ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ゴッパ符号

索引 ゴッパ符号

ッパ符号(ゴッパふごう、Goppa code)または代数幾何符号(だいすうきかふごう、algebraic geometric code)は、有限体 \mathbb_q 上の代数曲線 X を使って構築される線型符号である。V.

11 関係: 代数多様体代数曲線ハミング距離ハミング重みユークリッドの互除法リーマン・ロッホの定理因子 (代数幾何学)線型符号暗号理論有理点有限体

代数多様体

代数多様体(だいすうたようたい、algebraic variety)は、最も簡略に言えば、多変数の連立多項式系の解集合として定義される図形と述べる事が出来る。代数幾何学の最も主要な研究対象であり、デカルトによる座標平面上の解析幾何学の導入以来、多くの数学者が研究してきた数学的対象である。主にイタリア学派による射影幾何学的代数多様体、代数関数論およびその高次元化に当たるザリスキおよびヴェイユによる付値論的抽象代数多様体などの基礎付けがあたえられたが、20世紀後半以降はより多様体論的な観点に立脚したスキーム論による基礎付けを用いるのが通常である。 本項では、スキーム論的な観点に立ちつつ、スキーム論を直接用いず代数多様体を定義しその性質について述べる。また議論を簡潔にするのため特に断らない限り体 k は代数的閉体であると仮定する(体 k が代数的閉であるという条件を除去するために必要な考察についてはスキーム論へ向けてを参照)。.

新しい!!: ゴッパ符号と代数多様体 · 続きを見る »

代数曲線

数学における代数曲線(だいすうきょくせん、algebraic curve)、特にユークリッド幾何学における平面代数曲線 (plane algebraic curve) は、ユークリッド平面内の点集合であって、各点が適当な二変数多項式函数の零点として与えられるものを言う。.

新しい!!: ゴッパ符号と代数曲線 · 続きを見る »

ハミング距離

4ビット文字列のハミング距離を図示したもの。頂点に特定のビットの組合せが対応していて、頂点間の辺の数がハミング距離に対応する 情報理論において、ハミング距離(ハミングきょり、Hamming distance)とは、等しい文字数を持つ二つの文字列の中で、対応する位置にある異なった文字の個数である。別の言い方をすれば、ハミング距離は、ある文字列を別の文字列に変形する際に必要な置換回数を計測したものである。この用語は、リチャード・ハミング (Richard Wesley Hamming) にちなんで命名されたもので、鼻歌 (humming) ではない。 ハミング距離は、遠距離通信における固定長バイナリー文字列の中で弾かれたビット数や、エラーの概算を数えるのに用いられるために、信号距離とも呼ばれる。文字数 n の1ビット文字列間のハミング距離は、それらの文字列間の排他的論理和のハミング重み(文字列内の 1 の個数)か、 n 次元超立方体の 2 頂点間のマンハッタン距離に相当する。 ハミング距離の例:.

新しい!!: ゴッパ符号とハミング距離 · 続きを見る »

ハミング重み

ハミング重み(ハミングおもみ、Hamming weight)とは、シンボル列中の 0 以外のシンボルの個数である。典型的には、ビット列中の1の個数として使われる。.

新しい!!: ゴッパ符号とハミング重み · 続きを見る »

ユークリッドの互除法

ユークリッドの互除法(ユークリッドのごじょほう、)は、2 つの自然数の最大公約数を求める手法の一つである。 2 つの自然数 a, b (a ≧ b) について、a の b による剰余を r とすると、 a と b との最大公約数は b と r との最大公約数に等しいという性質が成り立つ。この性質を利用して、 b を r で割った剰余、 除数 r をその剰余で割った剰余、と剰余を求める計算を逐次繰り返すと、剰余が 0 になった時の除数が a と b との最大公約数となる。 明示的に記述された最古のアルゴリズムとしても知られ、紀元前300年頃に記されたユークリッドの『原論』第 7 巻、命題 1 から 3 がそれである。.

新しい!!: ゴッパ符号とユークリッドの互除法 · 続きを見る »

リーマン・ロッホの定理

リーマン・ロッホの定理(リーマン・ロッホのていり、Riemann–Roch theorem)とは、複素解析学や代数幾何学などで用いられる、閉リーマン面上の複素解析と曲面の種数とを結びつける定理である。特定の位数の零点と極をもつ有理型関数空間の次元計算に役立つ。 まず、ベルンハルト・リーマンがでリーマンの不等式(Riemann's inequality)を証明した。そして短い間ではあったが、リーマンの学生であったグスタフ・ロッホが、で決定的な形に到達した。その後、この定理は代数曲線上や高次元代数多様体に一般化され、さらにそれを超えた一般化もなされている。.

新しい!!: ゴッパ符号とリーマン・ロッホの定理 · 続きを見る »

因子 (代数幾何学)

因子(いんし; divisor)とは、代数幾何学や複素幾何学において、代数多様体(または複素解析空間)の余次元1の部分多様体の形式的有限和のことをいう。因子は、代数多様体や解析空間上の有理関数あるいは有理型関数の極や零点の分布を表すために用いられる(概説参照)。線形同値な因子の空間である線形系を考えることは、射影空間への有理写像を考えることと1対1に対応しているので、代数多様体(または複素解析空間)の代数幾何的な性質・情報を取り出すときに欠かせない概念である。.

新しい!!: ゴッパ符号と因子 (代数幾何学) · 続きを見る »

線型符号

線型符号(せんけいふごう、Linear code)とは、誤り検出訂正に使われるブロック符号の種類を指す。線型符号は他の符号に比べて、符号化と復号が効率的であるという特徴を持つ。 線型符号は、伝送路上を記号列を転送する方法に適用される。したがって通信中に誤りが発生しても、一部の誤りを受信側で検出することができる。線型符号の「符号」は記号のブロックであり、本来の送るべき記号列よりも多くの記号を使って符号化されている。長さ n の線型符号は、n 個の記号を含むブロックを転送する。.

新しい!!: ゴッパ符号と線型符号 · 続きを見る »

暗号理論

暗号理論(あんごうりろん)の記事では暗号、特に暗号学に関係する理論について扱う。:Category:暗号技術も参照。.

新しい!!: ゴッパ符号と暗号理論 · 続きを見る »

有理点

数論において有理点(ゆうりてん、rational point)とは、各座標の値が全て有理数であるような空間の点を言う。 例えば、点 (3, −67/4) は 3 も −67/4 も有理数であるため、2次元空間内の有理点である。有理点の特別な場合は、(integer point)、つまり、その座標が全て整数の点である。例えば、(1, −5, 0) は 3次元空間内の整数点である。より一般的に K を任意の体とするとき、K-有理点は点の各々の座標が体 K に属するような点と定義される。K-有理点に対応する特別な場合は K-整数点、すなわち各座標が(数体) K 内の代数的整数の環の元である場合である。.

新しい!!: ゴッパ符号と有理点 · 続きを見る »

有限体

有限体(ゆうげんたい、英語:finite field)とは、代数学において、有限個の元からなる体、すなわち四則演算が定義され閉じている有限集合のことである。主に計算機関連の分野においては、発見者であるエヴァリスト・ガロアにちなんでガロア体あるいはガロア域(ガロアいき、Galois field)などとも呼ぶ。 有限体においては、体の定義における乗法の可換性についての条件の有無は問題にはならない。実際、ウェダーバーンの小定理と呼ばれる以下の定理 が成り立つことが知られている。別な言い方をすれば、有限体において乗法の可換性は、体の有限性から導かれるということである。.

新しい!!: ゴッパ符号と有限体 · 続きを見る »

ここにリダイレクトされます:

代数幾何符号

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »