ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

コムフィルタ

索引 コムフィルタ

ムフィルタ(comb filter)は、信号にそれ自身を遅延させたものを追加することで干渉を生じさせるフィルタ回路の一種である。くし形フィルタまたはくし型フィルタとも。コムフィルタの周波数特性は一定間隔のスパイク状になり、図示すると櫛のように見える。.

30 関係: 効果音反響定常波干渉 (物理学)伝達関数法信号 (電気工学)信号処理ディジタルフィルタフランジャーフィルタ回路フィードバック周波数特性周期関数アンチエイリアスオイラーの公式サンプリング周波数変換無限インパルス応答物理モデル音源音響学複素数離散信号零点連続信号NTSCPALZ変換極値有界入力有界出力安定性有限インパルス応答

効果音

効果音(こうかおん)とは、映画・演劇・テレビドラマ・ラジオドラマ・アニメ・ゲーム等において、演出の一環として付け加えられる音。舞台環境、状態を説明するための具体的な環境音(戦場の銃撃音、格闘の打撃、刀で斬る音、街頭の雑踏、駅の発車アナウンス、犬の鳴き声、海辺の潮騒等)や、登場人物の心象を象徴させるための音などがある。また、ノックの音を切っ掛けに、室内にいる役者が人を招き入れる芝居を始めるなどのように芝居の切っ掛けとしての使用法もある。音響効果(おんきょうこうか)、サウンドエフェクト (sound effect)、略してSEともいう。音楽コンサートにおいては開演前に客席に流す音楽や歌曲もSEと呼ぶ。 効果音の制作手段としては、実際に環境音を生録音して編集・再生する方法、シンセサイザー等によって生成する方法、別の手段で似た音を発生させる方法(容器に入れた砂で波の音を作る、ロープを振り回して風の音を作る、逆さまにしたお椀を砂などに軽く叩き付けて馬の足音を作る)などがある。予算や利便性の都合で著作権フリーの効果音音源(CDなど)を利用する場合も多い。.

新しい!!: コムフィルタと効果音 · 続きを見る »

反響

反響(はんきょう).

新しい!!: コムフィルタと反響 · 続きを見る »

定常波

振動していない赤い点が節。節と節の中間に位置する振幅が最大の場所が腹。波形が進行しない様子がわかる。 定常波(ていじょうは、standing waveまたはstationary wave)とは、波長・周期(振動数または周波数)・振幅・速さ(速度の絶対値)が同じで進行方向が互いに逆向きの2つの波が重なり合うことによってできる、波形が進行せずその場に止まって振動しているようにみえる波動のことである。定在波(ていざいは)ともいう。.

新しい!!: コムフィルタと定常波 · 続きを見る »

干渉 (物理学)

2波干渉 物理学における波の干渉(かんしょう、interference)とは、複数の波の重ね合わせによって新しい波形ができることである。互いにコヒーレントな(相関性が高い)波のとき干渉が顕著に現れる。このような波は、同じ波源から出た波や、同じもしくは近い周波数を持つ波である。.

新しい!!: コムフィルタと干渉 (物理学) · 続きを見る »

伝達関数法

伝達関数法(でんたつかんすうほう)とは、複素関数論(ラプラス変換など)を用いた制御系の解析法である。.

新しい!!: コムフィルタと伝達関数法 · 続きを見る »

信号 (電気工学)

信号(signal)は、電気通信や信号処理、さらには電気工学全般において、時間や空間に伴って変化する任意の量を意味する。 実世界では、時間と共に測定可能な量や、空間において測定可能な量を信号という。また人間社会では、人間の発する情報や機械のデータも信号とされる。そのような情報やデータ(例えば画面上のドット、紙上にインクで書かれたテキスト、あるいはこれを読んでいる人が見ている単語の列)は全て、何らかの物理的システムや生体的システムの一部として存在している。 システムの形態は様々だが、その入力と出力は時間または空間に伴って変化する値として表すことが可能である。20世紀後半、電気工学はいくつかの分野に分かれ、その一部は物理的信号とそのシステムを設計および解析する方向に特化してきた。また、一方では人間や機械の複雑なシステムの機能動作や概念構造を扱う分野も登場した。これらの工学分野は、単純な測定量としての信号を利用したシステムの設計/研究/実装の方法を提供し、それによって情報の転送/格納/操作の新たな手段が生み出されてきた。.

新しい!!: コムフィルタと信号 (電気工学) · 続きを見る »

信号処理

信号処理(しんごうしょり、signal processing)とは、光学信号、音声信号、電磁気信号などの様々な信号を数学的に加工するための学問・技術である。 アナログ信号処理とデジタル信号処理に分けられる。 基本的には、信号から信号に変換するものであり、信号とは別の形式の情報を得るもの(例えば、カテゴリ分けや関連づけ、推論的な情報を得る認識や理解など)は含まれない。圧縮も含まれないことが多い。但し、認識や理解、圧縮の前段階としての信号の変換は信号処理と呼ばれる。そのため、信号処理はそれらの技術に対して非常に重要であるとともに関連が強い。なお、また入力と出力が同じ種類(物理量)の信号である場合(例えば入力と出力ともに同じ音圧である場合)には、フィルタリングとも呼ばれる。 信号処理の例としては、ノイズの載った信号から元の信号を推定するノイズ除去や、時間的な先の値を推定する予測、時間周波数解析などを行う直交変換、信号の特徴を得る特徴抽出、特定の周波数成分のみを得るフィルタなどがある。 高速フーリエ変換、ウェーブレット変換、畳み込み等のアルゴリズムがあり、以前はそれぞれ専用のハードウェアで処理していたが、近年ではDSPや汎用のハードウェアでソフトウェアで処理したり、FPGAによる再構成可能コンピューティングによって処理する方法が開発されつつある。 さまざまな応.

新しい!!: コムフィルタと信号処理 · 続きを見る »

ディジタルフィルタ

電子工学において、デジタルフィルタ()は量子化および標本化してAD変換した信号(離散時間信号)をデジタル信号処理することにより働く、フィルタ回路の一つである。.

新しい!!: コムフィルタとディジタルフィルタ · 続きを見る »

フランジャー

フランジャー(flanger)とは、元の音声信号と、それを僅かに遅延させた音声信号の干渉により音を変化させるエフェクターである。 ADTの際、2台のテープ・レコーダーの一方のテープ・フランジ(テープ・リールの縁)に手を添えるなどして遅延を与えた効果に由来する。 フェイザーと似ているが、フェイザーによる周波数特性のディップは、ノッチフィルタ状になるが、フランジャーによる周波数特性のディップは、周期的なコムフィルタ状になる。 楽器音にフランジャーをかけると、独特のうねりを持ったサウンドを作ることができ、深くかけると金属的な音を作ることができる。ホワイトノイズにかけるとジェット機のエンジン音の様な強烈なノイズを作ることもできる。 原理としてはコーラスエフェクトとほぼ同じであり、その違いはエフェクト音の遅延の長さとフィードバック回数などによる。よって、設定の細かいコーラスではフランジャーに似たサウンドを作ることも出来、反対に設定の細かいフランジャーではコーラスのようなサウンドも作成可能。実際、「コーラス/フランジャー」として一台に集約された機器や、マルチエフェクタ類ではプリセットが「コーラス/フランジャー」として同一エフェクトとされていることも多い。.

新しい!!: コムフィルタとフランジャー · 続きを見る »

フィルタ回路

フィルタ回路(フィルタかいろ)とは、入力された電気信号に帯域制限をかけたり、特定の周波数成分を取り出すための電気回路(または電子回路)、つまりフィルタの役割をする電気回路のことを言う。濾波器(ろはき)ともいう。.

新しい!!: コムフィルタとフィルタ回路 · 続きを見る »

フィードバック

フィードバック(feedback)とは、もともと「帰還」と訳され、ある系の出力(結果)を入力(原因)側に戻す操作のこと。古くは調速機(ガバナ)の仕組みが、意識的な利用は1927年のw:Harold Stephen Blackによる負帰還増幅回路の発明に始まり、サイバネティックスによって広められた。システムの振る舞いを説明する為の基本原理として、エレクトロニクスの分野で増幅器の特性の改善、発振・演算回路及び自動制御回路などに広く利用されているのみならず、制御システムのような機械分野や生物分野、経済分野などにも広く適用例がある。自己相似を作り出す過程であり、それゆえに予測不可能な結果をもたらす場合もある。.

新しい!!: コムフィルタとフィードバック · 続きを見る »

周波数特性

周波数特性(しゅうはすうとくせい)とは、周波数と何らかの物理量との関係を表したものである。英語で"frequency response"となることからf特、f特性と呼ばれることもある。.

新しい!!: コムフィルタと周波数特性 · 続きを見る »

周期関数

数学における周期関数(しゅうきかんすう、periodic function)は、一定の間隔あるいは周期ごとに取る値が繰り返す関数を言う。最も重要な例として、 ラジアンの間隔で値の繰り返す三角関数を挙げることができる。周期関数は振動や波動などの周期性を示す現象を記述するものとして自然科学の各分野において利用される。周期的でない任意の関数は非周期的(ひしゅうきてき、aperiodic)であるという。.

新しい!!: コムフィルタと周期関数 · 続きを見る »

アンチエイリアス

アンチエイリアス (anti-aliasing) は、サンプリングやダウンサンプリングでエイリアシングが起きないようにするための処理。画像に対して行なうと、ジャギー(ピクセルのギザギザ)が目立たなくなる。.

新しい!!: コムフィルタとアンチエイリアス · 続きを見る »

オイラーの公式

数学、特に複素解析におけるオイラーの公式(オイラーのこうしき、Euler's formula)は、指数関数と三角関数の間に成り立つ以下の関係をいう。 ここで は指数関数、 は虚数単位、 はそれぞれ余弦関数および正弦関数である指数関数 は累乗を拡張したもので、複素数 について という関係が成り立つ。 は自然対数の底あるいはネイピア数と呼ばれる。虚数単位 は を満たす複素数である。余弦関数 および正弦関数 は三角関数の一種である。正弦関数 は、直角三角形の斜辺とその三角形の変数 に対応する角度を持つ鋭角の対辺(正弦)の長さの比を表す。余弦関数 はもう一方の鋭角(余角)の対辺と斜辺の長さの比を表す。単位円(半径の長さを 1 とする円)の中心を原点とする直交座標系をとったとき、単位円上の点を表す 座標はそれぞれ に等しい( は円の中心と円周上の点を結ぶ直線と、 軸のなす角の大きさに対応する)。文献によっては、指数関数は、(指数)から3字取って と表される。また虚数単位には でなく を用いることがある。。任意の複素数 に対して成り立つ等式であるが、特に が実数である場合が重要でありよく使われる。 が実数のとき、 は複素数 がなす複素平面上の偏角(角度 の単位はラジアン)に対応する。 公式の名前は18世紀の数学者レオンハルト・オイラー (Leonhard Euler) に因むが、最初の発見者はロジャー・コーツ (Roger Cotes) とされる。コーツは1714年に を発見したが、三角関数の周期性による対数関数の多価性を見逃した。 1740年頃オイラーはこの対数関数の形での公式から現在オイラーの公式の名で呼ばれる指数関数での形に注意を向けた。指数関数と三角関数の級数展開を比較することによる証明が得られ出版されたのは1748年のことだった。 この公式は複素解析をはじめとする純粋数学の様々な分野や、電気工学・物理学などで現れる微分方程式の解析において重要な役割を演じる。物理学者のリチャード・ファインマンはこの公式を評して「我々の至宝」かつ「すべての数学のなかでもっとも素晴らしい公式」 だと述べている。 オイラーの公式は、変数 が実数である場合には、右辺は実空間上で定義される通常の三角関数で表され、虚数の指数関数の実部と虚部がそれぞれ角度 に対応する余弦関数 と正弦関数 に等しいことを表す。このとき、偏角 をパラメータとする曲線 は、複素平面上の単位円をなす。 特に、 のとき(すなわち偏角が 180 度のとき)、 となる。この関係はオイラーの等式 と呼ばれる三角関数の周期性(従って複素指数関数の周期性)により、オイラーの等式が成り立つのは に限らない。すなわち、任意の整数 について は を満たす。。 が純虚数である場合には、左辺は実空間上で定義される通常の指数関数であり、右辺は純虚数に対する三角関数となる。 オイラーの公式は、三角関数 が双曲線関数 に対応することを導く。また応用上は、オイラーの公式を経由して三角関数を複素指数関数に置き換えることで、微分方程式やフーリエ級数などの扱いを簡単にすることなどに利用される。.

新しい!!: コムフィルタとオイラーの公式 · 続きを見る »

サンプリング周波数変換

ンプリング周波数変換 (sampling frequency conversion) または標本化周波数変換(ひょうほんかしゅうはすうへんかん)は、サンプリングされた信号に対するリサンプリングの1つで、あるサンプリング周波数でサンプリングされた信号を別のサンプリング周波数でサンプリングされた信号に変換する処理である。通常はデジタル信号間の変換だが、サンプリングされていればアナログ信号でもかまわない。 サンプリングレート変換 (sampling rate conversion) などともいう。単にレート変換 (rate conversion) ということもあるが、これはビットレート変換と紛らわしい。 サンプリング周波数を上げる変換をアップサンプリング (upsampling)、下げる変換をダウンサンプリング (downsampling) という。ただしこれらの語は、後述のとおり、サンプリング周波数変換の構成要素を指すこともある。.

新しい!!: コムフィルタとサンプリング周波数変換 · 続きを見る »

無限インパルス応答

無限インパルス応答(むげんインパルスおうとう、Infinite impulse response, IIR)は、信号処理システムの属性の一種。この属性を持つシステムをIIRシステムと呼び、フィルタ回路の場合はIIRフィルタと呼ぶ。これらシステムは、無限長の時間においてゼロでない値を返すインパルス応答関数を持つ。対照的に、有限の時間についてのインパルス応答があるものを有限インパルス応答 (FIR) と呼ぶ。最も単純なアナログIIRフィルタとしてRCフィルタがあり、1つの抵抗器 (R) と1つのコンデンサ (C) で形成される。このフィルタは、RC時定数で決定される指数関数的インパルス応答の特性を持つ。 IIRフィルタはアナログフィルタだけでなく、デジタルフィルタとしても実装される。デジタルIIRフィルタでは、出力フィードバックは出力を定義する方程式から即座に求められる。FIRフィルタとは異なり、IIRフィルタ設計では、フィルタの出力が明確に定義されない「時刻ゼロ」の場合を注意深く扱う必要がある。 デジタルIIRフィルタの設計は、アナログIIRフィルタに基づいてなされてきた。多くの場合、デジタルIIRフィルタを設計するにあたってまずアナログIIRフィルタ(例えば、チェビシェフフィルタ、バターワースフィルタ、楕円フィルタ)を設計し、インパルス不変法や双一次変換といった離散化技法を適用してデジタルに変換する。 IIRフィルタは一般に、FIRフィルタに比較して高速で安価だが、バンドパスフィルタとしての性能や安定性が劣る。 IIRフィルタとしては、チェビシェフフィルタ、バターワースフィルタ、ベッセルフィルタなどがある。 以下では、デジタルシグナルプロセッサで実装できる離散時間IIRフィルタについて解説する。.

新しい!!: コムフィルタと無限インパルス応答 · 続きを見る »

物理モデル音源

物理モデル音源(ぶつりモデルおんげん)は、デジタル信号処理(DSP)を利用して、生楽器の発音構造や共鳴構造をコンピュータ上でいかに振動・共振するかをリアルタイムに演算し、音色を仮想的に合成(シミュレート)して音を出す方式。生楽器だけでなく、実在しない楽器も作成することも可能である。この物理モデル音源は物理音源やDSP音源とも呼ばれる。.

新しい!!: コムフィルタと物理モデル音源 · 続きを見る »

音響学

音響学(おんきょうがく、acoustics)とは、音の発生、音の伝播、聴覚器官による音響感覚、音楽、騒音 等々、音に関するあらゆる現象を扱う学問でありブリタニカ百科事典「音響学」、その領域は物理学・工学・心理学・生理学など多くの分野にわたる。.

新しい!!: コムフィルタと音響学 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: コムフィルタと複素数 · 続きを見る »

離散信号

離散信号(Discrete signal)もしくは離散時間信号(Discrete-time signal)は、連続信号を標本化した信号の時系列である。連続信号とは違い、離散信号は連続信号の関数ではないが量の系列である、つまり離散的な整数の範囲の関数である。これらの系列の値を「標本値(sample)」という。 離散信号が均一に間隔を置かれた回に対応する系列である場合、それは関連する標本化周波数を持っている、標本化周波数はデータ系列ではわからないので、別のデータ項目として関連付けられるかもしれない。.

新しい!!: コムフィルタと離散信号 · 続きを見る »

零点

複素解析における正則函数 の零点(れいてん、ぜろてん、zero)は函数が非自明でない限り孤立する。零点が孤立することは、一致の定理あるいは解析接続の一意性の成立において重要である。 孤立零点には重複度 (order of multiplicity) が定まる。代数学における類似の概念として非零多項式の根の重複度(あるいは重根)が定義されるが、多項式函数はその不定元を複素変数と見れば整函数を定めるから、これはその一般化である。.

新しい!!: コムフィルタと零点 · 続きを見る »

連続信号

連続信号(Continuous signal)または連続時間信号(Continuous-time signal)は、実数値の定義域(通常、時間)の関数として表される変化する値(信号)である。その時間の関数は連続とは限らない。 連続信号が定義されている定義域は、有限の場合もそうでない場合もあり、定義域から信号の値への関数写像が存在する。実数の密度の法則に関連して、時間変数の連続性は、信号の値がどんな任意の時点についても見つかることを意味している。 無限持続信号の典型例は以下のようになる。 f(t).

新しい!!: コムフィルタと連続信号 · 続きを見る »

NTSC

NTSCを採用している、またはデジタル放送移行まで採用した国(緑色) NTSCとはNational Television System Committee(全米テレビジョンシステム委員会)の略であるが、もっぱら同委員会が策定したコンポジット映像信号(特に1953年に定められたカラーテレビ)とそのテレビジョン放送方式の仕様及び標準規格を指して使われることが多い。正確には標準規格としては、RS-170 (A) やSMPTE-170Mといった名称により規格票となったものがあるのだが、その名称を見ることは専門書等以外ではまずない。日本のアナログテレビシステムも、NTSCを採用していた。.

新しい!!: コムフィルタとNTSC · 続きを見る »

PAL

PALが採用された国(青色) PAL(phase alternating line、位相反転線)とはカラーコンポジット映像信号の規格である。 開発した西ドイツ(当時)を中心にヨーロッパ、ASEAN諸国の大部分、中東の大部分、アフリカの一部、ブラジル、オーストラリアなどで採用されている。.

新しい!!: コムフィルタとPAL · 続きを見る »

Z変換

関数解析学において、Z変換(ゼッドへんかん、Z-transform)とは、離散群上で定義される、ローラン展開をベースにした関数空間の間の線形作用素。関数変換。 Z変換は離散群上でのラプラス変換とも説明される。なお、Z変換という呼び方は、ラプラス変換のことを「S変換」と呼んでいるようなものであり、定義式中の遅延要素であるzに由来する名前である。.

新しい!!: コムフィルタとZ変換 · 続きを見る »

極値

数学において、関数の局所的な(つまり、ある点の近傍における)最大値または最小値のことをそれぞれ極大値(きょくだいち、maximal, local maximum)、極小値(きょくしょうち、minimal, local minimum)といい、これらを併せて極値(きょくち)と総称する。 極値は局所的な概念であるため、ある点で極値をとってもその点が全域的な最大・最小値を取るとは限らないが、極値自体が適当な区間における最大・最小値の候補と考えることができるため、関数の振る舞いを知る上で重要である。極値を調べる方法としては、微分を利用することで極値をとるための必要条件を求めることができる。.

新しい!!: コムフィルタと極値 · 続きを見る »

櫛(くし)は、髪をといたり、髪を飾ったりする道具。英語でコーム (comb) と呼ぶこともある。.

新しい!!: コムフィルタと櫛 · 続きを見る »

有界入力有界出力安定性

有界入力有界出力安定性(ゆうかいにゅうりょくゆうかいしゅつりょくあんていせい、Bounded-Input Bounded-Output Stability)またはBIBO安定性(BIBO Stability)は、信号処理や制御理論における信号やシステムの安定性の一形態である。システムがBIBO安定であるとは、有限な入力を与えられたとき、常に有限な出力となることをいう。 ある有限値 B > 0 があり、信号の振幅が B を決して超えない場合、その信号は有限(有界)である。すなわち、.

新しい!!: コムフィルタと有界入力有界出力安定性 · 続きを見る »

有限インパルス応答

有限インパルス応答(ゆうげんインパルスおうとう、finite impulse response, FIR)は、デジタルフィルタの一種である。クロネッカーのデルタ入力に対するフィルタの応答特性であるインパルス応答が「有限」であるとは、有限個の標本でゼロに安定することを意味する。対照的に無限インパルス応答フィルタでは、内部フィードバックがあり、無制限に応答し続ける可能性がある。N次FIRフィルタは、インパルスに対して N+1 個の標本まで応答が持続する。.

新しい!!: コムフィルタと有限インパルス応答 · 続きを見る »

ここにリダイレクトされます:

くし形フィルタくし型フィルタ

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »