ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

コクセター群

索引 コクセター群

数学においてコクセター群(コクセターぐん、Coxeter group)とは鏡映変換で表示できる抽象群のことである。ハロルド・スコット・マクドナルド・コクセターに因んで名づけられた。有限コクセター群は何らかのユークリッド鏡映群(たとえば一般次元正多胞体の対称変換群など)になっている。もちろん、すべてのコクセター群が有限群とは限らないし、すべてのコクセター群をユークリッド的な鏡映や対称変換として記述できるわけでもない。コクセター群は鏡映群の抽象化として導入され、有限コクセター群の分類は完了している 。 コクセター群は数学のいくつもの分野に現れる。一般次元正多胞体の対称変換群や単純リー代数のワイル群は有限コクセター群の例であり、ユークリッド平面や双曲平面の正則三角形分割 (regular tessellation) に対応する三角群や無限次元カッツ-ムーディ代数のワイル群は無限コクセター群の例である。 コクセター群に関する標準的な文献としては や などがある。.

46 関係: 基本アーベル群単体 (数学)単純リー群対合対称群対称行列巡回群交換子部分群二面体群五角形建物 (数学)ハロルド・スコット・マクドナルド・コクセターハッセ図ユークリッド空間ワイル群ヘッケ環ディンキン図形ホモロジー (数学)アーベル群カッツ・ムーディ代数カジュダン–ルスティック多項式ケイリーグラフコクセター群の同型問題商群六角形符号関数群 (数学)群の表示E8 (数学)鏡映順序集合表現論行列要素超立方体Graduate Texts in MathematicsPostScript正十二面体正多角形正多胞体正二十四胞体正二十面体正六百胞体正百二十胞体正規部分群正軸体数学

基本アーベル群

群論における基本アーベル群(きほんアーベルぐん、elementary abelian group; 初等アーベル群)または基本アーベル -群 (elementary abelian -group) は任意の非自明な元が位数 であるような群(とくに有限群)を言う。この は素数でなければならず、任意の基本アーベル群は特別な p-群となる。 の場合、すなわち基本アーベル -群のことをブール群 (Boolean group) と呼ぶ場合がある。 任意の基本アーベル -群は p-元体上の有限次元ベクトル空間の構造を持ち、逆にそのようなベクトル空間は基本アーベル群となる。有限生成アーベル群の構造定理により、あるいは任意のベクトル空間が基底を持つという事実から、任意の有限基本アーベル群は ( はこの群の階数と呼ばれる非負整数)の形になることがわかる。ここに、 は位数 の巡回群(あるいは を法とする整数の加法群)であり、上付き添字の は -重直積を表す。一般に(有限とは限らない)基本アーベル -群は位数 の巡回群の適当な個数の直和となる(因子が有限個の場合には直積と直和は同じものであるが、無限の場合にはそうでないことに注意) 以下有限群の場合について述べる。.

新しい!!: コクセター群と基本アーベル群 · 続きを見る »

単体 (数学)

数学、とくに位相幾何学において、n 次元の単体(たんたい、simplex)とは、「r ≤ n ならばどの r + 1 個の点も r − 1 次元の超平面に同時に含まれることのない」ような n + 1 個の点からなる集合の凸包のことで、点・線分・三角形・四面体といった基本的な図形の n 次元への一般化である。 単体は、頂点の位置さえ決めればそれのみによって一意的に決定される。さらに単体は単体的複体や鎖複体などの概念を与えるが、これらはさらに抽象化されて、幾何学を組合せ論的あるいは代数的に扱う道具となる。また逆に、抽象化された複体の概念から単体が定義される。.

新しい!!: コクセター群と単体 (数学) · 続きを見る »

単純リー群

群論において、単純リー群 (simple Lie group) は連結非可換リー群 G であって非自明な連結正規部分群を持たないものである。 単純リー環 (simple Lie algebra) は非可換リー環であってイデアルが 0 と自身しかないものである。単純リー環の直和は半単純リー環と呼ばれる。 単純リー群の同値な定義がから従う:連結リー群はリー環が単純であれば単純である。重要な技術的点は、単純リー群は離散的な正規部分群を含むかもしれず、したがって単純リー群であることは抽象群として単純であることとは異なるということである。 単純リー群は多くのを含む。古典型リー群は球面幾何学、射影幾何学、フェリックス・クラインのエルランゲンプログラムの意味で関連する幾何学の群論的支柱を提供する。どんなよく知られた幾何学にも対応しない可能性もいくつか存在することが単純リー群のの過程で現れた。これらの例外群 (exceptional group) により数学の他の分野や当時の理論物理学の多くの特別な例や configuration が説明される。 単純リー群の概念は公理的観点からは十分であるが、の理論のようなリー理論の応用において、幾分一般的な概念である半単純および簡約リー群がもっと有用であることが証明されている。とくに、すべての連結は簡約であり、一般の簡約群の表現の研究は表現論の主要な分野である。.

新しい!!: コクセター群と単純リー群 · 続きを見る »

対合

対合(たいごう、ついごう、involution)は、自分自身をその逆として持つ写像である。 これは空間上の変換であって、二回繰り返すと恒等変換となる(元に戻る)という性質 を持つものと言ってもよい。ただし、それ自身が恒等変換となるものは通常は除いて考える。またこれは変換群に属する位数 2 の元 を指すと言っても同じことであり、それを理由に一般の群(抽象群)においても位数 2 の元を対合と呼ぶことがある。.

新しい!!: コクセター群と対合 · 続きを見る »

対称群

対称群(たいしょうぐん、)とは、「ものを並べ替える」という操作を元とする群である。この場合の「ものを並べ替える」操作のことを置換(ちかん、)という。数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてを調べる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、)と呼ばれる。置換群が空間 の変換群として与えられているとき、 の元 の置換は で与えられる の部分群の分だけ潰れているが、これは のなかに と「同じ」元が複数含まれている場合に対応しており、 の中でこれらを区別することができれば の元の置換から対称群 が回復される。.

新しい!!: コクセター群と対称群 · 続きを見る »

対称行列

線型代数学における対称行列(たいしょうぎょうれつ、symmetric matrix)は、自身の転置行列と一致するような正方行列を言う。記号で書けば、行列 A は を満たすとき対称であるという。相等しい行列の型(次元、サイズ)は相等しいから、この式を満たすのは正方行列に限られる。 定義により、対称行列の成分は主対角線に関して対称である。即ち、成分に関して行列 は任意の添字 に関して を満たす。例えば、次の 行列 1 & 7 & 3\\ 7 & 4 & -5\\ 3 & -5 & 6 \end は対称である。任意の正方対角行列は、その非対角成分が であるから、対称である。同様に、歪対称行列( なる行列)の各対角成分は、自身と符号を変えたものと等しいから、すべて でなければならない。 線型代数学において、実対称行列は実内積空間上の自己随伴作用素を表す。これと、複素内積空間の場合に対応する概念は、複素数を成分に持つエルミート行列(自身の共役転置行列と一致するような複素行列)である。故に、複素数体上の線型代数学においては、対称行列という言葉は行列が実数に成分をとる場合に限って使うことがしばしばある。対称行列は様々な応用の場面に現れ、典型的な数値線型代数ソフトウェアではこれらに特別な便宜をさいている。.

新しい!!: コクセター群と対称行列 · 続きを見る »

巡回群

群論における巡回群(じゅんかいぐん、cyclic group、monogenous group)とは、ただ一つの元で生成される群(単項生成群)のことである。ここで群が「ただ一つの元で生成される」というのは、その群の適当な元 g をとれば、その群のどの元も(群が乗法的に書かれている場合は)g の整数冪として(群が加法的に書かれている場合は g の整数倍として)表されるということであり、このような元 g はこの群の生成元 (generator) あるいは原始元 (primitive) と呼ばれる。.

新しい!!: コクセター群と巡回群 · 続きを見る »

交換子部分群

数学、特に抽象代数学における群の交換子部分群(こうかんしぶぶんぐん、commutator subgroup)あるいは導来部分群(どうらいぶぶんぐん、derived subgroup)は、その群の交換子全体で生成される部分群である。 交換子部分群は、それによる商がアーベル群となるような正規部分群のうちで最小のものであるという点で重要である。すなわち、 がアーベル群となる必要十分条件は正規部分群 が交換子部分群を含むことである。ゆえにある意味で交換子部分群は、群がアーベル群からどれくらい離れているかを測るものということができる。つまり、交換子部分群が大きいほど、その群はアーベル群から遠くなる。.

新しい!!: コクセター群と交換子部分群 · 続きを見る »

二面体群

二面体群(にめんたいぐん、dihedral group)とは、正多角形の対称性を表現した数学的対象である。より正確には、正多角形を自分自身に移す合同変換全体の成す群のことである。そのような合同変換は、回転と鏡映の二種類がある。二面体群は、有限非可換群の最も単純な例であり、群論、幾何学、化学などの分野において重要な役割を果たす。類似の概念は、3次元以上の正多面体や正多胞体に対しても与えることができる。「二面体」とは、正多角形を3次元空間内で見て裏表の区別を付けたもの、といった意味合いである。.

新しい!!: コクセター群と二面体群 · 続きを見る »

五角形

正五角形 五角形(ごかくけい、ごかっけい、pentagon)は、5つの頂点と辺を持つ多角形の総称。.

新しい!!: コクセター群と五角形 · 続きを見る »

建物 (数学)

数学における(ティッツの、あるいはブリュア=ティッツの)建物(たてもの、building, immeuble)は、フランソワ・ブリュアとジャック・ティッツに名を因む、旗多様体、有限射影平面およびリーマン対称空間のある種の側面を一斉に一般化する組合せ論的かつ幾何学的な構造である。初め、建物はジャック・ティッツによってリー型の例外群の構造を理解するための手段として導入され、その理論は自由群の研究に木が用いられたのと同じ仕方で、 ''p''-進リー群その離散的対称変換部分群の等質空間の幾何および位相を研究するのにも用いられた。.

新しい!!: コクセター群と建物 (数学) · 続きを見る »

ハロルド・スコット・マクドナルド・コクセター

ハロルド・スコット・マクドナルド・コクセター(Harold Scott MacDonald Coxeter, 1907年 - 2003年)は、イギリス生まれの数学者。.

新しい!!: コクセター群とハロルド・スコット・マクドナルド・コクセター · 続きを見る »

ハッセ図

ハッセ図(ハッセず、英: Hasse diagram)は、数学における有限半順序集合を単純に図示する方法のひとつで、半順序のを描いたものである。具体的には有限半順序集合 (S, ≤) があるとき、S の個々の元を頂点とし、x < y で、かつ x < z < y となるような z が存在しない場合にのみ x から y に上向きの線(辺)を描く(ここで二項関係 < は全ての x について (x, x) という元を ≤ から除くことで得られる)。 この場合、「 y は x をする」または「 y は x の immediate successor(直接の後続)である」という。さらに、各辺が両端の頂点以外を通らないように頂点を配置する必要がある。このような図(頂点にはラベルが付属するものとする)は半順序を一意に特定し、任意の有限な半順序では推移簡約が一意に定まる。ただし、図における元の配置の仕方は様々なものが考えられ、ひとつの順序集合に対して見た目の異なるハッセ図が多数存在することになる。 ハッセ図はドイツの数論学者ヘルムート・ハッセ(1898年–1979年)に因んで名付けられている。これはハッセが部分体や拡大体がなす半順序集合を図示するために効果的に活用したからである。しかし、ハッセが最初にこの図を使ったわけではなく、少なくとも では既にこの図が使われている。ハッセ図は半順序集合を手で図示する技法として生まれたが、最近ではグラフ描画技法を使って自動的に描くことができる。 「ハッセ図」という言葉は、個々のグラフの描画とは関係なく、抽象概念としての有向非循環グラフの推移簡約を指すこともある。ただし、本項目ではこの意味では使わない。.

新しい!!: コクセター群とハッセ図 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: コクセター群とユークリッド空間 · 続きを見る »

ワイル群

数学、特にリー環の理論において、ルート系 のワイル群(Weyl group)は、ルート系のの部分群である。具体的には、ルートに直交する超平面に関する鏡映によって生成される部分群のことで、そのようなものとしてである。抽象的には、ワイル群はであり、その重要な例である。 半単純リー群、半単純リー環、線型代数群、などのワイル群はその群あるいは環のルート系のワイル群である。 名前はヘルマン・ワイル (Hermann Weyl) にちなむ。.

新しい!!: コクセター群とワイル群 · 続きを見る »

ヘッケ環

数学における岩堀ヘッケ環あるいは単にヘッケ環(へっけかん、Hecke algebra; ヘッケ代数)はコクセター群の群環の一径数変形版で、表現論における重要な対象である。 ほかにも局所体上の簡約代数群の表現論や保型形式論、作用素環論において考察されるような、群とその部分群の対に付随する両側不変関数のなす畳み込み積環によって与えられる一連の系列がある。 A-型の岩堀ヘッケ環はアルティンの組紐群と密接な関係があり、ヴォーン・ジョーンズによる新しい結び目不変量の構成に応用がある。また、ヘッケ環の表現は神保道夫による量子群の発見を導いた。さらに、マイケル・フリードマンはヘッケ環をトポロジカル量子コンピュータの基礎付けとして提示した。.

新しい!!: コクセター群とヘッケ環 · 続きを見る »

ディンキン図形

という数学の分野において、ディンキン図形(ディンキンずけい、Dynkin diagram)とは、二重あるいは三重の辺(二重あるいは三重の線で描かれる)を持ち得るの一種であり、 にちなんで名づけられた。多重辺は制約条件により有向である。 ディンキン図形は代数閉体上の半単純リー環を分類する手段として主に興味を持たれている。これはワイル群を生じる、すなわち(すべてではないが)多くのを生じる。ディンキン図形は他の文脈においても現れる。 「ディンキン図形」という用語には曖昧さがある。ある場合にはディンキン図形は有向であると仮定され、この場合それらはルート系や半単純リー環に対応するが、他の場合には有向でないと仮定され、この場合ワイル群に対応する;有向図形, は同じ無向図形を生じ、これは と呼ばれる。この記事では、「ディンキン図形」は「向き付けられた」ディンキン図形を意味し、「向き付けられていない」ディンキン図形は明示的にそう呼ぶ。 Image:Finite Dynkin diagrams.svg|有限ディンキン図形 Image:Affine Dynkin diagrams.png|アファイン(拡大)ディンキン図形.

新しい!!: コクセター群とディンキン図形 · 続きを見る »

ホモロジー (数学)

数学、とくに代数的位相幾何学や抽象代数学において、ホモロジー (homology) (「同一である」ことを意味するギリシャ語のホモス (ὁμός) に由来)は与えられた数学的対象、例えば位相空間や群に、アーベル群や加群の列を対応させる一つの一般的な手続きをいう。より詳しい背景については ホモロジー論 を見られたい。また、ホモロジーの手法の位相空間に対する具体的な適用については特異ホモロジーを、群についてのそれは群コホモロジーを、それぞれ参照されたい。 位相空間に対しては、ホモロジー群は一般にホモトピー群よりもずっと計算しやすく、したがって、空間を分類する道具としてはより手軽に扱えるものといえるだろう。.

新しい!!: コクセター群とホモロジー (数学) · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: コクセター群とアーベル群 · 続きを見る »

カッツ・ムーディ代数

数学において、カッツ・ムーディ(・リー)代数(Kac–Moody algebra)とは、一般カルタン行列を用いて生成元と関係式によって定義できる、通常は無限次元の、リー代数である。独立に発見したヴィクトル・カッツとに因んで名づけられている。カッツ・ムーディ・リー環は有限次元半単純リー環の一般化であり、ルート系、既約表現、との関連といった、リー環の構造に関係した多くの性質は、カッツ・ムーディ・リー環において自然な類似を持つ。 カッツ・ムーディ・リー環の中でもアフィン・リー環と呼ばれるクラスが、数学や理論物理学、特に共形場理論やの理論において、特に重要である。カッツは、組合せ論的な恒等式であるマクドナルド恒等式の、アフィン・リー環の表現論に基づいたエレガントな証明を発見した。Howard Garland と は が類似の方法で導出できることを証明した。.

新しい!!: コクセター群とカッツ・ムーディ代数 · 続きを見る »

カジュダン–ルスティック多項式

表現論において、コクセター群 に付随するカジュダン・ルスティック多項式(カジュダン・ルスティックたこうしき、Kazhdan–Lusztig polynomial) とは、 の元 でパラメトライズされたある整数係数多項式の族のことである。この多項式は、1979年にデイビッド・カジュダンとジョージ・ルスティックによって、 に付随するヘッケ環のある基底を用いて導入された。特に としては半単純リー群 に付随するワイル群が代表的である。この場合、カジュダン・ルスティック多項式は、 の上のを用いた幾何学的記述を持ち、 のリー環 \mathfrak の表現論を記述するために重要な役割を果たしている(カジュダン・ルスティック予想)。この多項式やその類似物は、その後のの発展における契機となったのみならず、現在でも表現論における中心的な研究対象のひとつである。.

新しい!!: コクセター群とカジュダン–ルスティック多項式 · 続きを見る »

ケイリーグラフ

数学においてケイリーグラフ(Cayley graph, Cayley diagram)とは群の抽象的な構造を表現するグラフである。その定義はケイリーの定理によって暗示され(アーサー・ケイリーに因む)、特定の(ふつうは有限な)群の生成集合に対して使われる。組合せ論的あるいは幾何学的群論における中心的な道具である。.

新しい!!: コクセター群とケイリーグラフ · 続きを見る »

コクセター群の同型問題

ター群の同型問題(コクセターぐんのどうけいもんだい、isomorphism problem of Coxeter groups)とは、(異なる)コクセター図形により定義されるコクセター群の抽象群としての(非)同型性を判定するという、数学の群論における未解決問題のうちの一つ。 一般に群は複数の表示 、すなわち生成元と関係式による定義を持つ。そのため群の表示から非同型性を判定するのは困難である。コクセター群の同型問題も同様の困難さを持っており、近年まで研究が進んでいなかった。 また、コクセター群はその表現 を含めて考えることが多く、このこともコクセター群の代数的な構造に関する研究が進んでいなかった要因のひとつだと考えられる。 しかしながら、あるクラスの代数系が与えられたとき、その構造論、特にそれらがいつ同型になるのかという問題は基本的かつ重要な問題のひとつであり、コクセター群も例外ではない。特に、コクセター群はコクセター図形という組合せ論的対象を用いて具体的に定義される群であり、計算機との相性もよく、具体的に計算できる群として重要な例である。コクセター群の重要性もあって、この問題の解決は近年特に重要視されている。.

新しい!!: コクセター群とコクセター群の同型問題 · 続きを見る »

商群

数学において,商群(しょうぐん,quotient group, factor group)あるいは剰余群,因子群とは,群構造を保つ同値関係を用いて,大きい群から似た元を集めて得られる群である.例えば,n を法とした加法の巡回群は,整数から,差が の倍数の元を同一視し,そのような各類(合同類と呼ばれる)に1つの実体として作用する群構造を定義することによって得られる.群論と呼ばれる数学の分野の一部である. 群の商において,単位元の同値類はつねにもとの群の正規部分群であり,他の同値類たちはちょうどその正規部分群の剰余類たちである.得られる商は と書かれる,ただし はもとの群で は正規部分群である.(これは「(ジーモッドエヌ)」と読まれる."mod" は modulo の略である.) 商群の重要性の多くはその準同型との関係に由来する.第一同型定理は任意の群 の準同型による像はつねに のある商と同型であると述べている.具体的には,準同型 による の像は と同型である,ただし は の核 を表す. 商群の双対概念は部分群であり,これらが大きい群から小さい群を作る2つの主要な方法である.任意の正規部分群 は,大きい群から部分群 の元の間の差異を除去して得られる,対応する商群を持つ.圏論では,商群は商対象の例であり,これは部分対象の双対である.商対象の他の例は,商環,商線型空間,商位相空間,商集合を参照..

新しい!!: コクセター群と商群 · 続きを見る »

六角形

六角形(ろっかくけい、ろっかっけい、hexagon)は、6つの辺と頂点を持つ多角形の総称である。.

新しい!!: コクセター群と六角形 · 続きを見る »

符号関数

号関数 (ふごうかんすう、sign function, signum function) は、実数に対しその符号に応じて1、−1、0のいずれかを返す関数 およびそれを拡張した複素関数。 記号は のほかに、 なども使われる。 英語から「サイン関数」とも呼ぶが、この名は正弦関数 と非常に紛らわしい。区別するために sign のラテン語形の signum(シグヌム、英語読みはシグナム)から「シグナム関数」(signum function) と呼ぶことがある。英語以外でもドイツ語などいくつかの言語で signum 系の名前で呼ばれる。.

新しい!!: コクセター群と符号関数 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: コクセター群と群 (数学) · 続きを見る »

群の表示

数学のとくに群論における、生成元と基本関係による群の表示(ぐんのひょうじ、presentation of group)とは、群をその生成元と生成元の間に成り立つ関係によって特定することを言う。一般に群はある自由群の全射準同型像なので必ず表示を持つが、それは一意的ではない。.

新しい!!: コクセター群と群の表示 · 続きを見る »

E8 (数学)

E8 E8とは、248次元, 階数8の例外型単純リー群である。は、2007年 "An Exceptionally Simple Theory of Everything" において、E8の幾何構造に基づく万物の理論を発表している。.

新しい!!: コクセター群とE8 (数学) · 続きを見る »

鏡映

数学における鏡映(きょうえい、reflection)あるいは鏡映変換とはユークリッド空間の超平面を固定点集合にもつ等長変換である。その名の通り、3次元空間内では、ある図形に鏡映変換を施したものは、平面鏡に映ったその図形の位置及び見え方と一致する。(この場合、鏡の位置が固定点集合となる) 例えば2次元ユークリッド空間では鏡映の固定点集合は直線であり、固定点集合を鏡映の軸という。逆に、与えられた直線を軸とする鏡映が定まり、直線による折り返しなどとも呼ばれる。同様に、3次元空間では与えられた平面による鏡映が定まる。 鏡映によって変わらない図形を鏡映対称(2次元図形の場合、特に線対称とも呼ぶ)である、あるいは鏡映対称性を持つなどという。特に軸が垂直な場合は左右対称とも言われる。例えばアルファベットの A や H などは垂直な軸に関して鏡映対称である。3次元の物体や現象(特に分子)が鏡映対称であって、合同ではないことを掌性と呼ぶ。 長さや角度は鏡映によって変わらないが、向きが変わる。また、同じ鏡映を2回続けて行うと恒等変換になるので鏡映は対合の一種である。.

新しい!!: コクセター群と鏡映 · 続きを見る »

順序集合

数学において順序集合(じゅんじょしゅうごう、ordered set)とは「順序」の概念が定義された集合の事で、「順序」とは大小、高低、長短等の序列に関わる概念を抽象化したものである。ただし、順序集合内の2つの元, に順序関係が定まっている(「比較可能」である)必要はなく、両者が「比較不能」であってもよい。 比較不能のケースを許容していることを強調して順序集合の事を半順序集合(はんじゅんじょしゅうごう、partially ordered set, poset)ともいう。一方、半順序集合の中で比較不能のケースがないものを特に全順序集合 という。(「半順序」という言葉が「全順序」の対義語ではない事に注意。全順序集合も半順序集合の一種である。) 全順序集合の簡単な例は整数の集合や実数の集合で、通常の大小比較を順序とみなしたものがある。 一方、全順序ではない半順序集合の例としては、正の整数全体の集合に整除関係で順序を入れたものや、(2つ以上元を含む)集合の冪集合において、包含関係を順序とみなしたものがある。例えば2元集合 において と はいずれも他方を包含していないので S の冪集合は全順序ではない。 実生活に近い例では、「AさんはBさんの子孫である」という事を「A<B」という大小関係とみなす事で人間全体の集合を半順序集合とみなせる。AさんとBさんはどちらも他方の子孫でない事もありうる(兄弟同士、叔父と甥、赤の他人等)ので、この順序集合は全順序ではない。.

新しい!!: コクセター群と順序集合 · 続きを見る »

表現論

表現論(ひょうげんろん、representation theory)とは、ベクトル空間の線型変換として代数構造を表現することにより研究し、代数構造上の加群を研究する数学の一分野である。本質的には、表現は抽象的な代数的構造を、その元と演算を行列と行列の和や行列の積で記述することで、より具体的にする。この記述で扱われる代数的対象は、群や結合代数やリー代数がある。これらの中で最も優れているものは、歴史的にも最初に現れた群の表現論であり、群の演算が群の要素が行列の積により正則行列で表現されている。 Classic texts on representation theory include and.

新しい!!: コクセター群と表現論 · 続きを見る »

行列要素

数学における行列要素(ぎようれつようそ、matrix element)、成分 (matrix entry) あるいは係数 (matrix coefficient) は、群上の特別な形の函数で、その群の線型表現と付加的なデータに依存するものである 有限群に対する行列要素は、その群の元の特定の表現に関する作用に対応する行列の成分として表すことができる。 リー群の表現の行列要素は、特殊函数論と緊密な関係を持ち、理論の大部分を統一的に扱う方法を与える。行列要素の増加性質は、局所コンパクト群(特に簡約実および -進群)の既約表現の分類において重大な役割を持つ。行列要素を用いた方法論は、モジュラー形式の概念に莫大な一般化をもたらした。別な方向では、ある種の力学系の持つが、適当な行列要素の性質によって制御される。.

新しい!!: コクセター群と行列要素 · 続きを見る »

超立方体

4次元超立方体 超立方体(ちょうりっぽうたい、hypercube)とは、2次元の正方形、3次元の立方体、4次元の正八胞体を各次元に一般化した正多胞体である。なお、0次元超立方体は点、1次元超立方体は線分である。 正測体(せいそくたい)、γ体(ガンマたい)とも言い、n 次元超立方体を \gamma_n と書く。 正単体、正軸体と並んで、5次元以上での3種類の正多胞体の1つである。 単に超立方体と言った場合は特に四次元の超立方体(tesseract)を指すこともある。 右図は、四次元超立方体を二次元に投影した図である。立方体を二次元に投影した場合と同様に、各辺の長さや成す角度は歪んでいるが、実際の辺の長さはすべて等しく、角も直角である。胞(立方体)の数は、投影図において外側の大きな立方体、内側の立方体、これら2つの対応する面をそれぞれ結ぶ(対応する稜線を4つ選ぶ)部分に6つあり、胞は計8つである。.

新しい!!: コクセター群と超立方体 · 続きを見る »

Graduate Texts in Mathematics

Graduate Texts in Mathematics (Grad. Texts in Math., GTM) (ISSN 0072-5285) は、Springer-Verlag により出版されている数学の graduate-level(院レベル)のテキストのシリーズである。いくつかは和訳され丸善出版より出版されている。このシリーズの本は、 Springer-Verlag の他の数学のシリーズと同様、標準的なサイズの黄色い本である(ページ数は様々)。(原著の)GTM シリーズは本の上部が白くなっており容易に識別できる。 このシリーズの本は類似の Undergraduate Texts in Mathematics (UTM) シリーズよりも進んだ内容が書かれる傾向にあるが、この 2 つのシリーズは内容や難易度についてかなりかぶる部分もある。.

新しい!!: コクセター群とGraduate Texts in Mathematics · 続きを見る »

PostScript

PostScript(ポストスクリプト)は、アドビシステムズが開発している、1984年に発表したページ記述言語。 スタック指向型のプログラミング言語で、様々な計算・処理と共に描画命令を実行することができる。事前にデータをスタックに格納し、後の命令がデータを処理するというモデルで実行される。そのために記述法が逆ポーランド記法で一貫しており、名前は「追伸」の英語「post script」に後置記法といった意味を掛けている。.

新しい!!: コクセター群とPostScript · 続きを見る »

正十二面体

正十二面体(せいじゅうにめんたい、dodecahedron)は立体の名称の1つ。空間を正五角形12枚で囲んだ凸多面体。.

新しい!!: コクセター群と正十二面体 · 続きを見る »

正多角形

正多角形(せいたかっけい、せいたかくけい、regular polygon)とは、全ての辺の長さが等しく、全ての内角の大きさが等しい多角形である。 正多角形は線対称の図形であり、正n角形に対称軸はn本ある。また、正偶数角形は点対称の図形でもある。 辺の数が同じ正多角形どうしは全て互いに相似である。.

新しい!!: コクセター群と正多角形 · 続きを見る »

正多胞体

正多胞体 (regular polytope) とは、正多角形、正多面体などを一般次元へ拡張した、対称性の高い多胞体である。 ある正多胞体の各低次元の要素は合同であり、またそれ自体も正多胞体である。たとえば、ある正多面体の面は合同な正多角形である。ただし、デルタ多面体でわかるように、これは必要十分条件ではない。 正多胞体の必要十分な定義はさまざまだが、よく使われるのは「ファセット(facet、n - 1 次元面)が合同であり、頂点形状が合同である」というものである。.

新しい!!: コクセター群と正多胞体 · 続きを見る »

正二十四胞体

正二十四胞体(Regular icositetrachoron)とは、 四次元正多胞体の一種で24の正八面体からできており、自己双対である。この図形は標準正多胞体ではないが、三次元に相当する正多面体もない、四次元独特の図形である。また、正八胞体(四次元超立方体)と正十六胞体の複合体の枠になるため、三次元の菱形十二面体に相当する。単独で空間充填可能。.

新しい!!: コクセター群と正二十四胞体 · 続きを見る »

正二十面体

正二十面体 正二十面体(せいにじゅうめんたい、regular icosahedron)は立体の名称の1つ。空間を正三角形20枚で囲んだ凸多面体。3次元空間で最大の面数を持つ正多面体である。.

新しい!!: コクセター群と正二十面体 · 続きを見る »

正六百胞体

正六百胞体(Regular hexacosichoron)とは、 四次元正多胞体の一種で600個の正四面体からできており、三次元の正二十面体に相当する。標準正多胞体ではない。.

新しい!!: コクセター群と正六百胞体 · 続きを見る »

正百二十胞体

正百二十胞体(せいひゃくにじゅうほうたい、Regular hecatonicosachoron)とは、 四次元正多胞体の一種で120個の正十二面体からなる、三次元の正十二面体に相当する図形である。.

新しい!!: コクセター群と正百二十胞体 · 続きを見る »

正規部分群

数学、とくに抽象代数学における正規部分群(せいきぶぶんぐん、normal subgroup)は、群の任意の元による内部自己同型のもとで不変な部分群である。正規部分群は、与えられた群から剰余群を構成するのに用いることができる。 正規部分群の重要性は、エヴァリスト・ガロアによって最初に明らかにされた。.

新しい!!: コクセター群と正規部分群 · 続きを見る »

正軸体

2次元正軸体(正方形) 3次元正軸体(正八面体) 4次元正軸体(正十六胞体)の投影図 正軸体(せいじくたい、cross-polytope)は、2次元の正方形、3次元の正八面体、4次元の正十六胞体を各次元に一般化した正多胞体。 なお、定義によっては形式的に0次元正軸体は点、1次元正軸体は線分となるが、正軸体一般の性質の一部が成り立たないため、0次元・1次元に正軸体は存在しないとすることが多い。 \beta体(ベータたい)ともいい、n 次元正軸体を \beta_n と書く。 正単体、超立方体(正測体)と並んで、5次元以上での3種類の正多胞体の1つである。.

新しい!!: コクセター群と正軸体 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: コクセター群と数学 · 続きを見る »

ここにリダイレクトされます:

コクセター図形コクセター系コクセター行列

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »