ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

シアニディオシゾン

索引 シアニディオシゾン

アニディオシゾン(学名:、通称シゾン)は、イタリアの温泉に生育する単細胞性の紅藻である。立教大学の黒岩常祥教授らのグループにより、真核藻類としては初めてゲノムが解読され、2004年4月8日のNature誌に報告された。.

34 関係: 単細胞生物塩基対学名寄生ペルオキシソームミトコンドリアネイチャーアーケプラスチダイントロンイデユコゴメ綱イタリアゲノムゲノムプロジェクトゴルジ体タンパク質共生光合成立教大学細胞細胞小器官細胞分裂細胞核紅藻真核生物遺伝子藻類葉緑体染色体極限環境微生物水素イオン指数温泉温泉藻2004年4月8日

単細胞生物

単細胞生物(たんさいぼうせいぶつ)とは、1個の細胞だけからできている生物のこと。体が複数の細胞からできている多細胞生物に対する言葉である。 原核生物と、原生生物に多く、菌類の一部にもその例がある。 単細胞生物には寿命が無いと思われがちだが、接合による遺伝子交換をさせないよう注意深くゾウリムシを培養するとやはり死に至る。.

新しい!!: シアニディオシゾンと単細胞生物 · 続きを見る »

塩基対

塩基対(えんきつい、base pair、bp)とは、デオキシリボ核酸の2本のポリヌクレオチド分子が、アデニン (A) とチミン (T)(もしくはウラシル (U))、グアニン (G) とシトシン (C) という決まった組を作り、水素結合で繋がったもの。この組み合わせはジェームズ・ワトソンとフランシス・クリックが発見したもので、「ワトソン・クリック型塩基対」「天然型塩基対」と言う。DNA や RNA の場合、ワトソン・クリック型塩基対が形成しさらに隣り合う塩基対の間に疎水性相互作用がはたらくことが、二重らせん構造が安定化する駆動力となっている。 これに対して、DNAが三重鎖を作るときなどには「フーグスティーン型塩基対」という別のパターンの塩基対も現れる。テロメア配列が持つ四重鎖構造、G-カルテットもフーグスティーン型の構造をとっている。さらに人工的に合成したATGC以外の塩基を使って、特別な塩基対を作り出すことも可能である。 インターカレーションとは、平面状の部位を持つ有機分子(インターカレーター)が、2個の塩基対の間にその平面部位を挿入する現象を指す。臭化エチジウムはインターカレーターの代表例である。.

新しい!!: シアニディオシゾンと塩基対 · 続きを見る »

学名

学名(がくめい、)は生物学(かつては博物学)的な手続きにもとづき、世界共通で生物の種および分類に付けられる名称。英語では二名法による名称という意味で 、あるいは科学的な名称という意味で という。命名には一定の規則があり、ラテン語として表記される。この規則は、それぞれの生物分野の命名規約により取り決められている。動物には「国際動物命名規約」があり、藻類・菌類と植物には「国際藻類・菌類・植物命名規約」が、細菌には「国際細菌命名規約」がある。日本語独自の和名(標準和名)などと異なり、全世界で通用し、属以下の名を重複使用しない規約により、一つの種に対し有効な学名は一つだけである。ただし、過去に誤って複数回記載されていたり、記載後の分類の変更などによって、複数の学名が存在する場合、どの学名を有効とみなすかは研究者によって見解が異なる場合も多い。 種の学名、すなわち種名は属名+種小名(細菌では属名+種形容語)で構成される。この表し方を二名法という。二名法は「分類学の父」と呼ばれるリンネ(Carl von Linné, ラテン語名 カロルス・リンナエウス Carolus Linnaeus, 1702 - 1778)によって体系化された。.

新しい!!: シアニディオシゾンと学名 · 続きを見る »

寄生

寄生(きせい、Parasitism)とは、共生の一種であり、ある生物が他の生物から栄養やサービスを持続的かつ一方的に収奪する場合を指す言葉である。収奪される側は宿主と呼ばれる。 また、一般用語として「他人の利益に依存するだけで、自分は何もしない存在」や「排除が困難な厄介者」などを指す意味で使われることがある。 「パラサイト・シングル」や経済学上における「寄生地主制」などは前者の例であり、後者の例としては電子回路における「寄生ダイオード」や「寄生容量」といった言葉がある。.

新しい!!: シアニディオシゾンと寄生 · 続きを見る »

ペルオキシソーム

ペルオキシソームはほぼ全ての真核細胞が持つ細胞小器官で、多様な物質の酸化反応を行っている。一重の生体膜に包まれた直径0.1-2マイクロメートルの器官で、多くは球形を成す。哺乳類の細胞では数百から数千個が一細胞内に存在する。環境や細胞によって必要とされる機能が異なるため、数大きさ構造等様々に異なる。発見当初はミクロ(マイクロ)ボディとも呼ばれたが、後に機能に基づいた名称が提案され現在ではそれが広く受け入れられている。また、ミクロソームという似た名称の物があるが、ミクロソームは細胞をホモジェナイズした際に断片化された膜器官(主に小胞体)が再び閉じて形成された小胞であり、両者は異なる。 ペルオキシソームの関わる代謝経路には、長鎖脂肪酸のベータ酸化、コレステロールや胆汁酸の合成、アミノ酸やプリンの代謝などが知られ、これらは内腔に含まれるオキシダーゼによって行われる。オキシダーゼの働きによって活性酸素の一種である過酸化水素が発生するが、これは同様に内腔に含まれるカタラーゼによって分解される。 ペルオキシソームは、リソソームやゴルジ体等の細胞小器官と異なり、小胞輸送を利用せず、細胞質から直接蛋白質を取り込み成長し、ミトコンドリアのように分裂して増殖すると考えられてきた。しかし、構成蛋白質が小胞体を経由するという報告もあり、小胞体起源で形成される過程も存在する可能性が高まっている。.

新しい!!: シアニディオシゾンとペルオキシソーム · 続きを見る »

ミトコンドリア

ミトコンドリアの電子顕微鏡写真。マトリックスや膜がみえる。 ミトコンドリア(mitochondrion、複数形: mitochondria)は真核生物の細胞小器官であり、糸粒体(しりゅうたい)とも呼ばれる。二重の生体膜からなり、独自のDNA(ミトコンドリアDNA=mtDNA)を持ち、分裂、増殖する。mtDNAはATP合成以外の生命現象にも関与する。酸素呼吸(好気呼吸)の場として知られている。また、細胞のアポトーシスにおいても重要な役割を担っている。mtDNAとその遺伝子産物は一部が細胞表面にも局在し突然変異は自然免疫系が特異的に排除 する。ヒトにおいては、肝臓、腎臓、筋肉、脳などの代謝の活発な細胞に数百、数千個のミトコンドリアが存在し、細胞質の約40%を占めている。平均では1細胞中に300-400個のミトコンドリアが存在し、全身で体重の10%を占めている。ヤヌスグリーンによって青緑色に染色される。 9がミトコンドリア典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) '''ミトコンドリア'''、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体.

新しい!!: シアニディオシゾンとミトコンドリア · 続きを見る »

ネイチャー

『ネイチャー』()は、1869年11月4日、イギリスで天文学者ノーマン・ロッキャーによって創刊された総合学術雑誌である。 世界で特に権威のある学術雑誌のひとつと評価されており、主要な読者は世界中の研究者である。雑誌の記事の多くは学術論文が占め、他に解説記事、ニュース、コラムなどが掲載されている。記事の編集は、イギリスの Nature Publishing Group (NPG) によって行われている。NPGからは、関連誌として他に『ネイチャー ジェネティクス』や『ネイチャー マテリアルズ』など十数誌を発行し、いずれも高いインパクトファクターを持つ。.

新しい!!: シアニディオシゾンとネイチャー · 続きを見る »

アーケプラスチダ

アーケプラスチダ(学名:)は、真核生物の主要な系統の1つであり、陸上植物、緑藻、紅藻と、さらに灰色植物と呼ばれる藻類の小さなグループからなる。これらの生物はみな、2枚の膜に囲まれた、したがって細胞内共生したシアノバクテリアから直接派生したと考えられるプラスチドを持っている。 共生が一回だけの植物群という意味で一次植物 (Primoplantae) という語もある。アーケプラスチダ以外のグループでは、プラスチドは3ないし4枚の膜に囲まれており、緑藻あるいは紅藻から二次的に獲得したものである(二次植物参照)。.

新しい!!: シアニディオシゾンとアーケプラスチダ · 続きを見る »

イントロン

イントロン(intron)は、転写はされるが最終的に機能する転写産物からスプライシング反応によって除去される塩基配列。つまり、アミノ酸配列には翻訳されない。スプライシングによって除去されず、最終的にアミノ酸配列に翻訳される部位をエキソンと呼ぶ。 イントロンは一見無駄に見えるが、選択的スプライシングや、エキソンシャッフリングを可能にし、また、mRNAを核から運び出す過程や、翻訳効率などに関わっていることがわかってきた。.

新しい!!: シアニディオシゾンとイントロン · 続きを見る »

イデユコゴメ綱

イデユコゴメ綱(Cyanidiophyceae)は、紅色植物門の綱である。 古い文献では、"Cyanidales"として知られた。また、2004年のSaunders and Hommersandによる分類では、"Cyanidophyta"として門の階級を与えられたが、2006年のYoon et al.による分類では、亜門とされた。.

新しい!!: シアニディオシゾンとイデユコゴメ綱 · 続きを見る »

イタリア

イタリア共和国(イタリアきょうわこく, IPA:, Repubblica Italiana)、通称イタリアは南ヨーロッパにおける単一国家、議会制共和国である。総面積は301,338平方キロメートル (km2) で、イタリアではロスティバル(lo Stivale)と称されるブーツ状の国土をしており、国土の大部分は温帯に属する。地中海性気候が農業と歴史に大きく影響している。.

新しい!!: シアニディオシゾンとイタリア · 続きを見る »

ゲノム

ノム(Genom、genome, ジーノーム)とは、「遺伝情報の全体・総体」を意味するドイツ語由来の語彙であり、より具体的・限定的な意味・用法としては、現在、大きく分けて以下の2つがある。 古典的遺伝学の立場からは、二倍体生物におけるゲノムは生殖細胞に含まれる染色体もしくは遺伝子全体を指し、このため体細胞には2組のゲノムが存在すると考える。原核生物、細胞内小器官、ウイルス等の一倍体生物においては、DNA(一部のウイルスやウイロイドではRNA)上の全遺伝情報を指す。 分子生物学の立場からは、すべての生物を一元的に扱いたいという考えに基づき、ゲノムはある生物のもつ全ての核酸上の遺伝情報としている。ただし、真核生物の場合は細胞小器官(ミトコンドリア、葉緑体など)が持つゲノムは独立に扱われる(ヒトゲノムにヒトミトコンドリアのゲノムは含まれない)。 ゲノムは、タンパク質をコードするコーディング領域と、それ以外のノンコーディング領域に大別される。 ゲノム解読当初、ノンコーディング領域はその一部が遺伝子発現調節等に関与することが知られていたが、大部分は意味をもたないものと考えられ、ジャンクDNAとも呼ばれていた。現在では遺伝子発現調節のほか、RNA遺伝子など、生体機能に必須の情報がこの領域に多く含まれることが明らかにされている。.

新しい!!: シアニディオシゾンとゲノム · 続きを見る »

ゲノムプロジェクト

ノムプロジェクトとは、DNAシークエンシングによって生物のゲノムの全塩基配列を解読し、タンパク質コード領域やその他のゲノム領域のアノテーションをつけることを目的としたプロジェクト。当初はヒトをはじめ、マウスや線虫などのモデル生物が主な対象であったが、多くの生物種に対象は拡大している。各国の公的研究機関がチームを組んでプロジェクトを進行させるケースが多いが、イネや小麦などの主要農産物については企業による解読もなされた。 塩基配列情報は重要なものではあるが、それだけでは生物の理解には不十分であり、遺伝子領域や制御領域の認識、それらの役割の解明などを進めていくことが望まれる。これらの研究をポストゲノムと総称する。.

新しい!!: シアニディオシゾンとゲノムプロジェクト · 続きを見る »

ゴルジ体

典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) 粗面小胞体、(6) '''ゴルジ体'''、(7) 微小管、(8) 滑面小胞体、(9) ミトコンドリア、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体 ゴルジ体(ゴルジたい、英語: Golgi body)は、真核生物の細胞にみられる細胞小器官の1つ。発見者のカミッロ・ゴルジ(Camillo Golgi)の名前をとってつけられた。ゴルジ装置 (Golgi apparatus)、ゴルジ複合体(Golgi complex)あるいは網状体 (dictyosome) とも言う。へん平な袋状の膜構造が重なっており、細胞外へ分泌されるタンパク質の糖鎖修飾や、リボソームを構成するタンパク質のプロセシングに機能する。.

新しい!!: シアニディオシゾンとゴルジ体 · 続きを見る »

タンパク質

ミオグロビンの3D構造。αヘリックスをカラー化している。このタンパク質はX線回折によって初めてその構造が解明された。 タンパク質(タンパクしつ、蛋白質、 、 )とは、20種類存在するL-アミノ酸が鎖状に多数連結(重合)してできた高分子化合物であり、生物の重要な構成成分のひとつである生化学辞典第2版、p.810 【タンパク質】。 構成するアミノ酸の数や種類、また結合の順序によって種類が異なり、分子量約4000前後のものから、数千万から億単位になるウイルスタンパク質まで多種類が存在する。連結したアミノ酸の個数が少ない場合にはペプチドと言い、これが直線状に連なったものはポリペプチドと呼ばれる武村(2011)、p.24-33、第一章 たんぱく質の性質、第二節 肉を食べることの意味ことが多いが、名称の使い分けを決める明確なアミノ酸の個数が決まっているわけではないようである。 タンパク質は、炭水化物、脂質とともに三大栄養素と呼ばれ、英語の各々の頭文字を取って「PFC」とも呼ばれる。タンパク質は身体をつくる役割も果たしている『見てわかる!栄養の図解事典』。.

新しい!!: シアニディオシゾンとタンパク質 · 続きを見る »

共生

共生(きょうせい、SymbiosisあるいはCommensal)とは、複数種の生物が相互関係を持ちながら同所的に生活する現象。共に生きること。 元の用字は共棲であるとする説もあるが、最新の研究では、共生は明治21年に三好学の論文で用いられていることが確認されており、共棲の用例より早い。確認されている範囲では、日本に初めてSymbiosisという概念を紹介した最初の研究者は三好学であるので、彼がこの訳を当てた可能性が高いともされる。日本では1922年に椎尾弁匡が仏教運動として共生運動を始め、共生が単なる生物学的な意味だけでなく、哲学的な意味を含む言葉になっていった。.

新しい!!: シアニディオシゾンと共生 · 続きを見る »

光合成

光合成では水を分解して酸素を放出し、二酸化炭素から糖を合成する。 光合成の主な舞台は植物の葉である。 光合成(こうごうせい、Photosynthese、photosynthèse、拉、英: photosynthesis)は、主に植物や植物プランクトン、藻類など光合成色素をもつ生物が行う、光エネルギーを化学エネルギーに変換する生化学反応のことである。光合成生物は光エネルギーを使って水と空気中の二酸化炭素から炭水化物(糖類:例えばショ糖やデンプン)を合成している。また、光合成は水を分解する過程で生じた酸素を大気中に供給している。年間に地球上で固定される二酸化炭素は約1014kg、貯蔵されるエネルギーは1018kJと見積もられている『ヴォート生化学 第3版』 DONALDO VOET・JUDITH G.VOET 田宮信雄他訳 東京化学同人 2005.2.28。 「光合成」という名称を初めて使ったのはアメリカの植物学者チャールズ・バーネス(1893年)である『Newton 2008年4月号』 水谷仁 ニュートンプレス 2008.4.7。 ひかりごうせいとも呼ばれることが多い。かつては炭酸同化作用(たんさんどうかさよう)とも言ったが現在はあまり使われない。.

新しい!!: シアニディオシゾンと光合成 · 続きを見る »

立教大学

記載なし。

新しい!!: シアニディオシゾンと立教大学 · 続きを見る »

細胞

動物の真核細胞のスケッチ 細胞(さいぼう)とは、全ての生物が持つ、微小な部屋状の下部構造のこと。生物体の構造上・機能上の基本単位。そして同時にそれ自体を生命体と言うこともできる生化学辞典第2版、p.531-532 【単細胞生物】。 細胞を意味する英語の「cell」の語源はギリシャ語で「小さな部屋」を意味する語である。1665年にこの構造を発見したロバート・フックが自著においてcellと命名した。.

新しい!!: シアニディオシゾンと細胞 · 続きを見る »

細胞小器官

細胞小器官(さいぼうしょうきかん、)とは、細胞の内部で特に分化した形態や機能を持つ構造の総称である。細胞内器官、あるいはラテン語名であるオルガネラとも呼ばれる。細胞小器官が高度に発達していることが、真核細胞を原核細胞から区別している特徴の一つである。 細胞小器官の呼称は、顕微鏡技術の発達に従い、それぞれの器官の同定が進むとともに産まれた概念である。したがってどこまでを細胞小器官に含めるかについては同定した経過によって下記のように混乱が見られる。細胞小器官を除いた細胞質基質についても、新たな構造や機能が認められ、細胞小器官を分類して論じることは今日ではあまり重要な意味をなさなくなってきつつある。 第一には、最も早い時期に同定された核、小胞体、ゴルジ体、エンドソーム、リソソーム、ミトコンドリア、葉緑体、ペルオキシソーム等の生体膜で囲まれた構造体だけを細胞小器官と呼ぶ立場があり、またこれらはどの場合でも細胞小器官に含められている。これらを膜系細胞小器官と呼ぶ場合もある。膜系細胞小器官が内を区画することにより、色々な化学環境下での生反応を並行することを可能にしている。また膜の内外で様々な物資の濃度差を作ることができ、このことを利用してエネルギー生産(電子伝達系)や、物質の貯蔵などを行っている。さらに小胞体、ゴルジ体、エンドソーム、リソソームは、小胞を介して細胞膜と連絡しあっており、このEndomembrane systemと呼ばれるネットワークを通じて物質の取込み(エンドサイトーシス)や放出(分泌)を行うことで、他の細胞や細胞外とのコミュニケーションを達成している。 なおこれらのうちミトコンドリアは、独自の遺伝構造を持つことから、生物進化の過程や種の拡散において注目される場合があり、例えばヒトではミトコンドリア・イブのような共通祖先も想定される。ミトコンドリアに関しては、元来別の細胞が細胞内共生したものに由来するとの説(細胞内共生説)が有力視されている。葉緑体に関しても共生に由来するのではないかという見方もあるが、その起源は依然不明である。 第二には、細胞骨格や、中心小体、鞭毛、繊毛といった非膜系のタンパク質の超複合体からなる構造体までを細胞小器官に含める場合もある。 さらには、核小体、リボソームまで細胞小器官と呼んでいる例も見いだされる。.

新しい!!: シアニディオシゾンと細胞小器官 · 続きを見る »

細胞分裂

細胞分裂(さいぼうぶんれつ)とは、1つの細胞が2個以上の娘細胞に分かれる生命現象。核分裂とそれに引き続く細胞質分裂に分けてそれぞれ研究が進む。単細胞生物では細胞分裂が個体の増殖となる。多細胞生物では、受精卵以後の発生に伴う細胞分裂によって細胞数が増える。それらは厳密な制御機構に裏打ちされており、その異常はたとえばガン化を引き起こす。ウィルヒョウは「細胞は細胞から生ず」と言ったと伝えられているが、これこそが細胞分裂を示している。.

新しい!!: シアニディオシゾンと細胞分裂 · 続きを見る »

細胞核

細胞核(さいぼうかく、cell nucleus)とは、真核生物の細胞を構成する細胞小器官のひとつ。細胞の遺伝情報の保存と伝達を行い、ほぼすべての細胞に存在する。通常は単に核ということが多い。.

新しい!!: シアニディオシゾンと細胞核 · 続きを見る »

紅藻

紅藻(こうそう)は紅色植物門(または紅藻植物門、Rhodophyta)に属する藻類の一群で、赤っぽいのが特徴である。あまり大きなものはないが、有用なものも多く含んでいる。.

新しい!!: シアニディオシゾンと紅藻 · 続きを見る »

真核生物

真核生物(しんかくせいぶつ、学名: 、英: Eukaryote)は、動物、植物、菌類、原生生物など、身体を構成する細胞の中に細胞核と呼ばれる細胞小器官を有する生物である。真核生物以外の生物は原核生物と呼ばれる。 生物を基本的な遺伝の仕組みや生化学的性質を元に分類する3ドメイン説では、古細菌(アーキア)ドメイン、真正細菌(バクテリア)ドメインと共に生物界を3分する。他の2つのドメインに比べ、非常に大型で形態的に多様性に富むという特徴を持つ。かつての5界説では、動物界、植物界、菌界、原生生物界の4界が真核生物に含まれる。.

新しい!!: シアニディオシゾンと真核生物 · 続きを見る »

遺伝子

遺伝子(いでんし)は、ほとんどの生物においてDNAを担体とし、その塩基配列にコードされる遺伝情報である。ただし、RNAウイルスではRNA配列にコードされている。.

新しい!!: シアニディオシゾンと遺伝子 · 続きを見る »

藻類

藻類(そうるい、 )とは、酸素発生型光合成を行う生物のうち、主に地上に生息するコケ植物、シダ植物、種子植物を除いたものの総称である。すなわち、真正細菌であるシアノバクテリア(藍藻)から、真核生物で単細胞生物であるもの(珪藻、黄緑藻、渦鞭毛藻など)及び多細胞生物である海藻類(紅藻、褐藻、緑藻)など、進化的に全く異なるグループを含む。酸素非発生型光合成を行う硫黄細菌などの光合成細菌は藻類に含まれない。 かつては下等な植物として単系統を成すものとされてきたが、現在では多系統と考えられている。従って「藻類」という呼称は光合成を行うという共通点を持つだけの多様な分類群の総称であり、それ以上の意味を持たない。.

新しい!!: シアニディオシゾンと藻類 · 続きを見る »

葉緑体

ATPを合成する。 Plagiomnium affineの細胞内に見える葉緑体 葉緑体の模型の一例 透過型電子顕微鏡による葉緑体の画像 葉緑体(ようりょくたい、Chloroplast)とは、光合成をおこなう、半自律性の細胞小器官のこと。カタカナでクロロプラストとも表記する。.

新しい!!: シアニディオシゾンと葉緑体 · 続きを見る »

染色体

染色体(せんしょくたい)は遺伝情報の発現と伝達を担う生体物質である。塩基性の色素でよく染色されることから、1888年にヴィルヘルム・フォン・ヴァルデヤー(Heinrich Wilhelm Gottfried von Waldeyer-Hartz)によって Chromosome と名付けられた。Chromo- はギリシャ語 (chroma) 「色のついた」に、-some は同じく (soma) 「体」に由来する。.

新しい!!: シアニディオシゾンと染色体 · 続きを見る »

極限環境微生物

極限環境微生物(きょくげんかんきょうびせいぶつ)は、極限環境条件でのみ増殖できる微生物の総称。なお、ここで定義される極限環境とは、ヒトあるいは人間のよく知る一般的な動植物、微生物の生育環境から逸脱するものを指す。ヒトが極限環境と定義しても、極限環境微生物にとってはむしろヒトの成育環境が「極限環境」である可能性もある。 放射線耐性菌や有機溶媒耐性菌は、これらの環境でのみ増殖できるわけではなく、むしろ通常条件の方が適しているが、極限環境微生物に含める場合が多い。.

新しい!!: シアニディオシゾンと極限環境微生物 · 続きを見る »

水素イオン指数

水素イオン指数(すいそイオンしすう、Wasserstoffionenexponent)とは、溶液の液性(酸性・アルカリ性の程度)を表す物理量で、記号pHで表す。水素イオン濃度指数または水素指数とも呼ばれる。1909年にデンマークの生化学者セレン・セーレンセンが提案した『化学の原典』 p. 69.

新しい!!: シアニディオシゾンと水素イオン指数 · 続きを見る »

温泉

岩石を湯船とした露天風呂。由布院温泉 血の池地獄名勝・別府の地獄 海地獄名勝・別府の地獄 湯畑草津温泉 露天風呂南紀勝浦温泉 共同浴場湯の峰温泉 外湯城崎温泉「御所の湯」 温泉街銀山温泉 展望温泉浴場浅虫温泉 温泉を利用した風呂大深温泉 入浴中のニホンザル地獄谷野猿公苑 温泉(おんせん)は、地中から湯が湧き出す現象や湯となっている状態、またはその場所を示す用語である。その熱水泉を用いた入浴施設も一般に温泉と呼ばれる。人工温泉と対比して「天然温泉」と呼ぶ場合もある。 熱源で分類すると、火山の地下のマグマを熱源とする火山性温泉と、火山とは無関係の非火山性温泉に分けられる。含まれる成分により、さまざまな色、匂い、効能の温泉がある。 広義の温泉(法的に定義される温泉):日本の温泉法の定義では、必ずしも水の温度が高くなくても、普通の水とは異なる天然の特殊な水(鉱水)やガスが湧出する場合に温泉とされる(後節の「温泉の定義」を参照)。温泉が本物か否かといわれるのは、温泉法の定義にあてはまる「法的な温泉」であるのかどうかを議論する場合が一般的である(イメージに合う合わないの議論でも用いられる場合がある)。アメリカでは21.1度(華氏70度)、ドイツでは20度以上と定められている。.

新しい!!: シアニディオシゾンと温泉 · 続きを見る »

温泉藻

温泉藻(おんせんそう、hot spring algae)とは、温泉の源泉付近や流路、浴槽などに棲息する藻類のことである。一般的な生物であれば生育に支障をきたす50-80 ℃の環境に適応した極限環境微生物である。.

新しい!!: シアニディオシゾンと温泉藻 · 続きを見る »

2004年

この項目では、国際的な視点に基づいた2004年について記載する。.

新しい!!: シアニディオシゾンと2004年 · 続きを見る »

4月8日

4月8日(しがつようか)は、グレゴリオ暦で年始から98日目(閏年では99日目)にあたり、年末まではあと267日ある。誕生花はレンゲソウ、フジ。.

新しい!!: シアニディオシゾンと4月8日 · 続きを見る »

ここにリダイレクトされます:

シアニディオシゾン・メロラエシゾン

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »