ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

コペルニシウム

索引 コペルニシウム

ペルニシウム(copernicium)とは原子番号112の元素で、元素記号は Cn である。超ウラン元素、超アクチノイド元素のひとつ。2010年2月19日に正式な英語名が発表された。.

45 関係: 加速器原子番号原子核半減期人工放射性元素ラドンレントゲニウムドミトリ・メンデレーエフドイツドゥブナ合同原子核研究所ニホニウムニコラウス・コペルニクスダルムシュタットダームスタチウム周期表アルファ崩壊エカコペルニシウムの同位体元素の系統名元素記号国際純正・応用化学連合理化学研究所超アクチノイド元素超ウラン元素重イオン研究所自発核分裂金属鉛の同位体核異性体水銀朝日新聞デジタル未発見元素の一覧時間の比較1 E-2 s1 E0 s1 E1 s1 E2 s1996年2000年2004年2007年2009年2010年2月19日2月9日

加速器

加速器(かそくき、particle accelerator)とは、荷電粒子を加速する装置の総称。原子核/素粒子の実験による基礎科学研究のほか、癌治療、新素材開発といった実用にも使われる。 前者の原子核/素粒子の加速器実験では、最大で光速近くまで粒子を加速させることができる。粒子を固定標的に当てる「フィックスドターゲット実験」と、向かい合わせに加速した粒子を正面衝突させる「コライダー実験」がある。.

新しい!!: コペルニシウムと加速器 · 続きを見る »

原子番号

原子番号(げんしばんごう)とは、原子において、その原子核の中にある陽子の個数を表した番号である。電荷をもたない原子においては、原子中の電子の数に等しい。量記号はZで表すことがあるが、これはドイツ語のZahlの頭文字で数・番号という意味である。現在、元素の正式名称が決定している最大の原子番号は118である。.

新しい!!: コペルニシウムと原子番号 · 続きを見る »

原子核

原子核(げんしかく、atomic nucleus)は、単に核(かく、nucleus)ともいい、電子と共に原子を構成している。原子の中心に位置する核子の塊であり、正の電荷を帯びている。核子は、基本的には陽子と中性子から成っているが、通常の水素原子(軽水素)のみ、陽子1個だけである。陽子と中性子の個数、すなわち質量数によって原子核の種類(核種)が決まる。 原子核の質量を半経験的に説明する、ヴァイツゼッカー=ベーテの質量公式(原子核質量公式、他により改良された公式が存在する)がある。.

新しい!!: コペルニシウムと原子核 · 続きを見る »

半減期

半減期(はんげんき、half-life)とは、ある放射性同位体が、放射性崩壊によってその内の半分が別の核種に変化するまでにかかる時間を言う。.

新しい!!: コペルニシウムと半減期 · 続きを見る »

人工放射性元素

人工放射性元素(じんこうほうしゃせいげんそ, Synthetic element)は、人工的に合成された元素(同位体)の総称である。 天然には存在しない4つの元素(テクネチウム、プロメチウム、アスタチン、フランシウム)と、超ウラン元素(アメリシウム、キュリウムなど)はほぼすべて人工放射性元素であり、広義では人工の放射性同位体も含む。これらは半減期の短い放射性元素であるため、自然界には極めて僅かしか存在が確認されない。通常は、原子核に高いエネルギーを持たせた荷電粒子や、γ線、中性子などをぶつけて合成する。 人工の放射性同位体としては1934年にフレデリック・ジョリオ=キュリーとイレーヌ・ジョリオ=キュリーの夫妻が放射性リン (30P) を得たのが最初で、元素としては1937年に得られたテクネチウムが最初である。.

新しい!!: コペルニシウムと人工放射性元素 · 続きを見る »

ラドン

ラドン(radon)は、原子番号86の元素。元素記号は Rn。.

新しい!!: コペルニシウムとラドン · 続きを見る »

レントゲニウム

レントゲニウム(roentgenium)は原子番号111の元素。元素記号は Rg。超ウラン元素、超アクチノイド元素である。人工放射性元素であり、遷移元素の性質を持つ11族であることから、おそらく金属で固体である。密度、融点、沸点は不明。 現在、最も長い半減期を持つ同位体はレントゲニウム281で26秒である。.

新しい!!: コペルニシウムとレントゲニウム · 続きを見る »

ドミトリ・メンデレーエフ

ドミトリ・イヴァーノヴィチ・メンデレーエフ( ドミートリイー・イヴァーナヴィチ・ミンジリェーイフ;、1834年1月27日(グレゴリオ暦2月8日) -1907年1月20日(グレゴリオ暦2月2日))はロシアの化学者であり、元素の周期律表を作成し、それまでに発見されていた元素を並べ周期的に性質を同じくした元素が現れることを確認し、発見されていなかった数々の元素の存在を予言したことで知られており、メンデレビウムと元素名にも彼の名が残っている。 また、「石油の無機起源説」の提唱者としても近年再評価されている。.

新しい!!: コペルニシウムとドミトリ・メンデレーエフ · 続きを見る »

ドイツ

ドイツ連邦共和国(ドイツれんぽうきょうわこく、Bundesrepublik Deutschland)、通称ドイツ(Deutschland)は、ヨーロッパ中西部に位置する連邦制共和国である。もともと「ドイツ連邦共和国」という国は西欧に分類されているが、東ドイツ(ドイツ民主共和国)の民主化と東西ドイツの統一により、「中欧」または「中西欧」として再び分類されるようになっている。.

新しい!!: コペルニシウムとドイツ · 続きを見る »

ドゥブナ合同原子核研究所

ドゥブナ合同原子核研究所(どぅぶなごうどうげんしかくけんきゅうじょ、ОИЯИ:Объединённый институт ядерных исследований, JINR:Joint Institute for Nuclear Research)はロシアの研究機関である。モスクワの北120kmのドゥブナにある。研究施設は1947年からあったが、当初は原子核研究は核兵器とも関係して極秘事項であったため、公開されていなかった。基礎研究の研究所としては、1954年にヨーロッパに欧州原子核研究機構(CERN)がつくられたのに対抗して、1956年にソビエト連邦と当時の社会主義国11か国が合同研究を行うために共同出資して設立された。現在も国際共同の原子核、素粒子物理の研究施設である。大出力の加速器などを使って、多くの新元素を創出した。1995年からジェレポフ研究所と共同で素粒子物理学の分野の物理学者にブルーノ・ポンテコルボ賞を授与している。なお、当研究所の功績を記念して原子番号105番の元素はドブニウムと命名されている。.

新しい!!: コペルニシウムとドゥブナ合同原子核研究所 · 続きを見る »

ニホニウム

ニホニウム()は、原子番号113の元素。元素記号は Nh。2016年(平成28年)11月に正式名称が決定するまでは、暫定的に IUPAC の系統的命名法に則りウンウントリウムununtrium, Uutと呼ばれていた。 周期表で第13族元素に属し、タリウムの下に位置するため「エカタリウム」と呼ばれることもある。超ウラン元素では比較的長寿命とされ、278Nhの平均寿命は2ミリ秒であることがわかっている。.

新しい!!: コペルニシウムとニホニウム · 続きを見る »

ニコラウス・コペルニクス

ニコラウス・コペルニクス(ラテン語名: Nicolaus Copernicus、ポーランド語名: ミコワイ・コペルニク 、1473年2月19日 - 1543年5月24日)は、ポーランド出身の天文学者、カトリック司祭である。当時主流だった地球中心説(天動説)を覆す太陽中心説(地動説)を唱えた。これは天文学史上最も重要な発見とされる。(ただし、太陽中心説をはじめて唱えたのは紀元前三世紀のサモスのアリスタルコスである)。また経済学においても、貨幣の額面価値と実質価値の間に乖離が生じた場合、実質価値の低い貨幣のほうが流通し、価値の高い方の貨幣は退蔵され流通しなくなる (「悪貨は良貨を駆逐する」) ことに最初に気づいた人物の一人としても知られる。 コペルニクスはまた、教会では司教座聖堂参事会員(カノン)であり、知事、長官、法学者、占星術師であり、医者でもあった。暫定的に領主司祭を務めたこともある。.

新しい!!: コペルニシウムとニコラウス・コペルニクス · 続きを見る »

ダルムシュタット

ダルムシュタット (Darmstadt) はドイツ連邦共和国ヘッセン州南部の郡独立市で、ダルムシュタット行政管区本部およびダルムシュタット=ディーブルク郡郡庁の所在地である。この都市はライン=マイン地区に含まれ、ヘッセン州に9つある上級中心都市の1つとなっている。ダルムシュタットは、フランクフルト・アム・マイン、ヴィースバーデン、カッセルに次ぐヘッセン州第4の都市である。最も近い大都市はフランクフルト・アム・マインで北に約30km、ヴィースバーデンとマインツが約40km北西、マンハイムが南約45kmに位置している。 医薬品会社のメルクに市民の雇用を依存している(#地元企業)。学術都市としても著名である。1877年に創設された工科大学と3つの専門大学合わせて3万人を超える学生を抱える。研究施設も数多い(#研究所、研究機関)。1899年にエルンスト・ルートヴィヒ大公がマチルダの丘に芸術家村を設けたことからユーゲントシュティールの中心ともなった。.

新しい!!: コペルニシウムとダルムシュタット · 続きを見る »

ダームスタチウム

ダームスタチウム(darmstadtium)は原子番号110の元素。元素記号は Ds。超ウラン元素、超アクチノイド元素であり、安定同位体は存在しない。 発見された同位体元素はいずれも半減期がマイクロ秒(100万分の1秒)台から11秒と大変短く、その物理的、化学的性質の詳細は不明であるが、銀色もしくは灰色の金属と推定される。現在最も長い半減期を持つ同位体はダームスタチウム281で11秒である。 同位体に関しては、ダームスタチウムの同位体を参照。.

新しい!!: コペルニシウムとダームスタチウム · 続きを見る »

周期表

周期表(しゅうきひょう、)は、物質を構成する基本単位である元素を、それぞれが持つ物理的または化学的性質が似たもの同士が並ぶように決められた規則(周期律)に従って配列した表である。日本では1980年頃までは「周期律表」と表記されている場合も有った。.

新しい!!: コペルニシウムと周期表 · 続きを見る »

アルファ崩壊

アルファ崩壊(アルファほうかい、α崩壊、alpha decay)とは、放射線としてアルファ線(α線)を放出する放射性崩壊の一種である。アルファ崩壊が発生する原因は量子力学におけるトンネル効果である。.

新しい!!: コペルニシウムとアルファ崩壊 · 続きを見る »

エカ

(eka) は、サンスクリットで 1 のこと。.

新しい!!: コペルニシウムとエカ · 続きを見る »

コペルニシウムの同位体

ペルニシウム (Cn, copernicium) は、安定同位体を持たないため標準原子量は定められない。.

新しい!!: コペルニシウムとコペルニシウムの同位体 · 続きを見る »

元素の系統名

元素の系統名(げんそのけいとうめい)とは正式な名称が定まっていない新しい元素を呼ぶために、IUPACが1978年に系統的な命名規則を定めたものである。一般に新しく発見された元素は確認を経て正式名称が決定されるまでに時間がかかる。中には104番元素のラザホージウムのように論争が長期化し、発見の報告から正式名の決定までおよそ30年もかかった例もある。以下に解説する元素の系統名(もしくは組織名)は、正式な名称が決まるまでの間、元素を呼ぶときに一時的に用いられる名称である。原子記号は1、2、ないしは3文字の英字と定められている。 この規則は、104番元素についてアメリカとソ連(当時)が命名権を争った結果長期にわたって正式名称が決まらなかったために定められたものである。 この規則は1978年に定められ、その時点で正式な名称の定まっていなかった104番以降の元素に適用されてきた。2016年11月に118番元素までが命名されてからは、119番以降の元素に使用される。.

新しい!!: コペルニシウムと元素の系統名 · 続きを見る »

元素記号

在の元素記号(硫黄) ドルトンの元素記号(硫黄) 元素記号(げんそきごう)とは、元素、あるいは原子を表記するために用いられる記号のことであり、原子記号(げんしきごう)とも呼ばれる。現在は、1、2、ないし3文字のアルファベットが用いられる。 なお、現在正式な元素記号が決定している最大の元素は原子番号118のOg(オガネソン)である。 分子の組成をあらわす化学式や、分子の変化を記述する化学反応式などで利用される。 現在使用されている元素記号は1814年にベルセリウスが考案したものに基づいており、ラテン語などから1文字または2文字をとってつくられている。 全ての元素記号がラテン語名と一致しているが、ギリシア語、英語、ドイツ語(その他スペイン語やスウェーデンの地名からの採用もある)などからの採用も多く、ラテン語名との一致は偶然または語源を通した間接的なものである。元素名が確定されていない超ウラン元素については、3文字の系統名が用いられる。 物質の構成要素を記号であらわすことはかつての錬金術においてもおこなわれていた。 化学者ジョン・ドルトンも独自の記号を開発して化学反応を記述していたが、現在はアルファベットでの表記が国際的に使われている。 原子番号16番で質量数35の放射性硫黄原子1つと酸素原子4つからなる2価の陰イオンの硫酸イオンのイオン式。 原子番号や質量数を付記する場合、原子番号は左下に (13Al)、質量数は左上に (27Al)、イオン価は右肩に (Al3+)、原子数は右下に (N2) 付記する。.

新しい!!: コペルニシウムと元素記号 · 続きを見る »

国際純正・応用化学連合

国際純正・応用化学連合(こくさいじゅんせい・おうようかがくれんごう、International Union of Pure and Applied Chemistry、IUPAC)は、各国の化学者を代表する国内組織の連合である国際科学会議の参加組織である。IUPACの事務局はノースカロライナ大学チャペルヒル校・デューク大学・ノースカロライナ州立大学が牽引するリサーチ・トライアングル・パーク(アメリカ合衆国ノースカロライナ州)にある。また、本部は、スイスのチューリッヒにある。。2012年8月1日現在の事務局長は、ジョン・ピーターソンが務めている。 IUPACは、1919年に国際応用化学協会(International Association of Chemical Societies)を引き継いで設立された。会員となる各国の組織は、各国の化学会や科学アカデミー、または化学者を代表するその他の組織である。54カ国の組織と3つの関連組織が参加している。IUPACの内部組織である命名法委員会は、元素や化合物の命名の標準(IUPAC命名法)として世界的な権威として認知されている。創設以来、IUPACは、各々の責任を持つ多くの異なる委員会によって運営されてきた retrieved 15 April 2010。これらの委員会は、命名法の標準化を含む多くのプロジェクトを走らせ retrieved 15 April 2010、化学を国際化する道を探し retrieved 15 April 2010、また出版活動を行っている retrieved 15 April 2010 retrieved 15 April 2010。 IUPACは、化学やその他の分野での命名法の標準化で知られているが、IUPACは、化学、生物学、物理学を含む多くの分野の出版物を発行している。これらの分野でIUPACが行った重要な仕事には、核酸塩基配列コード名の標準化や、環境科学者や化学者、物理学物のための本の出版、科学教育の改善の主導等である 9 July 2009. Retrieved on 17 February 2010. Retrieved 15 April 2010。また、最古の委員会の1つであるによる元素の原子量の標準化によっても知られている。.

新しい!!: コペルニシウムと国際純正・応用化学連合 · 続きを見る »

理化学研究所

国立研究開発法人理化学研究所(こくりつけんきゅうかいはつほうじんりかがくけんきゅうしょ、RIKEN、Institute of Physical and Chemical Research)は、埼玉県和光市に本部を持つ自然科学系総合研究所。略称は「理研」。.

新しい!!: コペルニシウムと理化学研究所 · 続きを見る »

超アクチノイド元素

超アクチノイド元素(ちょうアクチノイドげんそ)は、次の二つの意味で用いられる。.

新しい!!: コペルニシウムと超アクチノイド元素 · 続きを見る »

超ウラン元素

原子核物理学または化学において、超ウラン元素(ちょうウランげんそ、TRans-Uranium, TRU)とは、原子番号92のウランよりも重い元素を指す。.

新しい!!: コペルニシウムと超ウラン元素 · 続きを見る »

重イオン研究所

重イオン研究所(じゅうイオンけんきゅうじょ、GSI Helmholtzzentrum für Schwerionenforschung GmbH)は、ドイツ連邦共和国のダルムシュタットにある原子核物理学、素粒子、生物物理学、核化学に関する研究施設である。GSIと略される。 高エネルギー加速器による学術研究、重イオンビームを用いた癌治療に関する研究が主に行われている。研究所は連邦政府、ヘッセン州およびEUから拠出される資金により運営されている。研究所の株主はドイツ連邦共和国が90%、ヘッセン州が10%となっている。.

新しい!!: コペルニシウムと重イオン研究所 · 続きを見る »

自発核分裂

自発核分裂(じはつかくぶんれつ、spontaneous fission、SF)とは質量数が非常に大きな同位体に特徴的に見られる放射性崩壊の一種である。自発核分裂は理論的には質量が100amu程度(ルテニウム付近)を超えるどのような原子核にも起こりうるが、エネルギー的に実際に自発核分裂が可能なのは原子量が約230amu(トリウム付近)以上の原子に限られる。 ウランとトリウムの場合、自発核分裂は起きないわけではないが放射性崩壊のモードの主たる過程ではなく、これらの元素を含む試料の放射能を測る際に崩壊の分岐比を正確に考える必要があるような場合を除いて、通常は無視される。自発核分裂が起こる条件は以下の式で近似的に与えられる。 ここで Z は原子番号、A は質量数である。 式の表すように、自発核分裂の部分半減期は陽子数Zが増大すると急激に減少する。例えば陽子数92のウランでは自発核分裂の部分半減期が1016年になるのに対して、陽子数100のフェルミウムでは部分半減期は1年前後である。このように、自発核分裂が最も起こりやすい元素はラザホージウムのような超アクチノイド元素である。 自発核分裂はその名の通り原子核分裂反応と全く同じ物理過程であるが、中性子やその他の粒子による衝撃を受けることなく分裂が始まる点が通常の核分裂と異なっている。陽子が多く中性子があまり多くない核種では陽子同士に働くクーロン力の影響で原子核全体が不安定な状態にある。このような原子核が量子力学的な揺らぎによって自発的に核分裂を引き起こす過程が自発核分裂である。 自発核分裂では他の全ての核分裂反応と同様に中性子が放出される。そのため、臨界量以上の核分裂性物質が存在する場合には自発核分裂が核分裂の連鎖反応を引き起こしうる。また、自発核分裂が崩壊モードの中で無視できない確率で起こる放射性同位元素は中性子線源として用いられる。この目的ではカリホルニウム252(半減期2.645年、自発核分裂分岐比 3.09%)がしばしば用いられている。このような線源から放出される中性子線は、航空貨物に隠された爆発物の検査や建設業界での土壌の水分含有量の測定、サイロに貯蔵された物資の湿度の測定、その他様々な用途に使われている。 自発核分裂による分裂性原子核自身の数の減少が無視できる範囲では、ベクレルが一定となるため自発核分裂は平均値が等しい指数到着であり、ポアソン過程と見なすことができる。すなわち、非常に短い時間尺度では、自発核分裂の確率は着目する時間の長さに比例する。 ウランを含む鉱物では、ウラン238の自発核分裂によって生じた分裂後の原子核が結晶構造の中に反跳した飛跡を残す。これらの飛跡はフィッション・トラックと呼ばれ、フィッション・トラック法と呼ばれる放射年代測定に利用される。 超重元素の探索において、ある元素を合成したと認められる基準は、当該原子核群の少なくとも一部が既知の原子核に崩壊することとされている。それらが全て自発核分裂してしまった場合は、その原子核を合成したとはみなされない。.

新しい!!: コペルニシウムと自発核分裂 · 続きを見る »

金属

リウム の結晶。 リチウム。原子番号が一番小さな金属 金属(きんぞく、metal)とは、展性、塑性(延性)に富み機械工作が可能な、電気および熱の良導体であり、金属光沢という特有の光沢を持つ物質の総称である。水銀を例外として常温・常圧状態では透明ではない固体となり、液化状態でも良導体性と光沢性は維持される。 単体で金属の性質を持つ元素を「金属元素」と呼び、金属内部の原子同士は金属結合という陽イオンが自由電子を媒介とする金属結晶状態にある。周期表において、ホウ素、ケイ素、ヒ素、テルル、アスタチン(これらは半金属と呼ばれる)を結ぶ斜めの線より左に位置する元素が金属元素に当たる。異なる金属同士の混合物である合金、ある種の非金属を含む相でも金属様性質を示すものは金属に含まれる。.

新しい!!: コペルニシウムと金属 · 続きを見る »

鉛の同位体

鉛(Pb)の同位体のうち、204Pb、206Pb、207Pb、208Pbの4種類は、一般に安定同位体(安定核種)とされている。長い間安定核種と信じられてきた209Biは、実は安定核種でなかったことが確認されたため、鉛は安定同位体を持つ既知の元素の中では最も重い(陽子の数が多い)とされるようになり、208Pbが最も重い安定核種とされている。しかし、ビスマスと同様に、実は鉛も安定核種を1つも持っていないのではないかという可能性が示唆されている(後述)。.

新しい!!: コペルニシウムと鉛の同位体 · 続きを見る »

核異性体

核異性体(かくいせいたい、Nuclear isomer)とは、原子核がある程度の時間、励起した状態を保っている原子核のことである培風館『物理学辞典』p 82丸善『物理学大辞典』p 175-176丸善『物理学大辞典』p 181。 ここで言う励起とは、通常よく言われる電子が受ける電磁気力に基づく原子が励起した状態のことではなく、原子核内の陽子や中性子の間に働く強い力(核力)に基づく原子核のエネルギー状態を意味する。 また原子核レベルのことなので、ある程度の時間というのは通常、10-6(100万分の1)秒から長くて秒単位である。ただし、まれには秒単位をはるかに超えて長いものもある。 核異性体は、あるいは異性核、核異性、準安定核とも言う。.

新しい!!: コペルニシウムと核異性体 · 続きを見る »

水銀

水銀(すいぎん、mercury、hydrargyrum)は原子番号80の元素。元素記号は Hg。汞(みずがね)とも書く。第12族元素に属す。常温、常圧で凝固しない唯一の金属元素で、銀のような白い光沢を放つことからこの名がついている。 硫化物である辰砂 (HgS) 及び単体である自然水銀 (Hg) として主に産出する。.

新しい!!: コペルニシウムと水銀 · 続きを見る »

朝日新聞デジタル

朝日新聞デジタル(あさひしんぶんデジタル)は、朝日新聞社の運営するニュースサイトである。無料のニュースサイト(24時刊)と有料の電子新聞(朝刊、be・別冊など)で構成されている。.

新しい!!: コペルニシウムと朝日新聞デジタル · 続きを見る »

未発見元素の一覧

未発見元素の一覧(みはっけんげんそのいちらん)では、第9周期までのIUPAC(国際純正・応用化学連合)で認定されていない元素の一覧を載せる。なお、これらの元素の名称(IUPAC名)はIUPAC命名法に基づく暫定的な元素の系統名である。.

新しい!!: コペルニシウムと未発見元素の一覧 · 続きを見る »

時間の比較

本項では、時間の比較(じかんのひかく)ができるよう、昇順に表にする。.

新しい!!: コペルニシウムと時間の比較 · 続きを見る »

1 E-2 s

10-2 - 10-1 s(10ミリ秒 - 100ミリ秒)の時間のリスト.

新しい!!: コペルニシウムと1 E-2 s · 続きを見る »

1 E0 s

100 - 101 s(1秒 - 10秒)の時間のリスト.

新しい!!: コペルニシウムと1 E0 s · 続きを見る »

1 E1 s

101 - 102 s(10秒 - 100秒)の時間のリスト.

新しい!!: コペルニシウムと1 E1 s · 続きを見る »

1 E2 s

102 - 103 s(100秒 - 約16.7分)の時間のリスト.

新しい!!: コペルニシウムと1 E2 s · 続きを見る »

1996年

この項目では、国際的な視点に基づいた1996年について記載する。.

新しい!!: コペルニシウムと1996年 · 続きを見る »

2000年

400年ぶりの世紀末閏年(20世紀および2千年紀最後の年)である100で割り切れるが、400でも割り切れる年であるため、閏年のままとなる(グレゴリオ暦の規定による)。。Y2Kと表記されることもある(“Year 2000 ”の略。“2000”を“2K ”で表す)。また、ミレニアムとも呼ばれる。 この項目では、国際的な視点に基づいた2000年について記載する。.

新しい!!: コペルニシウムと2000年 · 続きを見る »

2004年

この項目では、国際的な視点に基づいた2004年について記載する。.

新しい!!: コペルニシウムと2004年 · 続きを見る »

2007年

この項目では、国際的な視点に基づいた2007年について記載する。.

新しい!!: コペルニシウムと2007年 · 続きを見る »

2009年

この項目では、国際的な視点に基づいた2009年について記載する。.

新しい!!: コペルニシウムと2009年 · 続きを見る »

2010年

この項目では、国際的な視点に基づいた2010年について記載する。.

新しい!!: コペルニシウムと2010年 · 続きを見る »

2月19日

2月19日(にがつじゅうくにち)はグレゴリオ暦で年始から50日目にあたり、年末まであと315日(閏年では316日)ある。.

新しい!!: コペルニシウムと2月19日 · 続きを見る »

2月9日

2月9日(にがつここのか)はグレゴリオ暦で年始から40日目にあたり、年末まであと325日(閏年では326日)ある。.

新しい!!: コペルニシウムと2月9日 · 続きを見る »

ここにリダイレクトされます:

UUBUubウンウンビウムエカ水銀

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »