ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

サニャック効果

索引 サニャック効果

ニャック効果(サニャックこうか、Sagnac effect 又は Harress-Sagnac effect)とは、回転する観測者から見た現象には、時間のずれが移動経路(および移動方向)に依存して生じるという効果を指す。回転する観測者から見た現象は回転座標系を用いて記述されるが、この座標系は非慣性系であり、一般相対論により取り扱われる。 狭義では角速度を検出するリングレーザージャイロスコープや光ファイバジャイロスコープ等において光伝播速度が伝播方向に依存する効果・現象を指す。 この効果は回転座標系から(特殊相対論で扱うことのできる)慣性系に変換して考えれば説明が容易である(したがって一般相対論を敢えて知る必要は無いとも言える)。.

24 関係: 一般相対性理論伝播位相リングレーザージャイロスコープレフ・ランダウド・ブロイ波アルベルト・アインシュタインエフゲニー・リフシッツグローバル・ポジショニング・システム円柱座標変換光ファイバジャイロスコープ回転回転座標系固有時理論物理学教程特殊相対性理論相対論静止衛星衛星測位システム角速度重力レンズ慣性系時間の遅れ

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

新しい!!: サニャック効果と一般相対性理論 · 続きを見る »

伝播

デンハは伝わり広がって行くこと。広い範囲に伝わること。「稲作の―」。特に波動が広がって行くことを表す.

新しい!!: サニャック効果と伝播 · 続きを見る »

位相

位相(いそう、)は、波動などの周期的な現象において、ひとつの周期中の位置を示す無次元量で、通常は角度(単位は「度」または「ラジアン」)で表される。 たとえば、時間領域における正弦波を とすると、(ωt + &alpha) のことを位相と言う。特に t.

新しい!!: サニャック効果と位相 · 続きを見る »

リングレーザージャイロスコープ

リングレーザージャイロスコープ(ring laser gyroscope, RLG)は、ジャイロスコープの一種。光学リング内で回転によって生じる光路差によって生じるレーザー光の干渉を検出することで角変移を検出する。サニャック効果の一例である。 リングレーザージャイロの最初の実験はアメリカ海軍のMacekとDavisによって1963年に実演された。世界規模で多くの企業や機関によって技術開発が進められ、その高い確度(0.01°/hour)と可動部を持たないことでもたらされる高信頼性により、現在では慣性航法装置に搭載されている。 RLGは慣性航法装置の(それぞれの1つの自由度)基幹を司る。従来の回転式ジャイロスコープに比して装置が小型軽量で可動部を有さず、摩擦がなく固有ドリフトがない優位性を持つ。機械式ジャイロスコープは定期的な部品を交換を要するがRLGは事実上消耗せず、航空機に使用されている。 RLGは機械式ジャイロよりも正確であるが、超低速回転時にはロックイン(lock-in)と呼ばれる現象の影響を受け、回転を正しく検出できなくなる。超低速回転時、順方向、反回転方向のレーザー光の周波数が極めて近接する。双方の光がクロストークにより他方の光路に入りレーザ発振部に到達すると、レーザ発振のインジェクションロッキングが起き、ファイバーの上にできる定在波が角変位に反応せず固定化されてしまう。 これを防ぐには、強制ディザリングが有効である。 強制ディザリングでは、機械式スプリングの共振を利用し、レーザキャビティを回転方向に前後に振動させる。 通常、振動数400Hz、最大瞬間角速度 1秒(1/3600度)毎秒を用いる。しかし、このディザリングによってもロックインを完全に防ぐことはできない。ディザリングの振動の方向が変わるたびに、回転速度がほとんど0になる時間帯があり、このとき短い時間ながらもロックインが発生する。外部の回転の変動がこのタイミングと同期することにより、微小なロックインによる誤差が蓄積し大きな誤差となる可能性がある。この誤差は、400Hzの振動波形にノイズをいれることにより緩和することができるKnowing Machines, Donald MacKenzie, The MIT Press, (1991).

新しい!!: サニャック効果とリングレーザージャイロスコープ · 続きを見る »

レフ・ランダウ

レフ・ダヴィドヴィッチ・ランダウ(、1908年1月22日 - 1968年4月1日)はロシアの理論物理学者。絶対零度近くでのヘリウムの理論的研究によってノーベル物理学賞を授与された。エフゲニー・リフシッツとの共著である『理論物理学教程』は、多くの言語に訳され、世界的にも標準的な教科書としてよく知られている。.

新しい!!: サニャック効果とレフ・ランダウ · 続きを見る »

ド・ブロイ波

ド・ブロイ波(ド・ブロイは、de Broglie wave)は、1924年にルイ・ド・ブロイが提唱した粒子性と波動性を結びつける考え方である。ド・ブローイ波、物質波ともいう。 質量mの粒子が速さv(運動量 mv.

新しい!!: サニャック効果とド・ブロイ波 · 続きを見る »

アルベルト・アインシュタイン

アルベルト・アインシュタイン日本語における表記には、他に「アルト・アインシュタイン」(現代ドイツ語の発音由来)、「アルト・アインタイン」(英語の発音由来)がある。(Albert Einstein アルベルト・アインシュタイン、アルバート・アインシュタイン アルバ(ー)ト・アインスタイン、アルバ(ー)タインスタイン、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。 特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績などにより、世界的に知られている偉人である。 「20世紀最高の物理学者」や「現代物理学の父」等と評され、それまでの物理学の認識を根本から変えるという偉業を成し遂げた。(光量子仮説に基づく光電効果の理論的解明によって)1921年のノーベル物理学賞を受賞。.

新しい!!: サニャック効果とアルベルト・アインシュタイン · 続きを見る »

エフゲニー・リフシッツ

エフゲニー・ミハイロヴィッチ・リフシッツ(ロシア語:Евгений Михайлович Лифшиц、ラテン文字転写:Evgeny Mikhailovich Lifshitz、1915年2月21日 - 1985年10月29日)は宇宙物理学を専門とする、ソビエト連邦の理論物理学者。 ランダウ、ピタエフスキーとの共著による一連の教科書「理論物理学教程」は、理論物理学を志す学生への手引きとして、あるいは超えるべき壁として今日でも広く知られ、読まれている。 Category:ロシアの物理学者 Category:ソビエト連邦の物理学者 Category:ソビエト連邦科学アカデミー正会員 Category:王立協会外国人会員 Category:モスクワ物理工科大学の教員 Category:労働赤旗勲章受章者 Category:人民友好勲章受章者 Category:レーニン賞受賞者 Category:スターリン賞受賞者 Category:ハリコフ県出身の人物 Category:ハルキウ出身の人物 Category:1915年生 Category:1985年没.

新しい!!: サニャック効果とエフゲニー・リフシッツ · 続きを見る »

グローバル・ポジショニング・システム

船舶用GPS受信機 グローバル・ポジショニング・システム(Global Positioning System, Global Positioning Satellite, GPS、全地球測位システム)とは、アメリカ合衆国によって運用される衛星測位システム(地球上の現在位置を測定するためのシステムのこと)を指す。 ロラン-C(Loran-C: Long Range Navigation C)システムなどの後継にあたる。.

新しい!!: サニャック効果とグローバル・ポジショニング・システム · 続きを見る »

円柱座標変換

円柱座標変換(えんちゅうざひょうへんかん)とは、3次元ユークリッド空間 (数ベクトル空間)の、非線形な座標変換の一つである。円柱座標変換の逆写像厳密には、円柱座標系は大域的には逆写像を持たない。ただ、特異点上を除き、その近傍においては、局所的な逆写像を持つ(円柱座標系と円柱座標変換、逆写像定理の項目を参照のこと)。のことを、円柱座標系という。円柱座標系は、極座標系の一種である極座標系は、直交曲線座標系の一種であるから、円柱座標系は直交曲線座標系であり、直交曲線座標系は直交座標系の一種なので、円柱座標系は直交座標系の一種である。。 円柱座標変換は、電子レンズなど、軸対称な系の計算によく用いられる軸対称でない系に対しても適用可能である。また、本稿でも、特に注意をしない場合には軸対称でない系を除外していない。しかし、軸対称でない系に対してはあまり威力のない手法である。。.

新しい!!: サニャック効果と円柱座標変換 · 続きを見る »

上方から入ってきた光の道筋が、散乱によって見えている様子。(米国のアンテロープ・キャニオンにて) 光(ひかり)とは、基本的には、人間の目を刺激して明るさを感じさせるものである。 現代の自然科学の分野では、光を「可視光線」と、異なった名称で呼ぶことも行われている。つまり「光」は電磁波の一種と位置付けつつ説明されており、同分野では「光」という言葉で赤外線・紫外線まで含めて指していることも多い。 光は宗教や、哲学、自然科学、物理などの考察の対象とされている。.

新しい!!: サニャック効果と光 · 続きを見る »

光ファイバジャイロスコープ

光ファイバジャイロスコープ(ひかりファイバジャイロスコープ、FOG)は光の干渉を利用して機械的な回転を検出するジャイロスコープである。 センサはコイル状に巻かれた光ファイバである。 互いに反対方向から光ファイバ内に入射した光がサニャック効果により回転時に反対方向の光よりも光路長が長くなるため位相の重なりにより明暗ができることによって干渉縞を生じる。 1970年代初頭の通信用の低損失のシングルモード光ファイバの開発によりサニャック効果を利用した光学式ジャイロスコープが開発された。外部のレーザーダイオード光源から光束を分割して時計回りと反時計回りに環状に幾重にも巻かれた光ファイバ内に入射する。 端面で反射した光束がコイル内に戻るのを防止するために反射防止されている。数百メートルの長さのパスが用意されている。最初のFOGは1976年、アメリカのValiとShorthillによって実演された。受動的干渉計型のFOG又はIFOGの開発と受動的リング発振型のFOG若しくはRFOGの両形式の開発は多くの会社と世界中の研究者が携わった。 FOGは可動部が無く、機械式ジャイロスコープと比較して信頼性が高い。 FOGよりも高分解能が要求される用途においてはリングレーザージャイロスコープが用いられる。 難加工性の超低膨張素材に高精度な加工が必要なリングレーザージャイロに比べて製造コストが安い。本体に封入されたガスに外部からエネルギーを加える事による誘導放射でレーザー発振するレーザージャイロに比べて低消費電力の半導体レーザーを使用できるので消費電力が少なく、UAVのように搭載エネルギー源の限られる用途において有利である。 JAXAのM-Vロケットの慣性誘導装置に使用されていた。.

新しい!!: サニャック効果と光ファイバジャイロスコープ · 続きを見る »

回転

回転(廻転、かいてん、rotation)は、大きさを持たない点または大きさを持つ物体が、ある点を中心としてあるいは直線を軸として、あるいは別の物体の周りを回る運動。この点を回転中心、この直線を回転軸という。回転中心や回転軸が回転する物体の内部にある場合を特に自転というときもある。まさに運動している状態を指す場合も、運動の始状態から終状態への変化や移動を指す場合もある。前者の意味を強調したい場合は回転運動ということもある。 転じて、資金などの供給・サービス業の客の出入りなどをこう称する場合がある。.

新しい!!: サニャック効果と回転 · 続きを見る »

回転座標系

回転座標系(かいてんざひょうけい)とは、運動座標系の一種で、慣性系から見るとある軸に対して回転している非慣性系の座標系をいう。たとえば地球表面は地軸に対して回転する座標系である。 例としてz 軸まわりに角速度ωで回転する回転座標系 (x', y', z') を考える。慣性系 (x, y, z) と回転座標系 (x', y', z') が時刻t.

新しい!!: サニャック効果と回転座標系 · 続きを見る »

固有時

固有時(こゆうじ)とは、物理現象・物理法則を支配する時間を言う。特殊相対性理論・一般相対性理論により,ある観測者から見て移動する座標系若しくは重力等で歪んだ時空座標系の下でも,(時空点ごとに固有・不変となる)固有時を用いることにより物理法則は普遍形・不変形を示す。 本稿では特殊相対性理論に基づく観点の下で固有時の説明を行う。 ---- 固有時(こゆうじ)とは、注目する物体に伴って移動する座標系で計測した時間のことである。一般に記号はτを用いる。ニュートン力学まで用いられた全宇宙で一意な絶対時間に代わり、注目すべき物体の固有時が物理法則の記述に用いられるようになった。 アインシュタインは一般相対性理論に基づく観点から、「私は全宇宙に時計を置いた」と述べている。.

新しい!!: サニャック効果と固有時 · 続きを見る »

理論物理学教程

『理論物理学教程』(りろんぶつりがくきょうてい、Курс теоретической физики; Course of Theoretical Physics)は、レフ・ランダウ、エフゲニー・リフシッツおよびらによる物理学の教科書。『ランダウ=リフシッツの理論物理学教程』とも呼ばれる。様々な言語に翻訳されており、標準的な教科書として使用されている。日本では個々の巻を指して「ランダウの力学」「ランダウの統計」などと称されることが多い。「ランダウの〜」と呼ばれるものの文章を書くことが不得手であったランダウに代わり実際に『教程』を執筆したのはリフシッツである。リフシッツはランダウが交通事故に遭遇した時点で未完だった10巻のうち3巻をピタエフスキーに協力を仰ぎつつ『教程』を完成させた。『教程』が全巻完結した後も最新の知見を盛り込むなど改訂を続け、個々の巻は初期の版に比べ大幅にページ数が増加している。.

新しい!!: サニャック効果と理論物理学教程 · 続きを見る »

特殊相対性理論

特殊相対性理論(とくしゅそうたいせいりろん、Spezielle Relativitätstheorie、Special relativity)とは、慣性運動する観測者が電磁気学的現象および力学的現象をどのように観測するかを記述する、物理学上の理論である。アルベルト・アインシュタインが1905年に発表した論文に端を発する。特殊相対論と呼ばれる事もある。.

新しい!!: サニャック効果と特殊相対性理論 · 続きを見る »

相対論

対論(そうたいろん).

新しい!!: サニャック効果と相対論 · 続きを見る »

静止衛星

静止衛星(せいしえいせい)とは、赤道上空の高度約35,786kmの円軌道(静止軌道)を、地球の自転周期と同じ周期で公転している人工衛星のことを指す。.

新しい!!: サニャック効果と静止衛星 · 続きを見る »

衛星測位システム

衛星測位システム (えいせいそくいシステム)、衛星航法システム (えいせいこうほうシステム) (英:NSS:Navigation Satellite System) とは、衛星航法のシステムを指す。 衛星航法 (えいせいこうほう)とは 、複数の航法衛星(人工衛星の一種)が航法信号を地上の不特定多数に向けて電波送信(放送)し、それを受信する受信機を用いる方式の航法(自己の位置や進路を知る仕組み・方法)を指す。システムは航法衛星群とそれらを管制する幾つかの地上局から構成される。 日本では「衛星測位」及び「衛星測位システム」と呼ぶことが多い2011年(平成23年)4月からは国土地理院では全地球型のシステム(全地球航法衛星システム)を、GNSSと呼称することになった。よく誤解されるが、GPSはあくまでも衛星測位システムの中の1つ(固有名詞)であり、衛星測位システムそのものを指すものではない。。 草分けは軍用のトランシット (人工衛星) である。現在の身近な用途はカーナビゲーション、歩行ナビゲーションであるが、他にも船舶や航空機の航法支援、建築・土木では測量やICTブルドーザーの制御などに用いられている。 衛星航法システムの構築と保有は、財政的に比較的余裕のある工業国にとって、長期的な安全保障と社会の利便性向上の観点から重要政策と位置づけされることがある。それは電波航法が主流であったときから続く一般論である。.

新しい!!: サニャック効果と衛星測位システム · 続きを見る »

角速度

運動学において、角速度(かくそくど、angular velocity)は、ある点をまわる回転運動の速度を、単位時間に進む角度によって表わした物理量である。言い換えれば角速度とは、原点と物体を結ぶ線分、すなわち動径が向く角度の時間変化量である。特に等速円運動する物体の角速度は、物体の速度を円の半径で割ったものとして与えられる。従って角速度の量の次元物理学などの文献においては、文脈上紛れがない限り、単に「次元」と呼ばれる。は、通常の並進運動の速度とは異なり速度の次元は長さ L に時間 T の逆数を掛けた L⋅T−1 である。、時間の逆数 T−1 となる。.

新しい!!: サニャック効果と角速度 · 続きを見る »

重力レンズ

銀河団Abell 1689によって作られた重力レンズ。遠方の多数の銀河の像が円弧状に引き伸ばされて見えている 重力レンズ効果 重力レンズ(じゅうりょくレンズ、)とは、恒星や銀河などが発する光が、途中にある天体などの重力によって曲げられたり、その結果として複数の経路を通過する光が集まるために明るく見えたりする現象。光源と重力源との位置関係によっては、複数の像が見えたり、弓状に変形した像が見えたりする。重力レンズ効果とも言われる。また、リング状の像のものはアインシュタインリングと言われる。.

新しい!!: サニャック効果と重力レンズ · 続きを見る »

慣性系

慣性系(かんせいけい、ガリレイ系とも、inertial frame of reference)は、慣性の法則(運動の第1法則)が成立する座標系である。 例えば、等速運動する座標系では、物体は外力を受けない限り等速直線運動を行うので、慣性系の1つである。 次に減速している車での座標系では、物体は外力を受けていないのに、前向きに運動を行う。よって慣性の法則が成立しないので、減速している車の座標系は慣性系ではない。.

新しい!!: サニャック効果と慣性系 · 続きを見る »

時間の遅れ

時間の遅れ(じかんのおくれ、time dilation)は、相対性理論が予言する現象である。2人の観察者がいるとき、互いの相対的な速度差により、または重力場に対して異なる状態にあることによって、2人が測定した経過時間に差が出る(時間の進み方が異なる)。 時空の性質の結果として、観測者に対して相対的に動いている時計は、観測者自身の基準系内で静止している時計よりも進み方が遅く観測される。また、観察者よりも強い重力場の影響を受けている時計も、観察者自身の時計より遅く観測される。いずれも静止している観測者や重力源から無限遠方の観測者を基準とするので、時計の進み方が「遅い」と表現される。このような時間の遅れは、片方だけを宇宙飛行に送った1組の原子時計の時間のわずかなずれや、スペースシャトルに搭載された時計が地球上の基準時計よりもわずかに遅いこと、GPS衛星やガリレオ衛星の時計が早く動くようになっていることなどで、実際に確認できる。時間の遅れは、SF作品において未来への時間旅行の手段を提供するために使われることがある。.

新しい!!: サニャック効果と時間の遅れ · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »