ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

シクロヘキサンの立体配座

索引 シクロヘキサンの立体配座

ヘキサンの立体配座(シクロヘキサンのりったいはいざ、cyclohexane conformation)は、シクロヘキサン分子がその化学結合の完全性を保ちながら取ることができる複数の三次元形状のいずれかである。 平らな正六角形の内角は120º であるが、炭素鎖における連続する結合間の望ましい角度は約109.5º (正四面体の中心と頂点を結ぶ直線のなす角)である。したがって、シクロヘキサン環は、全ての角度が109.5º に近づき、平らな六角形形状よりも低いひずみエネルギーを持つ特定の非平面立体配座を取る傾向にある。最も重要な形状はいす形、半いす形、舟形、ねじれ舟形である。シクロヘキサン分子はこれらの立体配座間を容易に移ることができ、「いす形」と「ねじれ舟形」のみが純粋な形で単離することができる。 シクロヘキサンの立体配座は配座異性の古典的な例であるため有機化学において広く研究されてきており、シクロヘキサンの物理的および化学的性質に顕著な影響を与えている。.

40 関係: 原子ひずみエネルギー単結合多角形化学結合ノーベル化学賞ネイチャーメチルシクロヘキサンデレック・バートンダイヤモンドベンゼン分子分子対称性分子構造アドルフ・フォン・バイヤーエネルギーオッド・ハッセルケルビンシクロヘキサンシクロヘキサンの立体配座六角形Chemische Berichte立体障害立体配座立体配置米国化学会誌結合角結合長環ひずみ炭素遷移状態角度電子軌道Journal of Chemical EducationJournal of Organic Chemistry極値正四面体混成軌道有機化学

化学において、基(き、group、radical)は、その指し示すものは原子の集合体であるが、具体的には複数の異なる概念に対応付けられているため、どの概念を指すものかは文脈に依存して判断される。 分子中に任意の境界を設定すると、原子が相互に共有結合で連結された部分構造を定義することができる。これは、基(または原子団)と呼ばれ、個々の原子団は「~基」(「メチル基」など)と命名される。 「基」という語は、上に述べた原子団を指す場合と、遊離基(またはラジカル)を意味する場合がある。後者の用語法は、日本語でかつて遊離基の個別名称を原子団同様に「~基」(「メチル基」など)としていたことに由来するが、現在ではほとんどの場合「ラジカル」、「遊離基」と呼ぶ。原語における経緯についてはラジカルの項に詳しい。以上、語義の変遷は、おおかた右図のようにまとめられる。 以下この記事では、原子団たる基(group)について述べる。.

新しい!!: シクロヘキサンの立体配座と基 · 続きを見る »

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

新しい!!: シクロヘキサンの立体配座と原子 · 続きを見る »

ひずみエネルギー

ひずみエネルギー (Strain energy) とは弾性体に外力が仕事をした場合、弾性体に蓄えられるエネルギー。単軸引張状態では、応力σ、ひずみεが生じている体積V の物体に蓄えられるひずみエネルギーU は、 となる。.

新しい!!: シクロヘキサンの立体配座とひずみエネルギー · 続きを見る »

単結合

共有結合における単結合は通常、σ結合(シグマ結合)と呼ばれる結合でできている。 詳しい議論には、量子化学の知識が必要である。.

新しい!!: シクロヘキサンの立体配座と単結合 · 続きを見る »

多角形

初等幾何学における多辺形または多角形(たかっけい、polygon; )は、閉あるいは閉曲線を成す、線分の閉じた有限鎖で囲まれた平面図形を言う。多角形を構成するこれら線分をその多角形の辺 (edge, side) と呼び、それらの二つの辺が交わる点をその多角形の頂点 (vertex, corner) と呼ぶ。 個の辺を持つ多角形は -辺形 (-gon) と呼ぶ。例えば三角形は三辺形である。多角形は、より一般の任意次元における超多面体の二次元の例になっている。 多角形に関する基本的な幾何学的概念は特定の目的に応じて様々な方法で適応されてきた。数学においてはしばしば有界な閉折れ線や自己交叉を持たないに限って問題にするため、そのようなもののみ多角形と呼ぶこともある。他方、多角形の境界が自分自身と交わることを許す流儀もあり、その場合星型多角形やその他のが形作られる。その他の多角形の一般化については後述。 多角形 (poly­gon) の語は、「多い」を意味するπολύς と「角」を意味するγωνία に由来する.

新しい!!: シクロヘキサンの立体配座と多角形 · 続きを見る »

化学結合

化学結合(かがくけつごう)は化学物質を構成する複数の原子を結びつけている結合である。化学結合は分子内にある原子同士をつなぎ合わせる分子内結合と分子と別の分子とをつなぎ合わせる分子間結合とに大別でき、分子間結合を作る力を分子間力という。なお、金属結晶は通常の意味での「分子」とは言い難いが、金属結晶を構成する結合(金属結合)を説明するバンド理論では、分子内結合における原子の数を無限大に飛ばした極限を取ることで、金属結合の概念を定式化している。 分子内結合、分子間結合、金属結合のいずれにおいても、化学結合を作る力は原子の中で正の電荷を持つ原子核が、別の原子の中で負の電荷を持つ電子を電磁気力によって引きつける事によって実現されている。物理学では4種類の力が知られているが、電磁気力以外の3つの力は電磁気力よりも遥かに小さい為、化学結合を作る主要因にはなっていない。したがって化学結合の後述する細かな分類、例えば共有結合やイオン結合はどのような状態の原子にどのような形で電磁気力が働くかによる分類である。 化学結合の定式化には、複数の原子がある場合において電子の軌道を決定する必要があり、そのためには量子力学が必須となる。しかし多くの簡単な化合物や多くのイオンにおいて、化学結合に関する定性的な説明や簡単な定量的見積もりを行う分には、量子力学で得られた知見に価電子や酸化数といった分子の構造と構成を使って古典力学的考察を加える事でも可能である。 それに対し複雑な化合物、例えば金属複合体では価電子理論は破綻し、その振る舞いの多くは量子力学を基本とした理解が必要となる。これに関してはライナス・ポーリングの著書、The Nature of the Chemical Bondで詳しく述べられている。.

新しい!!: シクロヘキサンの立体配座と化学結合 · 続きを見る »

ノーベル化学賞

ノーベル化学賞(ノーベルかがくしょう、Nobelpriset i kemi)はノーベル賞の一部門。アルフレッド・ノーベルの遺言によって創設された6部門のうちの一つ。化学の分野において重要な発見あるいは改良を成し遂げた人物に授与される。 ノーベル化学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には宝箱を持ち雲の中から現れた自然の女神のベールを科学の神が持ち上げて素顔を眺めている姿(物理学賞と共通)がデザインされている。.

新しい!!: シクロヘキサンの立体配座とノーベル化学賞 · 続きを見る »

ネイチャー

『ネイチャー』()は、1869年11月4日、イギリスで天文学者ノーマン・ロッキャーによって創刊された総合学術雑誌である。 世界で特に権威のある学術雑誌のひとつと評価されており、主要な読者は世界中の研究者である。雑誌の記事の多くは学術論文が占め、他に解説記事、ニュース、コラムなどが掲載されている。記事の編集は、イギリスの Nature Publishing Group (NPG) によって行われている。NPGからは、関連誌として他に『ネイチャー ジェネティクス』や『ネイチャー マテリアルズ』など十数誌を発行し、いずれも高いインパクトファクターを持つ。.

新しい!!: シクロヘキサンの立体配座とネイチャー · 続きを見る »

メチルシクロヘキサン

メチルシクロヘキサン()はベンゼン様の臭気を持つ無色の液体で、分子式 C7H14 、示性式 C6H11CH3 で表されるシクロアルカンの一種。MCHとも略記される。重油から得られる留分の一種。.

新しい!!: シクロヘキサンの立体配座とメチルシクロヘキサン · 続きを見る »

デレック・バートン

ー・デレック・ハロルド・リチャード・バートン(Sir Derek Harold Richard Barton、1918年9月8日-1998年3月16日)はイギリスの化学者。立体化学を開拓した人物として著名。彼は1969年、オッド・ハッセルと共に研究「立体配座の概念の発展と化学への適用」の功績でノーベル化学賞を授与された。.

新しい!!: シクロヘキサンの立体配座とデレック・バートン · 続きを見る »

ダイヤモンド

ダイヤモンド( )は、炭素 (C) の同素体の1つであり、実験で確かめられている中では天然で最も硬い物質である。日本語で金剛石(こんごうせき)ともいう。ダイヤとも略される。結晶構造は多くが8面体で、12面体や6面体もある。宝石や研磨材として利用されている。ダイヤモンドの結晶の原子に不対電子が存在しないため、電気を通さない。 地球内部の非常に高温高圧な環境で生成されるダイヤモンドは定まった形で産出されず、また、角ばっているわけではないが、そのカットされた宝飾品の形から、菱形、トランプの絵柄(スート)、野球の内野、記号(◇)を指してダイヤモンドとも言われている。 ダイヤモンドという名前は、ギリシア語の (adámas 征服し得ない、屈しない)に由来する。イタリア語・スペイン語・ポルトガル語では diamánte(ディアマンテ)、フランス語では (ディアマン)、ポーランド語では (ディヤメント)、漢語表現では金剛石という。ロシア語では (ヂヤマント)というよりは (アルマース)という方が普通であるが、これは特に磨かれていないダイヤモンド原石のことを指す場合がある。磨かれたものについては (ブリリヤント)で総称されるのが普通。4月の誕生石である。石言葉は「永遠の絆・純潔・不屈」など。.

新しい!!: シクロヘキサンの立体配座とダイヤモンド · 続きを見る »

ベンゼン

ベンゼン (benzene) は分子式 C6H6、分子量 78.11 の最も単純な芳香族炭化水素である。原油に含まれており、石油化学における基礎的化合物の一つである。分野によっては慣用としてドイツ語 (Benzol:ベンツォール) 風にベンゾールと呼ぶことがある。ベンジン(benzine)とはまったく別の物質であるが、英語では同音異綴語である。.

新しい!!: シクロヘキサンの立体配座とベンゼン · 続きを見る »

分子

分子(ぶんし)とは、2つ以上の原子から構成される電荷的に中性な物質を指すIUPAC.

新しい!!: シクロヘキサンの立体配座と分子 · 続きを見る »

分子対称性

ホルムアルデヒドの対称要素。C2は2回回転軸である。σvおよびσv' は2つの等価でない鏡映面である。 化学における分子の対称性(ぶんしのたいしょうせい、molecular symmetry)は、分子に存在する対称性およびその対称性に応じた分子の分類を述べる。分子対称性は化学における基本概念であり、双極子モーメントや許容分光遷移(ラポルテの規則といった選択則に基づく)といった分子の化学的性質の多くを予測あるいは説明することができる。多くの大学レベルの物理化学や量子化学、無機化学の教科書は、対称性のために一章を割いている。 分子の対称性の研究には様々な枠組みが存在するが、群論が主要な枠組みである。この枠組みは、ヒュッケル法、配位子場理論、ウッドワード・ホフマン則といった応用に伴って分子軌道の対称性の研究にも有用である。大規模な系では、固体材料の結晶学的対称性を説明するために結晶系が枠組みとして使用されている。 分子対称性を実質的に評価するためには、X線結晶構造解析や様々な分光学的手法(例えば金属カルボニルの赤外分光法)など多くの技術が存在する。.

新しい!!: シクロヘキサンの立体配座と分子対称性 · 続きを見る »

分子構造

分子構造(ぶんしこうぞう、molecular structure、molecular geometry)とは、分子の幾何学的構造をいい、例えば原子間距離や配向などをさす。分子構造を調べるには、主に回折法と分光法が用いられる。.

新しい!!: シクロヘキサンの立体配座と分子構造 · 続きを見る »

アドルフ・フォン・バイヤー

ヨハン・フリードリヒ・ヴィルヘルム・アドルフ・フォン・バイヤー(Johann Friedrich Wilhelm Adolf von Baeyer, 1835年10月31日 - 1917年8月20日)は、ドイツの化学者。色料のインディゴを合成した。1905年に「有機染料およびヒドロ芳香族化合物の研究」によってノーベル化学賞を受賞したAdolf von Baeyer: Winner of the Nobel Prize for Chemistry 1905 Armin de Meijere Angewandte Chemie International Edition Volume 44, Issue 48, Pages 7836 - 7840 2005 。.

新しい!!: シクロヘキサンの立体配座とアドルフ・フォン・バイヤー · 続きを見る »

エネルギー

ネルギー(、)とは、.

新しい!!: シクロヘキサンの立体配座とエネルギー · 続きを見る »

オッド・ハッセル

ッド・ハッセル(Odd Hassel, 1897年5月17日 - 1981年5月11日)はノルウェーの物理化学者である。1969年、デレック・バートンとともに、「立体配座の概念の発展と化学への適用」の功績でノーベル化学賞を受賞した。 オスロに医者の息子に生まれた。オスロ大学で数学、物理、化学を学んだ後、ドイツのミュンヘン大学のKasimir Fajansのもとで学び、ベルリンのカイザー・ヴィルヘルム研究所で働き1924年ベルリン大学から学位をえた。ノルウェーに戻りオスロ大学で物理化学のさまざまな分野で働いた。最初無機化学を研究したが1930年からは分子構造、特にシクロヘキサンの構造解析に取り組んだ。 第2次世界大戦中は反ナチ運動を行い、刑務所に入れられたが1944年11月に解放された。 1950年代の初めは、電荷移動化合物の研究を行い、それらの化合物の構造の解明を行った。.

新しい!!: シクロヘキサンの立体配座とオッド・ハッセル · 続きを見る »

ケルビン

ルビン(kelvin, 記号: K)は、熱力学温度(絶対温度)の単位である。国際単位系 (SI) において基本単位の一つとして位置づけられている。 ケルビンの名は、イギリスの物理学者で、絶対温度目盛りの必要性を説いたケルビン卿ウィリアム・トムソンにちなんで付けられた。なお、ケルビン卿の通称は彼が研究生活を送ったグラスゴーにあるから取られている。.

新しい!!: シクロヘキサンの立体配座とケルビン · 続きを見る »

シクロヘキサン

ヘキサン (cyclohexane) は、分子式 C6H12、分子量 84.16 のシクロアルカンの一種の有機化合物である。ベンゼンの水素付加によって作られる。常温常圧で無色の液体で、揮発性がある。極性溶媒には溶けにくいが、有機溶媒には溶ける。.

新しい!!: シクロヘキサンの立体配座とシクロヘキサン · 続きを見る »

シクロヘキサンの立体配座

ヘキサンの立体配座(シクロヘキサンのりったいはいざ、cyclohexane conformation)は、シクロヘキサン分子がその化学結合の完全性を保ちながら取ることができる複数の三次元形状のいずれかである。 平らな正六角形の内角は120º であるが、炭素鎖における連続する結合間の望ましい角度は約109.5º (正四面体の中心と頂点を結ぶ直線のなす角)である。したがって、シクロヘキサン環は、全ての角度が109.5º に近づき、平らな六角形形状よりも低いひずみエネルギーを持つ特定の非平面立体配座を取る傾向にある。最も重要な形状はいす形、半いす形、舟形、ねじれ舟形である。シクロヘキサン分子はこれらの立体配座間を容易に移ることができ、「いす形」と「ねじれ舟形」のみが純粋な形で単離することができる。 シクロヘキサンの立体配座は配座異性の古典的な例であるため有機化学において広く研究されてきており、シクロヘキサンの物理的および化学的性質に顕著な影響を与えている。.

新しい!!: シクロヘキサンの立体配座とシクロヘキサンの立体配座 · 続きを見る »

六角形

六角形(ろっかくけい、ろっかっけい、hexagon)は、6つの辺と頂点を持つ多角形の総称である。.

新しい!!: シクロヘキサンの立体配座と六角形 · 続きを見る »

Chemische Berichte

Chemische Berichte (ヘミッシェ・ベリヒテ) は、1868年にドイツで創刊された、化学を中心に扱う学術雑誌。Chem.

新しい!!: シクロヘキサンの立体配座とChemische Berichte · 続きを見る »

立体障害

立体障害(りったいしょうがい, steric effects)とは分子内および分子間で分子を構成する各部分がぶつかることによる回転などの制限のこと。 立体障害は化学では非常に大きな意味を持ち、(有機化学の試験で基質の反応性が違う理由の多くは立体障害、ほかには電子状態、溶媒効果、各種相互作用など)非常に重要である。一般の置換反応や付加反応における分子の反応中心への接近、LDAに代表される求核剤と塩基、アトロプ異性などのような結合周りの回転の制限や、不安定化合物の安定化、不斉合成における配位子設計など多くの場面に関わっている。 立体障害の大きな置換基としてはイソプロピル基、tert-ブチル基、メシチル基などが挙げられる。分子模型としてよく用いられている球棒モデル(原子を表す球と原子間の結合を表す棒からなる模型、右図右)ではあまり実感がわかないが、CPKモデル(右図左)を用いると立体障害がいかに大きな意味を持つかがよく分かる。.

新しい!!: シクロヘキサンの立体配座と立体障害 · 続きを見る »

立体配座

立体配座(りったいはいざ、Conformation)とは、単結合についての回転や孤立電子対を持つ原子についての立体反転によって相互に変換可能な空間的な原子の配置のことである。 二重結合についての回転や不斉炭素についての立体反転のように通常の条件では相互に変換不可能な空間的な原子の配置は立体配置という。.

新しい!!: シクロヘキサンの立体配座と立体配座 · 続きを見る »

立体配置

立体配置(りったいはいち)とは、化合物の分子に固有な原子の空間的な配置のことである。単結合まわりの回転などで生じる空間的な配置の違いのように、通常の条件で相互変換可能な空間的な配置、すなわち通常の条件では異性体として単離されない配置は立体配座と呼ばれ、立体配置とは分けて考える。 原子の結合の順番が同じでありながら立体配置が異なる2つの化合物は立体異性体と呼ばれる。立体配置を表記する方法としてはE/Z表示法、R/S表示法、D/L表示法などがある。.

新しい!!: シクロヘキサンの立体配座と立体配置 · 続きを見る »

米国化学会誌

米国化学会誌 (べいこくかがくかいし、Journal of the American Chemical Society) はアメリカ化学会により発行されている学術雑誌である。略記はJ.

新しい!!: シクロヘキサンの立体配座と米国化学会誌 · 続きを見る »

結合角

結合角(けつごうかく、bond angle)とは分子構造の構造要素の一つで、それぞれの原子から伸びている2つの化学結合のなす角度を示す。ともいう。結合相手の原子の方向が化学結合の方向だとして計算される角度を結合角とみなすこともあるが、曲がった結合を形成していると考える場合はこれらは一致しない。 分子軌道は混成軌道関数の方向因子によって決定づけられるため、結合角も結合の不飽和度の違いにより変化する。すなわち炭素の場合sp3軌道のメタンは109.5°のであり、sp2軌道のエチレンは120度、sp軌道のアセチレンは180度の結合角をもつ。 結合角は孤立電子対が存在すると混成軌道に影響を与えるため、同一元素周期元素の水素化物であるメタン、アンモニア、水とを比較すると、孤立電子対の数に応じてアンモニア(1つ)、水(2つ)の順に結合角がわずかに小さくなっている。すなわち、sp3軌道と孤立電子対の軌道との反発あるいは孤立電子対軌道同士の反発により結合角はわずかに変化する(記事 原子価殻電子対反発則 に詳しい)。 結合角に関する「3つの原子の位置で作られる角度」と「結合角」とは必ずしも一致しない。これはσ結合が同一軸上に存在する場合に結合力が最大ではあるが、並行するπ軌道から構成されるπ結合にも結合力が働くように、σ結合が同一軸上無くとも結合力が減弱するだけで結合自体は形成される。この様に同一軸上に無いσ結合による結合は曲がった結合と呼ばれる。.

新しい!!: シクロヘキサンの立体配座と結合角 · 続きを見る »

結合長

分子構造において、結合長(Bond length)または結合距離(Bond distance)は、分子内の2つの原子の間の平均距離である。.

新しい!!: シクロヘキサンの立体配座と結合長 · 続きを見る »

環ひずみ

有機化学において、環ひずみ(かんひずみ、ring strain)は、分子中の結合が異常な角度を形成する時に存在する不安定性の一種である。ひずみはシクロプロパンやシクロブタンといったC-C-C角度が約109ºの理想的な値からかなりずれている小さな環について通常議論されている。高いひずみのため、これらの小さな環の燃焼熱は上昇する。 環ひずみは角ひずみや配座ひずみ()、(ファンデルワールスひずみ)の組み合わせに起因する。角ひずみの最も単純な例はシクロプロパンやシクロブタンといった小さな環状アルカンである。そのうえ、環系には緩和できない重なりひずみがしばしば存在する。 1.1.1-プロペラン (C2(CH2)3) は最もひずんだ既知分子の一つである。.

新しい!!: シクロヘキサンの立体配座と環ひずみ · 続きを見る »

炭素

炭素(たんそ、、carbon)は、原子番号 6、原子量 12.01 の元素で、元素記号は C である。 非金属元素であり、周期表では第14族元素(炭素族元素)および第2周期元素に属する。単体・化合物両方において極めて多様な形状をとることができる。 炭素-炭素結合で有機物の基本骨格をつくり、全ての生物の構成材料となる。人体の乾燥重量の2/3は炭素である​​。これは蛋白質、脂質、炭水化物に含まれる原子の過半数が炭素であることによる。光合成や呼吸など生命活動全般で重要な役割を担う。また、石油・石炭・天然ガスなどのエネルギー・原料として、あるいは二酸化炭素やメタンによる地球温暖化問題など、人間の活動と密接に関わる元素である。 英語の carbon は、1787年にフランスの化学者ギトン・ド・モルボーが「木炭」を指すラテン語 carbo から名づけたフランス語の carbone が転じた。ドイツ語の Kohlenstoff も「炭の物質」を意味する。日本語の「炭素」という語は宇田川榕菴が著作『舎密開宗』にて用いたのがはじめとされる。.

新しい!!: シクロヘキサンの立体配座と炭素 · 続きを見る »

遷移状態

遷移状態(せんいじょうたい、英語:transition state)とは、化学反応の過程で原系から生成系に変換するときに通る最もエネルギーの高い状態のことである。 例えば、2つの分子の衝突によって反応が開始するとき、衝突によって力学的エネルギーが分子内部のエネルギーに変換され、2つの分子の構造は元の構造とは異ったゆがんだ構造となり、元の構造のときよりもエネルギーが高い。このような構造の内、最もエネルギーの高い状態を遷移状態と呼び、その周辺の状態を活性錯体(または活性複合体、活性錯合体)と呼ぶ。 遷移状態は、一般の反応中間体のように直接観測することはできない。しかしフェムト秒単位での赤外分光法により、遷移状態にごく近い反応中間体を捉えることが可能になっており、遷移状態は一般には元の結合が残る一方で新たな結合が形成されつつある状態であると考えられている。 遷移状態の概念は反応速度論において非常に重要である。原系と遷移状態とのエネルギー差が反応の活性化エネルギーに相当し、遷移状態のエネルギーが低い方が活性化エネルギーを獲得する分子の数が増して反応が進みやすくなる。遷移状態の概念は1935年頃ヘンリー・アイリングやマイケル・ポランニーらによって「遷移状態理論」として導入され、アイリングの「絶対反応速度論」などとして発展した。(記事 反応速度論に詳しい) 酵素による触媒作用の1つの要因として、遷移状態が安定化される(すなわち遷移状態のエネルギーが低下する)ことにより活性化エネルギーが減少する効果がある。これを応用して、目的とする反応の遷移状態に類似した化合物を用いて抗体酵素を得る研究がされている。.

新しい!!: シクロヘキサンの立体配座と遷移状態 · 続きを見る »

角度

角度(かくど、measure of angle, angle)とは、角(かく、angle)の大きさを表す量・測度のことである。なお、一般の角の大きさは、単位の角の大きさの実数倍で表しうる。角およびその角度を表す記号としては ∠ がある。これは角記号(かくきごう、angle symbol)と呼ばれる。 単に角という場合、多くは平面上の図形に対して定義された平面角(へいめんかく、plane angle)を指し、さらに狭義にはある点から伸びる2つの半直線(はんちょくせん、ray)によりできる図形を指す。平面角の角度は、同じ端点を持つ2つの半直線の間の隔たりを表す量といえる。2つの半直線が共有する端点は角の頂点(かくのちょうてん、vertex of angle)と呼ばれ、頂点を挟む半直線は角の辺(かくのへん、side of angle)と呼ばれる。また、直線以外の曲線や面などの図形がなす角の角度も、何らかの2つの直線のなす角の角度として定義される。より広義には、角は線や面が2つ交わって、その交点や交線の周りにできる図形を指す。線や面が2つ交わって角を作ることを角をなすという。ここでいう面は通常の2次元の面に限らず、一般には超平面である。 角が現れる基本的な図形としては、たとえば三角形や四角形のような多角形(たかくけい、polygon)がある。特に三角形は平面図形における最も基本的な図形であり、すべての多角形は三角形の組み合わせによって表現することができる。また、他にも単純な性質を多く持っているため、様々な場面で応用される。有名なものは余弦定理(よげんていり、law of cosines)や、三角形の辺の比を通じて定義される三角関数(さんかくかんすう、trigonometric function)などがある。余弦定理と三角関数は、三角形の角と辺の間に成り立つ関係を示したもので、これらの関係を利用して、三角形の辺の長さからある角の大きさを求めたり、大きさが既知の角から辺の長さや長さの比を求めることができる。このことはしばしば三角形の合同条件(さんかっけいのごうどうじょうけん、congruence condition of triangles)としても言及される。 物理学など自然科学においては、量の次元が重要な役割を果たす。例えば、辺の長さや弧の長さは物理量として「長さ」の次元を持っているが、国際量体系において、角度は辺の長さの比などを通じて定義される無次元量であるとしている。角度が無次元であることは、直ちに角度が単位を持たないことを意味しない。例えば角度を表す単位としてはラジアン(らじあん、radian)や度(ど、degree)が有名である。ラジアンと度の換算は以下の式によって示される。 また、ラジアンで表された数値は単位なしの数として扱うことができる。 角度に関連する物理学の概念として、位相(いそう、phase)がある。位相は波のような周期的な運動を記述するパラメーターであり、その幾何学的な表現が角度に対応している。位相も角度と同様にラジアンが単位に用いられる。 立体的な角として立体角(りったいかく、solid angle)も定義されているが、これは上記の定義には当てはまらない。その大きさは単に立体角と呼ばれることが多く、角度と呼ばれることはほとんどない。 以下、本項目においては平面角を扱う。.

新しい!!: シクロヘキサンの立体配座と角度 · 続きを見る »

電子軌道

軌道はエネルギーの固有関数である。 電子軌道(でんしきどう、)とは、電子の状態を表す、座標表示での波動関数のことを指す。電子軌道は単に「軌道」と呼ばれることもある。.

新しい!!: シクロヘキサンの立体配座と電子軌道 · 続きを見る »

Journal of Chemical Education

Journal of Chemical Education(ジャーナル・オブ・ケミカル・エデュケーション、略称:J.Chem.Educ.)は月刊の査読つき学術雑誌の一つである。紙媒体と電子媒体の両方で読むことができる。アメリカ化学会の化学教育部門が発行している。 1924年にによって創刊された。に関する研究を掲載している。.

新しい!!: シクロヘキサンの立体配座とJournal of Chemical Education · 続きを見る »

Journal of Organic Chemistry

Journal of Organic Chemistry(ジャーナル・オブ・オーガニック・ケミストリー、 略称 J. Org.

新しい!!: シクロヘキサンの立体配座とJournal of Organic Chemistry · 続きを見る »

極値

数学において、関数の局所的な(つまり、ある点の近傍における)最大値または最小値のことをそれぞれ極大値(きょくだいち、maximal, local maximum)、極小値(きょくしょうち、minimal, local minimum)といい、これらを併せて極値(きょくち)と総称する。 極値は局所的な概念であるため、ある点で極値をとってもその点が全域的な最大・最小値を取るとは限らないが、極値自体が適当な区間における最大・最小値の候補と考えることができるため、関数の振る舞いを知る上で重要である。極値を調べる方法としては、微分を利用することで極値をとるための必要条件を求めることができる。.

新しい!!: シクロヘキサンの立体配座と極値 · 続きを見る »

正四面体

正四面体(せいしめんたい、せいよんめんたい、regular tetrahedron)は、4枚の合同な正三角形を面とする四面体である。 最も頂点・辺・面の数が少ない正多面体であり、最も頂点・辺・面の数が少ないデルタ多面体であり、アルキメデスの正三角錐である。また、3次元の正単体である。 なお一般に、n 面体のトポロジーは一定しないが、四面体だけは1種類のトポロジーしかない。つまり、四面体は全て、正四面体と同相であり、正四面体の辺を伸ばしたり縮めたりしたものである。.

新しい!!: シクロヘキサンの立体配座と正四面体 · 続きを見る »

混成軌道

4つの ''sp''3混成軌道 3つの ''sp''2混成軌道 化学において、混成軌道(こんせいきどう、Hybrid orbital)は、原子価結合法において化学結合を形成する電子対を作るのに適した軌道関数(オービタル)である(これを原子価状態と呼ぶ)。混成(hybridization)は一つの原子上の原子軌道を混合する(線型結合をとる)概念であり、作られた新たな混成軌道は構成要素の原子軌道とは異なるエネルギーや形状等を持つ。混成軌道の概念は、第2周期以降の原子を含む分子の幾何構造と原子の結合の性質の説明に非常に有用である。 原子価殻電子対反発則(VSEPR則)と共に教えられることがあるものの、原子価結合および混成はVSEPRモデルとは実際に関係がない。 分子の構造は各原子と化学結合から成り立っているので、化学結合の構造が原子核と電子との量子力学でどのように解釈されるかは分子の挙動を理論的に解明していく上で基盤となる。化学結合を量子力学で扱う方法には主に、分子軌道法と原子価結合法とがある。前者は分子の原子核と電子との全体を一括して取り扱う方法であるのに対して、原子価軌道法では分子を、まず化学結合のところで切り分けた原子価状態と呼ばれる個々の原子と価電子の状態を想定する。次の段階として、分子の全体像を原子価状態を組み立てることで明らかにしてゆく。具体的には個々の原子の軌道や混成軌道をσ結合やπ結合の概念を使って組み上げることで、共有結合で構成された分子像を説明していくことになる。それゆえに、原子軌道から原子価状態を説明付ける際に利用する混成軌道の概念は原子価軌道法の根本に位置すると考えられる。 原子価結合法と分子構造.

新しい!!: シクロヘキサンの立体配座と混成軌道 · 続きを見る »

有機化学

有機化学(ゆうきかがく、英語:organic chemistry)は、有機化合物の製法、構造、用途、性質についての研究をする化学の部門である。 構造有機化学、反応有機化学(有機反応論)、合成有機化学、生物有機化学などの分野がある。 炭素化合物の多くは有機化合物である。また、生体を構成するタンパク質や核酸、糖、脂質といった化合物はすべて炭素化合物である。ケイ素はいくぶん似た性質を持つが、炭素に比べると Si−Si 結合やSi.

新しい!!: シクロヘキサンの立体配座と有機化学 · 続きを見る »

ここにリダイレクトされます:

1,3-ジアキシアル相互作用ねじれふね型ねじれ舟形ふね型ふね型配座いす形いす型いす型配座フネ型フネ型配座アキシアルアキシアル位イス型イス型配座エカトリアルエカトリアル位エクアトリアル半いす形封筒形椅子型椅子型配座船型船型配座舟形舟型

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »