセフソンによって理論的に導かれ、ベル研究所のアンダーソンとローウェルによって実験的に検証された。1973年、ブライアン・ジョセフソンは江崎玲於奈らと共にジョゼフソン効果の研究によりノーベル物理学賞を受賞した。波動関数の位相というミクロな量をマクロに観測できるという点で、超伝導の特徴を最も端的に示す現象と言うことができる。超伝導量子干渉計(SQUID)のようなジョセフソン効果による量子力学回路の重要な実用例もある。 弱結合の種類としては、トンネル接合、サブミクロンサイズのブリッジ、ポイントコンタクト等がある。また、トンネル障壁としては厚さ 程度の絶縁体、厚さ 程度の常伝導金属あるいは半導体等が使われる。弱結合を介して流れる超伝導電流をジョセフソン電流、ジョセフソン効果を示すトンネル接合をジョセフソン接合と呼ぶ。電子デバイスとして扱われる場合はジョセフソン素子と呼ばれる。.

39 関係: 効果の一覧半導体世界大百科事典位相ノーベル物理学賞マイクロ波ボルト (単位)ボルツマン定数ボース=アインシュタイン凝縮トンネル効果ブライアン・ジョゼフソンプランク定数ファインマン物理学フィリップ・アンダーソンフィジカル・レビューベル研究所アムステルダムアメリカ国立標準技術研究所アメリカ物理学会エルゼビアケンブリッジ大学ジョセフソンコンピュータジョセフソン素子BCS理論磁場磁束科学技術データ委員会絶縁体超伝導超伝導量子干渉計零点エネルギー電子配置電圧電気素量電流Physics LettersPortable Document Format江崎玲於奈波動関数

効果の一覧

効果の一覧(こうかのいちらん)は、固有名として使われる効果を示す。学問上の効果、社会一般で言われる効果を含む。効果の名称の後ろの注記は分野を示す。但し、特殊効果、視覚効果は除く。.

新しい!!: ジョセフソン効果と効果の一覧 · 続きを見る »

半導体

半導体(はんどうたい、semiconductor)とは、電気伝導性の良い金属などの導体(良導体)と電気抵抗率の大きい絶縁体の中間的な抵抗率をもつ物質を言う(抵抗率だけで半導体を論じるとそれは抵抗器と同じ特性しか持ち合わせない)。代表的なものとしては元素半導体のケイ素(Si)などがある。 電子工学で使用されるICのような半導体素子はこの半導体の性質を利用している。 良導体(通常の金属)、半導体、絶縁体におけるバンドギャップ(禁制帯幅)の模式図。ある種の半導体では比較的容易に電子が伝導帯へと遷移することで電気伝導性を持つ伝導電子が生じる。金属ではエネルギーバンド内に空き準位があり、価電子がすぐ上の空き準位に移って伝導電子となるため、常に電気伝導性を示す。.

新しい!!: ジョセフソン効果と半導体 · 続きを見る »

世界大百科事典

世界大百科事典(せかいだいひゃっかじてん)は、平凡社が出版する百科事典のひとつ。最新版は2007年9月に発売された『改訂新版 世界大百科事典』であり、全35巻、総項約24,900、総項目数約9万、索引項目数約49万である。最新版の編集長は、加藤周一。.

新しい!!: ジョセフソン効果と世界大百科事典 · 続きを見る »

位相

位相(いそう、)は、波動などの周期的な現象において、ひとつの周期中の位置を示す無次元量で、通常は角度(単位は「度」または「ラジアン」)で表される。 たとえば、時間領域における正弦波を とすると、(ωt + &alpha) のことを位相と言う。特に t.

新しい!!: ジョセフソン効果と位相 · 続きを見る »

ノーベル物理学賞

ノーベル物理学賞(ノーベルぶつりがくしょう、Nobelpriset i fysik)は、ノーベル賞の一部門。アルフレッド・ノーベルの遺言によって創設された6部門のうちの一つ。物理学の分野において重要な発見を行った人物に授与される。 ノーベル物理学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には宝箱を持ち雲の中から現れた自然の女神のベールを科学の神が持ち上げて素顔を眺めている姿(化学賞と共通)がデザインされている。.

新しい!!: ジョセフソン効果とノーベル物理学賞 · 続きを見る »

マイクロ波

マイクロ波(マイクロは、Microwave)は、電波の周波数による分類の一つである。「マイクロ」は、電波の中で最も短い波長域であることを意味する。.

新しい!!: ジョセフソン効果とマイクロ波 · 続きを見る »

ボルト (単位)

ボルト(volt、記号:V)は、電圧・電位差・起電力の単位である。名称は、ボルタ電池を発明した物理学者アレッサンドロ・ボルタに由来する。 1ボルトは、以下のように定義することができる。表現の仕方が違うだけで、いずれも値は同じである。.

新しい!!: ジョセフソン効果とボルト (単位) · 続きを見る »

ボルツマン定数

ボルツマン定数(ボルツマンていすう、Boltzmann constant)は、統計力学において、状態数とエントロピーを関係付ける物理定数である。統計力学の分野において重要な貢献をしたオーストリアの物理学者ルートヴィッヒ・ボルツマンにちなんで名付けられた。通常は記号 が用いられる。特にの頭文字を添えて で表されることもある。 ボルツマンの原理において、エントロピーは定まったエネルギー(及び物質量や体積などの状態量)の下で取りうる状態の数 の対数に比例する。これを と書いたときの比例係数 がボルツマン定数である。従って、ボルツマン定数はエントロピーの次元を持ち、熱力学温度をエネルギーに関係付ける定数として位置付けられる。国際単位系(SI)における単位はジュール毎ケルビン(記号: J K)が用いられる。.

新しい!!: ジョセフソン効果とボルツマン定数 · 続きを見る »

ボース=アインシュタイン凝縮

ボース=アインシュタイン凝縮(ボース=アインシュタインぎょうしゅく、Bose-Einstein condensation英語では、凝縮する過程を condensation、凝縮した状態を condensate と言い分ける場合もある。)、または略してBECとは、ある転移温度以下で巨視的な数のボース粒子が最低エネルギー状態に落ち込む相転移現象 上田 (1998) E.A. Cornel ''et al.'' (1999) F. Dalfavo ''et al.'' (1999) W. Kettelrle ''et al.'' (1999)。量子力学的なボース粒子の満たす統計性であるボース=アインシュタイン統計の性質から導かれる。BECの存在はアルベルト・アインシュタインの1925年の論文の中で予言されたA. Pais (2005), chapter.23 。粒子間の相互作用による他の相転移現象とは異なり、純粋に量子統計性から引き起こされる相転移であり、アインシュタインは「引力なしの凝縮」と呼んだ。粒子間相互作用が無視できる理想ボース気体に近い中性原子気体のBECは、アインシュタインの予言から70年経った1995年に実現された。1995年にコロラド大学の研究グループはルビジウム87(87Rb)、マサチューセッツ工科大学(MIT)の研究グループはナトリウム23(23Na)の希薄な中性アルカリ原子気体でのBECを実現させた。中性アルカリ原子気体でBECが起こる数マイクロKから数百ナノKという極低温状態の実現には、レーザー冷却などの冷却技術やなどの捕獲技術の確立が不可欠であった (free access) (free access)。2001年のノーベル物理学賞は、これらのBEC実現の実験的成果に対し、授与された。.

新しい!!: ジョセフソン効果とボース=アインシュタイン凝縮 · 続きを見る »

トンネル効果

トンネル効果 (トンネルこうか) 、量子トンネル(りょうしトンネル )、または単にトンネリングとは、古典力学的には乗り越えられないはずのを粒子があたかも障壁にあいたトンネルを抜けたかのように通過する量子力学的現象である。太陽のような主系列星で起こっている核融合など、いくつかの物理的現象において欠かせない役割を果たしている。トンネルダイオード、量子コンピュータ、走査型トンネル顕微鏡などの装置において応用されているという意味でも重要である。この効果は20世紀初頭に予言され、20世紀半ばには一般的な物理現象として受け入れられた。 トンネリングはハイゼンベルクの不確定性原理と物質における粒子と波動の二重性を用いて説明されることが多い。この現象の中心は純粋に量子力学的な概念であり、量子トンネルは量子力学によって得られた新たな知見である。.

新しい!!: ジョセフソン効果とトンネル効果 · 続きを見る »

ブライアン・ジョゼフソン

ブライアン・D・ジョゼフソン(Brian David Josephson, 1940年1月4日 - )は、イギリスの物理学者。王立協会フェロー。ジョゼフソン効果と呼ばれることになる現象を予測した研究で1973年のノーベル物理学賞を受賞。 2007年末現在、ケンブリッジ大学名誉教授として、キャベンディッシュ研究所の凝縮系物質理論 (TCM) 部門において、Mind-Matter Unification Project(精神-物質統合プロジェクト)を指揮している。トリニティ・カレッジのフェローでもある。.

新しい!!: ジョセフソン効果とブライアン・ジョゼフソン · 続きを見る »

プランク定数

プランク定数(プランクていすう、プランクじょうすう、)は、光子のもつエネルギーと振動数の比例関係をあらわす比例定数のことで、量子論を特徴付ける物理定数である。量子力学の創始者の一人であるマックス・プランクにちなんで命名された。作用の次元を持ち、作用量子とも呼ばれている。SIにおける単位はジュール秒(記号: J s)である。.

新しい!!: ジョセフソン効果とプランク定数 · 続きを見る »

ファインマン物理学

『ファインマン物理学』(ふぁいんまんぶつりがく、The Feynman Lectures on Physics)は1963年、1964年、1965年に出版されたリチャード・P・ファインマンとロバート・B・レイトン、マシュー・サンズ(en)による3巻構成の物理学の教科書である。ファインマンが1961年から1963年にかけてカリフォルニア工科大学(California Institute of Technology, 略称: Caltech, カルテック)で学部1、2年生を対象に行った講義が基になっている。2013年からはカルテックのサイトでも無料で公開されている。日本語訳は1967年に岩波書店から刊行された。.

新しい!!: ジョセフソン効果とファインマン物理学 · 続きを見る »

フィリップ・アンダーソン

フィリップ・ウォーレン・アンダーソン(Philip Warren Anderson、1923年12月13日 - )は、アメリカの物理学者。プリンストン大学教授。.

新しい!!: ジョセフソン効果とフィリップ・アンダーソン · 続きを見る »

フィジカル・レビュー

『フィジカル・レビュー』(英語:Physical Review)はアメリカ物理学会が発行する学術雑誌で、物理学の専門誌としては最も権威がある。現在、Physical Review AからEまでの領域別専門誌と、物理学全領域を扱う速報誌Physical Review Lettersに分かれており、特にPhysical Review Lettersに論文を載せることは物理学者の一つの目標となっている。.

新しい!!: ジョセフソン効果とフィジカル・レビュー · 続きを見る »

ベル研究所

ベル研究所(ベルけんきゅうじょ、Bell Laboratories)はもともとBell System社の研究開発部門として設立された研究所であり、現在はノキアの子会社である。「ベル電話研究所」、略して「ベル研」とも。.

新しい!!: ジョセフソン効果とベル研究所 · 続きを見る »

アムステルダム

アムステルダム(オランダ語: Amsterdam )は、オランダの北ホラント州の基礎自治体(ヘメーンテ)であり、オランダ最大の都市である。人口820,654人(2012年)、都市圏人口は2,289,762人にのぼる。商業や観光が盛んなヨーロッパ屈指の世界都市である。オランダ語での発音は片仮名で表記すると「アムスタダム」に近い。地名は「アムステル川のダム(堤防)」の意(「ダム広場」の項を参照)。 憲法に規定されたオランダの首都だが、国会、中央官庁、王宮、各国の大使館など首都機能のほとんどはデン・ハーグにある。 元々は小さな漁村だったが、13世紀にアムステル川の河口にダムを築き、町が築かれた。16世紀には海運貿易の港町として、ヨーロッパ屈指の都市へと発展した。現在のアムステルダムは、アムステルダム中央駅を中心に市内に網の目状に広がる運河や、その運河に沿って並ぶ無総督時代の豪商の邸宅、自転車、飾り窓の女性たち、アンネ・フランクの家などで広く知られる。.

新しい!!: ジョセフソン効果とアムステルダム · 続きを見る »

アメリカ国立標準技術研究所

アメリカ国立標準技術研究所(アメリカこくりつひょうじゅんぎじゅつけんきゅうじょ、National Institute of Standards and Technology, NIST)は、アメリカ合衆国の国立の計量標準研究所であり、アメリカ合衆国商務省配下の技術部門であり非監督(non-regulatory )機関である。1901年から1988年までは国立標準局 (National Bureau of Standards, NBS) と称していた。その公式任務は次の通り。 2007会計年度(2006年10月1日-2007年9月30日)の予算は約8億4330万ドルだった。2009年の予算は9億9200万ドルだが、アメリカ復興・再投資法の一部として6億1000万ドルを別に受け取っている。2013年現在、NISTには約3000人の科学者、工学者、技術者がいる(他にサポートスタッフと運営部門)。また、国内企業や海外から約2700人の科学者、工学者を受け入れている。さらに国内約400ヶ所の提携機関で1300人の製造技術の専門家やスタッフが関わっている。NISTの出版している Handbook 44 は「計測機器についての仕様、許容誤差、他の技術的要件」を提供している。.

新しい!!: ジョセフソン効果とアメリカ国立標準技術研究所 · 続きを見る »

アメリカ物理学会

アメリカ物理学会(アメリカぶつりがっかい、英語:American Physical Society、略称:APS)は1899年に設立された、世界で2番目に大きな物理学者の学会(1位はドイツ物理学会)。毎年20回以上の会合を開催し、4万人以上のメンバーが所属している。 米国物理学協会(American Institute of Physics、略称:AIP)のメンバーとなっている団体であり、会員には毎月、学会誌の代わりに米国物理学協会が発行している "Physics Today" を配布している。なお、その記事の一部は日本では丸善の月刊科学雑誌『パリティ』に翻訳されて掲載されている。 日本物理学会とは提携関係にあり、会員は日本物理学会で発表できる。.

新しい!!: ジョセフソン効果とアメリカ物理学会 · 続きを見る »

エルゼビア

thumb エルゼビア (Elsevier B.V.、エルゼビア・ベーフェー) は、オランダ・アムステルダムを本拠とする国際的な出版社。医学・科学技術関係を中心とする世界最大規模の出版社で、学術雑誌も多数発行している。現在はレレックス・グループの100%子会社である。日本法人はエルゼビア・ジャパン株式会社。.

新しい!!: ジョセフソン効果とエルゼビア · 続きを見る »

ケンブリッジ大学

ンブリッジ大学(University of Cambridge)は、イギリスの大学都市ケンブリッジに所在する総合大学であり、イギリス伝統のカレッジ制を特徴とする世界屈指の名門大学である。中世に創設されて以来、英語圏ではオックスフォード大学に次ぐ古い歴史をもっており、アンシャン・ユニヴァシティーに属する。 ハーバード大学、シカゴ大学、オックスフォード大学等と並び、各種の世界大学ランキングで常にトップレベルの優秀な大学として評価されており、公式のノーベル賞受賞者は96人(2016年12月現在)と、世界の大学・研究機関で最多(内、卒業生の受賞者は65人)。総長はで、副総長は。 公式サイトでは国公立大学(Public University)と紹介している。法的根拠が国王の勅許状により設立された自治団体であること、大学財政審議会(UFC)を通じて国家から国庫補助金の配分を受けており、大学規模や文科・理科の配分比率がUFCにより決定されていること、法的性質が明らかに違うバッキンガム大学等の私立大学が近年新設されたことによる。ただし、自然発生的な創立の歴史や高度な大学自治、独自の財産と安定収入のあるカレッジの存在、日本でいう国公立大学とは解釈が異なる。 アメリカ、ヨーロッパ、アジア、アフリカ各国からの留学生も多い。2005年現在、EU外からの学生は3,000人を超え、日本からの留学生も毎年十数人~数十人規模となっている。研究者の交流も盛んで、日本からの在外訪問研究者も多い。.

新しい!!: ジョセフソン効果とケンブリッジ大学 · 続きを見る »

ジョセフソンコンピュータ

ョセフソンコンピュータ(Josephson Computer)は、ジョセフソン素子を使用したコンピュータである。その素子の極低温の作動可能域のために、液体ヘリウム冷凍機など何らかの高度な冷却が通常必須である。低消費電力、高速などの特長が期待されているが、研究途上の技術であり、実用化され広く使われてはいない。主に日本とアメリカ合衆国で研究されている。また従来のコンピュータを画期的に高性能化させるためのものとしての研究の他、量子コンピュータへの利用も研究されているが、いずれにしても基本的には研究段階である。.

新しい!!: ジョセフソン効果とジョセフソンコンピュータ · 続きを見る »

ジョセフソン素子

ョセフソン素子(ジョセフソンそし、Josephson device)とは、極薄の絶縁体あるいは常伝導金属薄膜を超伝導体で挟んだときに生じる「ジョセフソン効果」を用いた電子素子である。ブライアン・ジョセフソンによって考案された。 二つの超伝導体の間に薄い絶縁体を挟んで弱く接合した「ジョセフソン接合」に電流を流すと、トンネル効果によって二つの超伝導体間に直流電流が流れるが、電圧をかけるとその電圧に比例した周波数の振動電流が発生する。この「ジョセフソン効果」を応用したものがジョセフソン素子であり、そのスイッチング速度が従来のシリコン半導体より速いため、シリコン素子を超える夢のコンピュータの高速素子として期待された。 しかし、ジョセフソン素子は超低温下でしか動作しないため、液体ヘリウムで冷却する必要があるが、コスト高となることからまだ本格的な実用化には至っていない。高温超伝導体の応用研究が進むにつれ液体窒素の冷却温度でも作動するジョセフソン素子の開発が進みつつある。近年ではテラヘルツ波の発振器としても期待が高まりつつある。.

新しい!!: ジョセフソン効果とジョセフソン素子 · 続きを見る »

BCS理論

BCS理論(ビーシーエスりろん、BCS theory、Bardeen Cooper Schrieffer)とは、1911年の超伝導現象発見以来、初めてこの現象を微視的に解明した理論。1957年に米国、イリノイ大学のジョン・バーディーン、レオン・クーパー、ジョン・ロバート・シュリーファーの三人によって提唱された。三人の名前の頭文字からBCSと付けられた。この理論によると超伝導転移温度や比熱などが、式により表される。三人はこの業績により1972年のノーベル物理学賞を受賞した。.

新しい!!: ジョセフソン効果とBCS理論 · 続きを見る »

磁場

磁場(じば、Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。 この項では一般的な磁場の性質、及びHを扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。.

新しい!!: ジョセフソン効果と磁場 · 続きを見る »

磁束

磁束(じそく、英語:magnetic flux、磁気誘導束とも言う)とは、その場における磁界の強さと方向を、1(Wb)を1本とした線の束で表したものである。.

新しい!!: ジョセフソン効果と磁束 · 続きを見る »

科学技術データ委員会

科学技術データ委員会(かがくぎじゅつデータいいんかい、CODATA; Committee on Data for Science and Technology)は、国際科学会議(ICSU、旧名 国際学術連合)によって1966年に設立された学際的な科学委員会である。CODATAは、科学と技術に関するあらゆるデータについて、その質、信頼性、管理、検索性の向上を行っている。正式名称の科学技術データ委員会 よりは、CODATAと呼ばれることの方が多い。 CODATAは2年ごとにCODATA国際会議を開催している。.

新しい!!: ジョセフソン効果と科学技術データ委員会 · 続きを見る »

絶縁体

絶縁体(ぜつえんたい、insulator)は、電気あるいは熱を通しにくい性質を持つ物質の総称である。.

新しい!!: ジョセフソン効果と絶縁体 · 続きを見る »

超伝導

超伝導(ちょうでんどう、superconductivity)とは、特定の金属や化合物などの物質を非常に低い温度へ冷却したときに、電気抵抗が急激にゼロになる現象。「超電導」と表記されることもある。1911年、オランダの物理学者ヘイケ・カメルリング・オンネスにより発見された。この現象と同時に、マイスナー効果により外部からの磁力線が遮断されることから、電気抵抗の測定によらなくとも、超伝導状態が判別できる。この現象が現れるときの温度は超伝導転移温度と呼ばれ、この温度を室温程度に上昇させること(室温超伝導)は、現代物理学の重要な研究目標の一つ。.

新しい!!: ジョセフソン効果と超伝導 · 続きを見る »

超伝導量子干渉計

SQUIDセンシング素子 超伝導量子干渉計 (superconducting quantum interference device, SQUID) とは、ジョセフソン接合を含む環状超伝導体に基く、極めて弱い磁場の検出に用いられる非常に感度の高い磁気センサの一種である。 SQUID は数日かけて平均しながら計測すれば、 もの弱い磁場も検出できるほどの感度を誇る。ノイズレベルは という低さである。比較に、典型的な冷蔵庫マグネットの作る磁場の強度を挙げると 0.01 テスラ 程度であり、また動物の体内で起こる反応により発せられる磁場は から 程度である。近年発明されたSERF原子磁気センサは、潜在的により高い感度を持っているうえ低温冷却が必要ないが、サイズ的にオーダーが一つほど大きく、かつほぼゼロ磁場下でしか作動できないという欠点がある但し、SQUIDは極低温で機能するために厳重な断熱が不可欠なため、 以上の断熱層を設ける必要があり、空間分解能が下がる。.

新しい!!: ジョセフソン効果と超伝導量子干渉計 · 続きを見る »

零点エネルギー

零点エネルギー(れいてんエネルギー、zero-point energy)あるいはゼロ点エネルギーとは、絶対零度においても原子が不確定性原理のために静止せずに一定の振動をする場合のエネルギーである。 零点エネルギーは量子力学の系における最も低いエネルギーである。基底状態のエネルギーと言いかえることもできる。量子力学では、すべての粒子には波動性を持っているため、基底状態であっても振動した状態にあり、零点エネルギーというエネルギーを持つことになる。結果として、絶対零度であっても振動していることになる。たとえば、液体ヘリウムは零点エネルギーの影響で、大気圧中ではどんなに温度を下げても固体になることはない。 零点エネルギーの考えは、1913年のドイツにおいて、アルバート・アインシュタインとオットー・シュテルンによって生み出された。この考えは1900年に書かれたマックス・プランクの式を元にしている。.

新しい!!: ジョセフソン効果と零点エネルギー · 続きを見る »

電子配置

電子配置(でんしはいち、)とは、多電子系である原子や分子の電子状態が「一体近似で得られる原子軌道あるいは分子軌道に複数の電子が詰まった状態」として近似的に表すことができると考えた場合に、電子がどのような軌道に配置しているのか示したもので、これによって各元素固有の性質が決定される。.

新しい!!: ジョセフソン効果と電子配置 · 続きを見る »

電圧

電圧(でんあつ、voltage)とは直観的には電気を流そうとする「圧力のようなもの」である-->。単位としては, SI単位系(MKSA単位系)ではボルト(V)が使われる。電圧を意味する記号には、EやVがよく使われる。 電圧は電位差ないしその近似によって定義される。 電気の流れに付いては「電流」を参照の事。.

新しい!!: ジョセフソン効果と電圧 · 続きを見る »

電気素量

電気素量 (でんきそりょう、elementary charge)は、電気量の単位となる物理定数である。陽子あるいは陽電子1個の電荷に等しく、電子の電荷の符号を変えた量に等しい。素電荷(そでんか)、電荷素量とも呼ばれる。一般に記号 で表される。 原子核物理学や化学では粒子の電荷を表すために用いられる。現在ではクォークの発見により、素電荷の1/3を単位とする粒子も存在するが、クォークの閉じ込めにより単独で取り出すことはできず、素電荷が電気量の最小単位である。 素粒子物理学では、電磁相互作用のゲージ結合定数であり、相互作用の大きさを表す指標である。 SIにおける電気素量の値は である2014年CODATA推奨値。SIとは異なる構成のガウス単位系(単位: esu)での値は であるParticle Data Group。.

新しい!!: ジョセフソン効果と電気素量 · 続きを見る »

電流

電流(でんりゅう、electric current電磁気学に議論を留める限りにおいては、単に と呼ぶことが多い。)は、電子に代表される荷電粒子他の荷電粒子にはイオンがある。また物質中の正孔は粒子的な性格を持つため、荷電粒子と見なすことができる。の移動に伴う電荷の移動(電気伝導)のこと、およびその物理量として、ある面を単位時間に通過する電荷の量のことである。 電線などの金属導体内を流れる電流のように、多くの場合で電流を構成している荷電粒子は電子であるが、電子の流れは電流と逆向きであり、直感に反するものとなっている。電流の向きは正の電荷が流れる向きとして定義されており、負の電荷を帯びる電子の流れる向きは電流の向きと逆になる。これは電子の詳細が知られるようになったのが19世紀の末から20世紀初頭にかけての出来事であり、導電現象の研究は18世紀の末から進んでいたためで、電流の向きの定義を逆転させることに伴う混乱を避けるために現在でも直感に反する定義が使われ続けている。 電流における電荷を担っているのは電子と陽子である。電線などの電気伝導体では電子であり、電解液ではイオン(電子が過不足した粒子)であり、プラズマでは両方である。 国際単位系 (SI) において、電流の大きさを表す単位はアンペアであり、単位記号は A であるアンペアはSI基本単位の1つである。。また、1アンペアの電流で1秒間に運ばれる電荷が1クーロンとなる。SI において電荷の単位を電流と時間の単位によって構成しているのは、電荷より電流の測定の方が容易なためである。電流は電流計を使って測定する。数式中で電流量を表すときは または で表現される。.

新しい!!: ジョセフソン効果と電流 · 続きを見る »

Physics Letters

『Physics Letters』(フィジックス・レターズ)は、1962年にエルゼビアから創刊された物理学の査読付き学術雑誌である。1967年以降は領域別に『Physics Letters A』と『Physics Letters B』へ分割され、現在も刊行中である。 『Physical Review Letters』と同様に、物理学分野における速報誌の一つである。.

新しい!!: ジョセフソン効果とPhysics Letters · 続きを見る »

Portable Document Format

Portable Document Format(ポータブル・ドキュメント・フォーマット、略称:PDF)は、アドビシステムズが開発および提唱する、電子上の文書に関するファイルフォーマットである。1993年に発売されたAdobe Acrobatで採用された。 特定の環境に左右されずに全ての環境でほぼ同様の状態で文章や画像等を閲覧できる特性を持っている。 アドビシステムズはPDF仕様を1993年より無償で公開していたが、それでもPDF規格はAdobeが策定するプロプライエタリなフォーマットであった。2008年7月には国際標準化機構によってISO 32000-1として標準化された。アドビはISO 32000-1 についての特許を無償で利用できるようにしたが、XFA (Adobe XML Forms Architecture) やAdobe JavaScriptなどはアドビのプロプライエタリな部分として残っている。.

新しい!!: ジョセフソン効果とPortable Document Format · 続きを見る »

江崎玲於奈

江崎 玲於奈(えさき れおな、「崎」は清音、1925年(大正14年)3月12日 - )は、日本の物理学者である。国外においてはレオ・エサキ()の名で知られる。1973年(昭和48年)に日本人としては4人目となるノーベル賞(ノーベル物理学賞)を受賞した。文化勲章受章者、勲一等旭日大綬章受章者。.

新しい!!: ジョセフソン効果と江崎玲於奈 · 続きを見る »

波動関数

波動関数(はどうかんすう、wave function)は、もともとは波動現象一般を表す関数のことだが、現在では量子状態(より正確には純粋状態)を表す複素数値関数のことを指すことがほとんどである。.

新しい!!: ジョセフソン効果と波動関数 · 続きを見る »

ここにリダイレクトされます:

ジョセフソンの効果ジョセフソン定数ジョセフソン接合ジョセフソン電流ジョゼフソン効果

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »