ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

シェルピンスキーのギャスケット

索引 シェルピンスキーのギャスケット

ェルピンスキーのギャスケット 作図例 シェルピンスキーのギャスケット(Sierpinski gasket、uszczelka Sierpińskiego)はフラクタル図形の1種であり、自己相似的な無数の三角形からなる図形である。ポーランドの数学者ヴァツワフ・シェルピンスキにちなんで名づけられた。シェルピンスキーのガスケット、シェルピンスキーの三角形(trójkąt Sierpińskiego、Sierpinski triangle)、シェルピンスキーのざる(Sierpinski sieve)とも呼ばれる。 シェルピンスキーのギャスケットはフラクタル図形であるため、正確に作図することは不可能だが、以下の手順を繰り返すことで、近似的な図形を作図できる。なお、繰り返し回数を増やすことにより、望む処まで近似のレベルを高められる。.

17 関係: 反復関数系ハウスドルフ次元ポーランドメンガーのスポンジヴァツワフ・シェルピニスキパスカルの三角形フラクタルカントール集合カオスゲームシェルピンスキーのカーペットセル・オートマトン近似自己相似正八面体有限体数学者

反復関数系

IFSで作成されたシェルピンスキーのギャスケット 反復関数系(はんぷくかんすうけい、英: Iterated function system、IFS)はフラクタルの一種であり、一般に2次元のフラクタルの描画や計算に用いられる。IFSフラクタルは自身のいくつかのコピーの和集合から成り、各コピーは関数によって変形されている(そのため「関数系」と呼ばれる)。典型例としてはシェルピンスキーのギャスケットがある。その関数は一般に収縮写像であり、点の集合がより近くなり、形がより小さくなる。従ってIFSフラクタルは、自身の縮小コピーを(場合によっては重ね合わせて)まとめたものであり、各部を詳細に見れば、その部分もそれ自身の縮小コピーから構成されていて、これが永遠に続く。このため、フラクタルとしての自己相似性が生じる。.

新しい!!: シェルピンスキーのギャスケットと反復関数系 · 続きを見る »

ハウスドルフ次元

点のハウスドルフ次元は0であり、直線のハウスドルフ次元は1、正方形のハウスドルフ次元は2、そして立方体のハウスドルフ次元は3である。コッホ曲線のようなフラクタル図形のハウスドルフ次元は、非整数になりうる。 フラクタル幾何学におけるハウスドルフ次元(ハウスドルフじげん、Hausdroff dimension)は、1918年に数学者フェリックス・ハウスドルフが導入した、が有限な値をとり消えていないという条件に適合する次元の概念の非整数値をとる一般化である。すなわち、きちんとした数学的定式化のもと、点のハウスドルフ次元は 、線分のハウスドルフ次元は 、正方形のハウスドルフ次元は 、立方体のハウスドルフ次元は である。つまり、旧来の幾何学で扱われるような、滑らかあるいは有限個の頂点を持つ点集合として定義される図形のハウスドルフ次元は、その位相的な次元に一致する整数である。しかし同じ定式化のもとで、フラクタルを含めたやや単純さの少ない図形に対してもハウスドルフ次元を計算することが許されるが、その次元は非整数値を取りうる。大幅な技術的進展がによりもたらされて高度に不規則な集合に対する次元の計算が可能となったことから、この次元の概念はハウスドルフ–ベシコヴィッチ次元としても広く知られている。 初等幾何学で用いられる通常のジョルダン測度(あるいはルベーグ測度)に関して、例えば正方形が二次元であるということは、その三次元より高次のジョルダン測度(つまり、体積および高次元体積)が であり、二次元ジョルダン測度(面積)が正の値を持つ(さらに一次元および零次元のジョルダン測度は形式的に となる)ということを本質的に表している。-次元実内積空間 の -次元ジョルダン測度は、部分集合 に対して、 の球体による充填近似が定める内測度と、球体被覆による近似の定める外測度の一致するとき、その一致する値として定義されるのであった(あるいはルベーグ測度は外測度のみを利用して構成される)が、(定数因子の違いを除けば)-次元ジョルダン測度は一次元ジョルダン測度(長さ)の 個の直積と本質的に同じであり、-次元球(あるいは立方体)の -次元体積は本質的に半径の -乗である。ハウスドルフ次元は、これらの事実を抽象化して、台となる空間を一般の距離空間とし、部分集合の一次元ハウスドルフ測度を距離球体被覆による近似の下限として定まる外測度、また非整数値の に対する -次元距離球体のハウスドルフ測度を一次元測度の -乗(の適当な定数倍)となるように定める。ジョルダン測度の場合と同じく、部分集合 の -次元ハウスドルフ測度は次元 が大きければほとんどすべてに対して零であり、零でなくなるようなギリギリ小さい値として のハウスドルフ次元を定めるのである。 ハウスドルフ次元は、ボックスカウンティング次元()のより単純だがふつうは同値な後継である。.

新しい!!: シェルピンスキーのギャスケットとハウスドルフ次元 · 続きを見る »

ポーランド

ポーランド共和国(ポーランドきょうわこく、Rzeczpospolita Polska)、通称ポーランドは、中央ヨーロッパに位置する共和制国家。欧州連合 (EU)、北大西洋条約機構 (NATO) の加盟国。通貨はズウォティ。首都はワルシャワ。 北はバルト海に面し、北東はロシアの飛地カリーニングラード州とリトアニア、東はベラルーシとウクライナ、南はチェコとスロバキア、西はドイツと国境を接する。 10世紀に国家として認知され、16世紀から17世紀にかけヨーロッパで広大な国の1つであったポーランド・リトアニア共和国を形成。18世紀、4度にわたり国土が隣国によって分割され消滅。 第一次世界大戦後、1918年に独立を回復したが、第二次世界大戦時、ナチス・ドイツとソビエト連邦からの事前交渉を拒否し両国に侵略され、再び国土が分割された。戦後1952年、ポーランド人民共和国として国家主権を復活、1989年、民主化により共和国となった。冷戦時代は、ソ連の影響下に傀儡政権の社会主義国とし最大で最も重要なソ連の衛星国の一国となり、政治的にも東側諸国の一員となった。国内及び東側諸国の民主化とソ連の崩壊と東欧革命を経て、「中欧」または「中東欧」として再び分類されるようになっている。.

新しい!!: シェルピンスキーのギャスケットとポーランド · 続きを見る »

メンガーのスポンジ

メンガーのスポンジとは自己相似なフラクタル図形の一種であり、立方体に穴をあけたものである。そのフラクタル次元(ハウスドルフ次元、相似次元)は \frac(.

新しい!!: シェルピンスキーのギャスケットとメンガーのスポンジ · 続きを見る »

ヴァツワフ・シェルピニスキ

ェルピンスキの記念メダル ヴァツワフ・シェルピンスキ(Wacław Franciszek Sierpiński、シェルピンスキー、1882年3月14日 - 1969年10月21日)とは、ワルシャワで生没したポーランドの数学者である。彼は集合論(選択公理や連続体仮説に関する研究)や数論、関数論、位相幾何学に対する多大な貢献をしたことで知られている。彼は、700部を越す論文と、50冊の本を出版した(そのうちの 2 つ、『一般位相数学入門』Introduction to General Topology,1934 と 『一般位相数学』General Topology,1952は、カナダの数学者 セシリア・クリューガーによって英訳されている)。 3 つの有名なフラクタルが、彼の名にちなんでいる(シェルピンスキーの三角形、シェルピンスキーのカーペット、シェルピンスキー曲線)。.

新しい!!: シェルピンスキーのギャスケットとヴァツワフ・シェルピニスキ · 続きを見る »

パスカルの三角形

パスカルの三角形(パスカルのさんかくけい、英語:Pascal's triangle)は、二項展開における係数を三角形状に並べたものである。ブレーズ・パスカル(1623年 - 1662年)の名前がついているが、実際にはパスカルより何世紀も前の数学者たちも研究していた。 この三角形の作り方は単純なルールに基づいている。まず最上段に1を配置する。それより下の行はその位置の右上の数と左上の数の和を配置する。例えば、5段目の左から2番目には、左上の1と右上の3の合計である4が入る。このようにして数を並べると、上から n 段目、左から k 番目の数は、二項係数 に等しい(n-1Ck-1 と表すこともある)。これは、パスカルによって示された以下の式に基づいている。 負でない整数 n ≥ k に対して が成り立つ。 パスカルの三角形は三次元以上に拡張が可能である。3次の物は「パスカルのピラミッド」「パスカルの四面体」と呼ばれる。4次以上のものは一般に「パスカルの単体」と呼ばれる。.

新しい!!: シェルピンスキーのギャスケットとパスカルの三角形 · 続きを見る »

フラクタル

フラクタル(, fractal)は、フランスの数学者ブノワ・マンデルブロが導入した幾何学の概念である。ラテン語 fractus から。 図形の部分と全体が自己相似になっているものなどをいう。.

新しい!!: シェルピンスキーのギャスケットとフラクタル · 続きを見る »

カントール集合

ントール集合(カントールしゅうごう、Cantor set)は、フラクタルの1種で、閉区間 に属する実数のうち、その三進展開のどの桁にも 1 が含まれないような表示ができるもの全体からなる集合である。1874年にイギリスの数学者により発見され、1883年にゲオルク・カントールによって紹介された。 カントールの三進集合とも呼ばれ、カントル集合、カントルの三進集合とも表記される。フラクタル概念の生みの親であるブノワ・マンデルブロは、位相次元が 0 の図形をダスト(塵)と呼び、カントール集合のことはカントール・ダストやカントールのフラクタルダストと呼んでいた。.

新しい!!: シェルピンスキーのギャスケットとカントール集合 · 続きを見る »

カオスゲーム

ーム(英: Chaos game)とは本来、多角形とその内部のランダムな点を使ってフラクタルを作る方法を指す。多角形の辺と前の点をランダムに選び、その距離に所定の分数をかけた位置を新たな点とし、これを繰り返すことでフラクタルな図形を得る。三角形と係数 1/2 を用いるとシェルピンスキーのギャスケットが得られる。この手法を使うと、元の図形が隠れたフラクタルオーダーを持っていれば、様々な図形を生成できる。カオスゲームは、無作為な過程によって事前に定義された結果が得られる例である。 カオスゲームを使って生成したシェルピンスキーのギャスケット 今日では、カオスゲームの意味はより一般化しており、反復関数系 (IFS) のアトラクターまたは不動点を生成する方法を指す。任意の点 x0 を開始点とし、xk+1.

新しい!!: シェルピンスキーのギャスケットとカオスゲーム · 続きを見る »

シェルピンスキーのカーペット

ェルピンスキーのカーペット カントールの塵 シェルピンスキーのカーペット(Sierpinski carpet、dywan Sierpińskiego)は、1919年、ヴァツワフ・シェルピンスキが発表した平面フラクタル。カントール集合を2次元に一般化したものである。同様のものとして「カントールの塵」もある。2次元平面に投影された任意の1次元のグラフがシェルピンスキーのカーペットの部分集合に対して位相同型であるという意味において、このフラクタルは universal curve であることをシェルピンスキーは示した。自己交差せずに2次元表面に描けない曲線について、対応する universal curve はメンガーのスポンジであり、より高次元の一般化である。 この技法は三角形、四角形、六角形などによる平面充填にも応用できる。平面充填以外には応用できないとされている。.

新しい!!: シェルピンスキーのギャスケットとシェルピンスキーのカーペット · 続きを見る »

セル・オートマトン

Daniel Dennett (1995), ''Darwin's Dangerous Idea'', Penguin Books, London, ISBN 978-0-14-016734-4, ISBN 0-14-016734-X セル・オートマトン(cellular automaton、略称:CA)とは、格子状のセルと単純な規則による、離散的計算モデルである。計算可能性理論、数学、物理学、複雑適応系、数理生物学、微小構造モデリングなどの研究で利用される。非常に単純化されたモデルであるが、生命現象、結晶の成長、乱流といった複雑な自然現象を模した、驚くほどに豊かな結果を与えてくれる。 正確な発音に近いセルラ・オートマトンとも呼ばれることがある。セルは「細胞」「小部屋」、セルラは「細胞状の」、オートマトンは「からくり」「自動機械」を意味する。他に「セル空間」「埋め尽くしオートマトン」「homogeneous structure」「tessellation structure」「iterative array」といった呼称もある。 有限種類の(多くは2から数十種類の)状態を持つセル(細胞のような単位)によってセル・オートマトンは構成され、離散的な時間で個々のセルの状態が変化する。その変化は、ある時刻 t においてのセルの状態、および近傍のセルの内部状態によって、次の時刻t+1 、すなわち新たな「ジェネレーション」(世代)での各セルの状態が決定される。初期状態(時刻 t.

新しい!!: シェルピンスキーのギャスケットとセル・オートマトン · 続きを見る »

鱗(うろこ、λεπις (lepis)、squama)は、動物の体表を覆う硬質の小片状の組織である。 主な役目として、動物の体を外部環境の変化から守り、攻撃から防御する。防御のため一枚板の装甲板で体表を覆った場合、その動物の体の可動性は著しく損なわれるが、これを小片に分割し、小装甲板の間に可動性を持たせれば、かなりの防御性を維持したまま身体の可動性を得ることができる。 さまざまな分類群の動物が鱗を発達させたが、その起源、構造、組成などは異なる。.

新しい!!: シェルピンスキーのギャスケットと鱗 · 続きを見る »

近似

近似(きんじ、approximation)とは、数学や物理学において、複雑な対象の解析を容易にするため、細部を無視して、対象を単純化する行為、またはその方法。近似された対象のより単純な像は、近似モデルと呼ばれる。 単純化は解析の有効性を失わない範囲内で行われなければならない。解析の内容にそぐわないほど、過度に単純化されたモデルにもとづいた解析は、近似モデルの適用限界を見誤った行為であり、誤った解析結果をもたらす。しかしながら、ある近似モデルが、どこまで有効性を持つのか、すなわち適用限界がどこにあるのかは、実際にそのモデルに基づいた解析を行ってみなければ分からないことが多い。.

新しい!!: シェルピンスキーのギャスケットと近似 · 続きを見る »

自己相似

自己相似 (じこそうじ) とは、何らかの意味で全体と部分とが相似であることをさす言葉である。 すべてのスケールにおいて自己相似となる図形は、スケール不変性を有する。 図形においては、ある図形の断片を取ってきたとき、それより小さな断片の形状と図形全体の形状とが相似である場合を指す。このようなフラクタル図形などに代表される幾何的な形状に関する自己相似は大変有名であるが、自己相似は「幾何的形状」だけに限定されない。自然界や人工物には、海岸線の長さやインターネットのトラフィックのように統計的に自己相似なものの方が多く存在する。統計的な自己相似とは、同一対象について時間や空間的に異なるスケール(分解能)で計測された統計が同じ分布族に従い、分布やモーメント等の統計的性質が計測スケールに関して相似である場合を指す。これは、相似図形はその形状が同じで一辺の長さや面積の比が(空間的スケール比である)相似比を用いて特定の比例関係として表されるのと同様、分布の形が同じで統計的性質(平均や分散など)がスケールを用いて特定の比例関係として表される場合を統計的相似と考えるとわかりやすい。.

新しい!!: シェルピンスキーのギャスケットと自己相似 · 続きを見る »

正八面体

正八面体 正八面体(せいはちめんたい、regular octahedron)は立体の名称の1つ。空間を正三角形8枚で囲んだ形。.

新しい!!: シェルピンスキーのギャスケットと正八面体 · 続きを見る »

有限体

有限体(ゆうげんたい、英語:finite field)とは、代数学において、有限個の元からなる体、すなわち四則演算が定義され閉じている有限集合のことである。主に計算機関連の分野においては、発見者であるエヴァリスト・ガロアにちなんでガロア体あるいはガロア域(ガロアいき、Galois field)などとも呼ぶ。 有限体においては、体の定義における乗法の可換性についての条件の有無は問題にはならない。実際、ウェダーバーンの小定理と呼ばれる以下の定理 が成り立つことが知られている。別な言い方をすれば、有限体において乗法の可換性は、体の有限性から導かれるということである。.

新しい!!: シェルピンスキーのギャスケットと有限体 · 続きを見る »

数学者

数学者(すうがくしゃ、mathematician)とは、数学に属する分野の事柄を第一に、調査および研究する者を指していう呼称である。.

新しい!!: シェルピンスキーのギャスケットと数学者 · 続きを見る »

ここにリダイレクトされます:

シェルピンスキーのガスケットシェルピンスキーの三角形

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »