ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

シグモイド関数

索引 シグモイド関数

モイド関数(シグモイドかんすう、sigmoid function)は、 で表される実関数である。なお、a をゲイン (gain) と呼ぶ。 狭義には、ゲインが1の標準シグモイド関数 (standard sigmoid function) をさす。 以下は広義のシグモイド関数について述べる。標準シグモイド関数については、 a.

22 関係: 偶関数と奇関数単調写像双曲線関数変曲点実数微分法ロジットロジスティック方程式フェルミ分布関数ニューラルネットワークグーデルマン関数ゴンペルツ関数シグモイド点対称関数 (数学)自然対数連続 (数学)逆写像Σ正規分布活性化関数漸近線

偶関数と奇関数

数学において、偶関数(ぐうかんすう、even function)および奇関数(きかんすう、odd function)は、変数の符号を反転させる変換に関してそれぞれ、特定の対称性を満足する関数である。これらは解析学の多くの分野、殊に冪級数やフーリエ級数に関する理論において重要である。名称は、この性質を満足する冪函数の冪指数の(整数としての)偶奇に由来する(すなわち、函数 は が偶数のとき偶函数であり、 が奇数のとき奇函数である)。 この、函数の偶奇性 (parity of function) の概念は、始域および終域がともに加法逆元(マイナス元)を持つような場合であれば常に意味を成す。加法逆元を持つような代数系には、例えば任意のアーベル群、(必ずしも可換でない)環や体、あるいはベクトル空間などが挙げられるから、従って例えば実変数実数値の函数やベクトル変数複素数値の函数といったようなものに対して、その偶奇性を定めることができる。 以下では特に断らない限り、それら函数のグラフの対称性を詳らかにするために、実変数実数値函数に関して述べる。 y 軸対称 奇関数の例:正弦関数は原点対称 正弦関数と余弦関数 偶関数の例:絶対値関数 偶関数の例:双曲線余弦関数 奇関数の例:双曲線正弦関数 1.

新しい!!: シグモイド関数と偶関数と奇関数 · 続きを見る »

単調写像

単調写像(たんちょうしゃぞう、monotonic function, monotone function)または単調関数は、単調性、すなわち順序集合の間の写像が順序を保つような性質を持つ写像のことである。具体的な例としては以下の単調増加関数および単調減少関数がある。 単調増加(たんちょうぞうか、monotonically increasing)とは、狭義には実数の値を持つ関数 が、 の増加につれて常に関数値 も増加することをいい、このような性質を持つ関数を単調増加関数(たんちょうぞうかかんすう、monotonically increasing function)と呼ぶ。同様に、引数 の増加につれて関数値 が常に減少することを単調減少(たんちょうげんしょう、monotonically decreasing)といい、そのような性質を持つ関数を単調減少関数(たんちょうげんしょうかんすう、monotonically decreasing function)と呼ぶ。従って、連続な単調増加関数 を縦軸、その引数 を横軸にとったグラフ上の曲線は常に右上りで、右下がりになっている部分がない。逆に単調減少関数の場合には、常に右下がりであり右上がりの部分がない。 ある関数が単調増加または単調減少する性質をまとめて単調性(たんちょうせい、monotonicity)と呼ぶ。.

新しい!!: シグモイド関数と単調写像 · 続きを見る »

双曲線関数

csch) のグラフ 数学において、双曲線関数(そうきょくせんかんすう、hyperbolic function)とは、三角関数と類似の関数で、標準形の双曲線を媒介変数表示するときなどに現れる。.

新しい!!: シグモイド関数と双曲線関数 · 続きを見る »

変曲点

変曲点(へんきょくてん)とは、平面上の曲線で曲がる方向が変わる点のこと。幾何学的にいえば、曲線上で曲率の符号(プラス・マイナス)が変化する点(この点では0となる)をいう。これは幾何学的または解析学的に、次の各定義と同値である。.

新しい!!: シグモイド関数と変曲点 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: シグモイド関数と実数 · 続きを見る »

微分法

数学における微分法(びぶんほう、differential calculus; 微分学)は微分積分学の分科で、量の変化に注目して研究を行う。微分法は積分法と並び、微分積分学を二分する歴史的な分野である。 微分法における第一の研究対象は函数の微分(微分商、微分係数)、および無限小などの関連概念やその応用である。函数の選択された入力における微分商は入力値の近傍での函数の変化率を記述するものである。微分商を求める過程もまた、微分 (differentiation) と呼ばれる。幾何学的にはグラフ上の一点における微分係数は、それが存在してその点において定義されるならば、その点における函数のグラフの接線の傾きである。一変数の実数値函数に対しては、一点における函数の微分は一般にその点における函数の最適線型近似を定める。 微分法と積分法を繋ぐのが微分積分学の基本定理であり、これは積分が微分の逆を行う過程であることを述べるものである。 微分は量を扱うほとんど全ての分野に応用を持つ。たとえば物理学において、動く物体の変位の時間に関する導函数はその物体の速度であり、速度の時間に関する導函数は加速度である。物体の運動量の導函数はその物体に及ぼされた力に等しい(この微分に関する言及を整理すればニュートンの第二法則に結び付けられる有名な方程式 が導かれる)。化学反応の反応速度も導函数である。オペレーションズ・リサーチにおいて導函数は物資転送や工場設計の最適な応報の決定に用いられる。 導函数は函数の最大値・最小値を求めるのに頻繁に用いられる。導函数を含む方程式は微分方程式と呼ばれ、自然現象の記述において基本的である。微分およびその一般化は数学の多くの分野に現れ、例えば複素解析、函数解析学、微分幾何学、測度論および抽象代数学などを挙げることができる。.

新しい!!: シグモイド関数と微分法 · 続きを見る »

ロジット

ット(logit)とは、0から1の値をとるp に対し (対数の底は1より大きければ何でもよい) で表される値をいう。p を変数とするロジット関数とも呼ばれる。ロジット関数はロジスティック関数の逆関数であり、特に確率論と統計学で多く用いられる。 確率論、統計学では p はある事象の確率を意味し、「確率p のロジット」という言い方をする。p/(1 - p) はオッズに、ロジットはオッズの対数に当たり、2つの確率のロジットの差はオッズ比の対数に当たる。 ロジットは統計学で、特にロジットモデルとしてよく用いられる。ロジットモデルの最も単純なものは である。ここで pi はベルヌーイ試行を続けて行った場合にi 回目で「成功」する確率、xi はその成否が依存する何らかの数値を表す。例えば x は心臓発作で病院に担ぎ込まれた患者の年齢、「成功」というのはその人が病院に着く前に亡くなる(あるいは逆に「生存する」でもよいが)事象を意味する。統計学では一連のケースで x の値と「成功」「失敗」を観測し、最尤法によってa と b の値を推定する。そしてその結果は、x の値がわかっている場合に「成功」の確率を推定するのに使える。 ロジスティック回帰におけるロジットは、一般化線形モデルにおけるリンク関数の特別な場合である。もう1つの例としてプロビットモデルがある。これは曲線の中央部よりも尾の部分により注目したモデルである。 ロジットは確率的測定モデルの1つであるラッシュモデルでも重要である。これは特に心理学や教育学における評価に応用される。.

新しい!!: シグモイド関数とロジット · 続きを見る »

ロジスティック方程式

ティック方程式(ロジスティックほうていしき、英語:logistic equation)は、生物の個体数の変化の様子を表す数理モデルの一種である。ある単一種の生物が一定環境内で増殖するようなときに、その生物の個体数(個体群サイズ)の変動を予測できる。人間の場合でいえば、人口の変動を表すモデルである。 1838年にベルギーの数学者ピエール=フランソワ・フェルフルスト(Pierre-François Verhulst)によって、ロジスティック方程式は最初に発案された。フェルフルストは、1798年に発表されて大きな反響を呼んだトマス・ロバート・マルサスの『人口論』の不自然な点を解消するために、このモデルを考案した。マルサスは『人口論』で、人口は原理的に指数関数的に増加することを指摘した。しかし、実際には環境や資源は限られているため、人口の増加にはいずれブレーキがかかると考えるのが自然である。人口が増えるに連れて人口増加率は低減し、人口はどこかで飽和すると考えられる。ロジスティック方程式はこの点を取り入れて、生物の個体数増殖をモデル化したものである。フェルフルスト以後には、アメリカの生物学者レイモンド・パール(Raymond Pearl)が式を普及させた。 具体的には、ロジスティック方程式は という微分方程式で表される。N は個体数、t は時間、dN/dt が個体数の増加率を意味する。r は内的自然増加率、K は環境収容力と呼ばれる定数である。個体数が増えて環境収容力に近づくほど、個体数増加率が減っていくというモデルになっている。 式の解(個体数と時間の関係)はS字型の曲線を描き、個体数は最終的には環境収容力の値に収束する。この曲線や解の関数はロジスティック曲線やロジスティック関数として知られる。方程式の名称は、ロジスティック式やロジスティックモデル、ロジスティック微分方程式と表記される場合もある。発案者の名からVerhulst方程式、発案者と普及者の名からVerhulst-Pearl方程式とも呼ばれる。 ロジスティック方程式は、個体群生態学あるいは個体群動態論における数理モデルとしては入門的なものとして位置づけられ、より複雑な現象に対応する基礎を与える。数学分野としては、微分方程式論や力学系理論の初等的な話題としても取り上げられる。.

新しい!!: シグモイド関数とロジスティック方程式 · 続きを見る »

フェルミ分布関数

フェルミ分布関数(フェルミぶんぷかんすう、)とは、相互作用のないフェルミ粒子の系において、一つのエネルギー準位にある粒子の数(占有数)の分布を与える理論式である東京大学 知の構造化センター「物性物理学入門 (進化する教科書 Wiki)」。フェルミ・ディラック分布とも呼ばれる。.

新しい!!: シグモイド関数とフェルミ分布関数 · 続きを見る »

ニューラルネットワーク

ニューラルネットワーク(神経回路網、neural network、略称: NN)は、脳機能に見られるいくつかの特性を計算機上のシミュレーションによって表現することを目指した数学モデルである。研究の源流は生体の脳のモデル化であるが、神経科学の知見の改定などにより次第に脳モデルとは乖離が著しくなり、生物学や神経科学との区別のため、人工ニューラルネットワーク(artificial neural network、ANN)とも呼ばれる。.

新しい!!: シグモイド関数とニューラルネットワーク · 続きを見る »

グーデルマン関数

ーデルマン関数(グーデルマンかんすう、Gudermannian function、Gudermannfunktion)は、(1798–1852)にちなんで命名された、複素数を用いない三角関数及び双曲線関数と関係する関数。.

新しい!!: シグモイド関数とグーデルマン関数 · 続きを見る »

ゴンペルツ関数

ンペルツ関数(ごんぺるつかんすう、Gompertz function)とは、19世紀にが考案した死亡率に関する関数であり、成人後では死亡率が年齢の指数関数になることを表す。横軸に年齢、縦軸に死亡率の対数を取る(片対数グラフ)と、直線関係で表される。 ここで、.

新しい!!: シグモイド関数とゴンペルツ関数 · 続きを見る »

シグモイド

モイド(sigmoid)とは、ギリシア文字シグマ (σ) の語末形(ς)に似た形のこと。S字形ともいう。 特に各種グラフに現れるシグモイド曲線 (sigmoid curve) を指す。このようなグラフは個体群増加や、ある閾値以上で起きる反応(例えば急性毒性試験での死亡率)などに見られる。.

新しい!!: シグモイド関数とシグモイド · 続きを見る »

点対称

山梨県韮崎市の市章 点対称(てんたいしょう、point symmetry, point reflection)とは、対称性の一種である。点対称な図形は、対称点(対称中心)を中心とした反転に対し不変である。.

新しい!!: シグモイド関数と点対称 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: シグモイド関数と関数 (数学) · 続きを見る »

自然対数

実解析において実数の自然対数(しぜんたいすう、natural logarithm)は、超越的無理数であるネイピアの定数 を底とする対数を言う。 の自然対数を や、より一般に あるいは単に(底を暗に伏せて) などと書く。 通常の函数の記法に則って引数を指示する丸括弧を明示的に付けて、 や などのように書いてもよい 定義により、 の自然対数とは の肩にそれを載せた冪が 自身に一致するような冪指数のことに他ならない。例えば、 となることは となることを理由とする。特に の自然対数は であり、 の自然対数は である。 自然対数は、任意の正数 に対して 逆数函数 の から までの間のグラフの下にある面積( と の成立を意味する。 他の任意の対数がそうであるように、自然対数は なる意味で乗法を加法へ写す。これにより自然対数函数は正の実数の乗法群 から実数の加法群 への写像 として 群の準同型になる。 以外にも、任意の正数 に対して、それを底とする対数を定義することができるが、そのような対数は自然対数の定数倍として得ることができる(例えば二進対数は自然対数の 倍である)し、通常はそうして自然対数から定義される。対数は未知の量がほかの適当な量の冪と見なされる問題を解く際に有用で、例えば指数函数的減衰問題における減衰定数としての半減期を求めるときなどに利用できる。このように対数は、数学や自然科学の多くの分野において重要であり、また金融経済において複利を含む問題にも利用できる。 リンデマン–ヴァイアシュトラスの定理により、 でない任意の(正の)代数的数に対してその自然対数は超越数となる。.

新しい!!: シグモイド関数と自然対数 · 続きを見る »

連続 (数学)

数学において、連続(れんぞく、continuous)および連続性(れんぞくせい、continuity)とは、いくら拡大しても近くにあって差が無いことを示す極限概念である。位相空間のあいだの写像について、開集合や極限といった位相的な概念を一定の方法でたもつという条件によって連続性の概念が定められる。これは異なる位相空間のあいだの関係を表す最も基本的な枠組みである。日常語としては「連続」が「切れずに繋がっている」という意味で使われることがあるが、位相空間の性質として「切れずに繋がっている」ということを表す概念は「連結性」である。事実として「連結領域の連続像は必ず連結」であり、従って連結な定義域を持つ連続函数のグラフは文字通り「切れずに繋がっている」ことになるが、それは連続性の本質ではない。.

新しい!!: シグモイド関数と連続 (数学) · 続きを見る »

逆写像

数学における逆写像(ぎゃくしゃぞう、inverse mapping)は一口に言えば写像の与える元の対応関係を「反対」にして得られる写像である。すなわち、写像 が を に写すならば、 の逆写像は を に写し戻す。 函数と呼ばれる種類の写像の逆写像は、逆函数 (inverse function) と呼ばれる。.

新しい!!: シグモイド関数と逆写像 · 続きを見る »

Σ

Σ, σ, ς (シグマ、σίγμα / σῖγμα, sigma)は、ギリシア文字の一つ。伝統的な配列では 18 番目の文字。数価は200。現代ギリシア語では、語末形の "ς" を 6を表す "ϛ" (スティグマ)の代用として用いる。ラテンアルファベットの "S"、キリル文字の "С" は、この文字に由来する。.

新しい!!: シグモイド関数とΣ · 続きを見る »

正規分布

率論や統計学で用いられる正規分布(せいきぶんぷ、normal distribution)またはガウス分布(Gaussian distribution)は、平均値の付近に集積するようなデータの分布を表した連続的な変数に関する確率分布である。中心極限定理により、独立な多数の因子の和として表される確率変数は正規分布に従う。このことにより正規分布は統計学や自然科学、社会科学の様々な場面で複雑な現象を簡単に表すモデルとして用いられている。たとえば実験における測定の誤差は正規分布に従って分布すると仮定され、不確かさの評価が計算されている。 また、正規分布の確率密度関数のフーリエ変換は再び正規分布の密度関数になることから、フーリエ解析および派生した様々な数学・物理の理論の体系において、正規分布は基本的な役割を果たしている。 確率変数 が1次元正規分布に従う場合、X \sim N(\mu, \sigma^) 、確率変数 が 次元正規分布に従う場合、X \sim N_n(\mu, \mathit) などと表記される。.

新しい!!: シグモイド関数と正規分布 · 続きを見る »

活性化関数

活性化関数(かっせいかかんすう、activation function)もしくは伝達関数(でんたつかんすう、transfer function)とは、ニューラルネットワークにおいて、線形変換をした後に適用する非線形関数もしくは恒等関数のこと。.

新しい!!: シグモイド関数と活性化関数 · 続きを見る »

漸近線

''y''.

新しい!!: シグモイド関数と漸近線 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »