ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

グロッシュの法則

索引 グロッシュの法則

ッシュの法則(グロッシュのほうそく、Grosch's law)は、ハーバート・グロッシュ(Herbert Grosch)が1965年に提唱したコンピュータの性能に関する法則である。 「コンピュータの性能は価格の2乗に比例する」 という経験則で、例えば50,000円と100,000円のコンピュータの性能比は25:100である為、コンピュータは(予算の許す限り)高い物を買った方が、性能対価格比で得であるという結果になる。 牧野による分析では、この法則はCray-1より前では成り立つが、後では成り立たない。詳しく説明すると、パイプライン化してクロック毎に2演算(立ち上がりと立ち下がりの両方で演算することを仮定)が達成されたとすると、それより安い計算機では成り立つが、それより高い計算機では成り立たない。なぜなら、それ以上の性能を達成するためには複数個の演算装置で並列計算する必要があり、それらを制御するための回路がそれ以上に複雑になるからである。1999年には、複雑化による性能向上は2乗ではなく逆2乗であるというポラックの法則が誕生している。 また、提唱された当時には想像の範囲外であろうが、パーソナルコンピュータのように量産効果が大きく働くと、低価格側が、法則が示すよりも高性能になる、という形で法則から外れるようになる。この意味では、2000年頃まではスーパーコンピュータは量産効果において不利であったが、その後の超並列化の結果、京に至ってはSPARC 64 VIIIfxを8万基使用するなど、量産技術によって高性能を達成するように変わってきている。 似たような法則に、オペレーションズ・リサーチにおけるランチェスターの法則(第2法則)がある。たとえば戦争において、兵士の能力や兵器の性能が同等なら、兵士5人対兵士10人の戦力比は本法則同様25:100として考える。.

16 関係: 並列計算京 (スーパーコンピュータ)ポラックの法則ムーアの法則メトカーフの法則ランチェスターの法則パーソナルコンピュータパイプライン処理オペレーションズ・リサーチコンピュータコストパフォーマンススーパーコンピュータCray-1牧野淳一郎法則の一覧演算装置

並列計算

並列計算(へいれつけいさん、parallel computing)は、コンピュータにおいて複数のプロセッサで1つのタスクを動作させること。並列コンピューティングや並列処理とも呼ばれる。問題を解く過程はより小さなタスクに分割できることが多い、という事実を利用して処理効率の向上を図る手法である。また、このために設計されたコンピュータを並列コンピュータという。ディープ・ブルーなどが有名。 関連する概念に並行計算(へいこうけいさん)があるが、並行計算は一つのタスクの計算を並列化することにとどまらず、複数の相互作用しうるタスクをスレッドなどをもちいて複数の計算資源にスケジューリングするといった、より汎用性の高い処理をさす。 特に、並列計算専用に設計されたコンピュータを用いずに、複数のパーソナルコンピュータやサーバ、スーパーコンピュータを接続することで並列計算を実現するものをコンピュータ・クラスターと呼ぶ。このクラスターをインターネットなどの広域ネットワーク上に分散させるものも、広義には並列計算に属すが、分散コンピューティングあるいはグリッド・コンピューティングと呼び、並列計算とは区別することが多い。.

新しい!!: グロッシュの法則と並列計算 · 続きを見る »

京 (スーパーコンピュータ)

京」の外観 「京」の1筐体の内部 京(けい、K computer)は、理化学研究所計算科学研究機構(神戸市)に設置されたスーパーコンピュータの名称(愛称)である。従来は「次世代スーパーコンピュータ」、「汎用京速計算機」、「京速」などと呼ばれていた。文部科学省の次世代スーパーコンピュータ計画の一環として、理化学研究所と富士通が共同開発した。「京」は、浮動小数点数演算を1秒あたり1京回おこなう処理能力(10ペタフロップス)に由来する。 総開発費1,120億円を投じ、2012年6月に完成、同年9月に共用開始。 TOP500で、2011年6月および2011年11月に1位 になるが、完成直前の翌2012年6月には2位に、同年11月には3位に後退。この年1位の米は開発費が9,700万US$(約76.5億円)で17.59ペタフロップス。 2013年6月に4位、2015年7月に4位となった。また2011年、2012年、2013年、2014年にHPCチャレンジ賞クラス1、2013年に日本初となるHPCチャレンジ賞クラス2を受賞。2011年、2012年にゴードン・ベル賞を受賞。2014年、2015年7月、11月、2016年7月、11月、2017年6月にGraph500で1位を獲得した。.

新しい!!: グロッシュの法則と京 (スーパーコンピュータ) · 続きを見る »

ポラックの法則

ポラックの法則(ポラックのほうそく)は、「プロセッサの性能はその複雑性の平方根に比例する」という経験則。ここで「複雑性」とは、論理回路の水準で見るならばゲート数やFF数、電子回路の水準で見るならばネットリストのエッジ数とノード数すなわち配線数と素子数、などのことである。トランジスタ数のことだとして、この法則に文字通り従うならば、1プロセッサに使うトランジスタを2倍に増やしても、性能は\sqrt\fallingdotseq 1.4倍にしか上がらない。 ここで、ある系列のプロセッサの新型を設計するとして、その新型ではプロセス微細化なしに2倍のトランジスタを使うことにする。すると(実際にはその設計次第であるが)、ポラックの法則に従うならばプロセッサの性能は1.4倍しか向上していないにもかかわらず、トランジスタ数に比例して消費電力は2倍に増大している。したがって消費電力あたりの性能は、トランジスタ数を2倍にした結果逆に0.7倍に低下することになる。消費電力は、ほぼそのまま発熱量とみてよい。結論として、トランジスタ数の増加によるプロセッサの性能の向上は、遠からず(仮に電力の供給はなんとかできたとしても)熱の問題により頭打ちとなることが、この法則が正しければ予言される。 直感的に説明するならば、この法則はプロセッサ設計がある種の「飽和」に達した後の現象だということになる。32ビットコンピュータを8ビットの算術論理演算装置を並べて作っていたような時代であれば、単純な物量作戦で性能は線形に上がるだろうし、もっとかも(グロッシュの法則)しれない。その後、単純に物量作戦で可能なことは全てやり、パイプライン化なども行われると、それ以上の性能向上は並列(parallel)処理で、となり、scoreboarding や Tomasuloのアルゴリズムなど、並行(concurrent)処理の複雑さが、目的の計算以上に素子などの資源を喰ってしまうわけである。 なお以上の議論ではプロセス微細化なしにという前提を置いているが、MOS集積回路の開発から200x年代頃までのトレンドとしては、ムーアの法則を達成するためのプロセス微細化によるデナードスケーリングによって、高速化と同時に消費電力も低減されていたため、そちらによる性能向上が大きかった。こちらによる性能向上は、集積回路の生産プロセスを更新するだけでプロセッサ設計やマスクパターンの大きな変更無しに、単にパターンをより小さく縮小するだけであり、「無料の昼食」(Free Lunch)などと形容されることもある。 インテル社のMRL(Microprocessor Research Labs)のディレクター兼インテル・フェロー(Intel Fellow)を務めていたフレッド・ポラック(Fred Pollack)が提唱した。なお、実際のデータからは、文字通りではなく、物量と性能の関係は一定ではなく変化するものだ、という意味に取るのが良いようであるhttp://news.mynavi.jp/column/architecture/122/index.html。 この法則が示唆する通り(また、物理法則の限界により、縮小しても高速化や低電圧化を以前のようには進められず、電流に至ってはリークのせいで増える傾向にすらあることもあり)、その後のプロセッサは低消費電力・マルチコア化を指向するようになった。.

新しい!!: グロッシュの法則とポラックの法則 · 続きを見る »

ムーアの法則

インテル製プロセッサのトランジスタ数の成長(各点)とムーアの法則(上線.

新しい!!: グロッシュの法則とムーアの法則 · 続きを見る »

メトカーフの法則

メトカーフの法則(メトカーフのほうそく、英: Metcalfe's law)は、通信ネットワークに関する法則で「ネットワーク通信の価値は、接続されているシステムのユーザ数の二乗(n2)に比例する」という。メトカルフェの法則とも呼ばれている。 George Gilderによって1993年に最初にこのように定式化され、イーサネットに関する1980年のロバート・メトカーフに起源をもつ。 メトカーフの法則は、当初1980年にユーザ数の文脈ではなく「互換性あるコンピューティングデバイス(例:FAX、電話等)」の文脈で提示された。 インターネットが始まり、この法則がユーザとネットワークに適用されるようになったのは、ごく最近のことであった。 なぜならば、この法則の本来の意図は、イーサネットの購入と接続を描写することにあったからである。この法則は、経済学やビジネスの経営管理とも関連が深く、特に、相互に提携先を探している競争的な企業間の関係が関連深い。.

新しい!!: グロッシュの法則とメトカーフの法則 · 続きを見る »

ランチェスターの法則

ランチェスターの法則(ランチェスターのほうそく、英:Lanchester's laws)は戦争における戦闘員の減少度合いを数理モデルにもとづいて記述した法則。一次法則と二次法則があり、前者は剣や弓矢で戦う古典的な戦闘に関する法則、後者は小銃やマシンガンといった兵器を利用した近代戦を記述する法則である佐藤84。 これらの法則は1914年にフレデリック・ランチェスターが自身の著作L1916で発表したもので、原著ではこれらの法則を元に近代戦における空軍力の重要性を説いている。この論文は今日でいうオペレーションズ・リサーチの嚆矢となった佐藤84。 ランチェスターの法則は実際の戦争においても確認されており、例えばJ.H.エンゲルE1954は二次法則に従って硫黄島の戦いを解析することにより、わずかな誤差でこの法則が成り立つことを確認している佐藤84。 古典的な戦闘と近代的な戦闘で従う法則に違いが生じるのは、剣や弓矢による古典的な戦闘では個々の味方が個々の敵を相手とする一騎討ちを基本とした局地戦になるのに対し、小銃やマシンガンを利用した近代的な戦闘では集団的な行動をとる味方が、乱射により不特定の敵を確率的に殺していくものだからである佐藤84。 古典的な戦闘の場合には、個々人による一騎討ちの寄せ集めであるので、戦争による戦闘員の消耗は単純に味方の人数と敵の人数の一次式になる(一次法則)。それに対し近代的な戦闘の場合、戦闘員の消耗は味方の人数と敵の人数の2次式(双曲線)になることが示せる(二次法則)。よって古典的な戦闘とは消耗する人数が大きく異なり、近代的な戦闘では古典的な戦闘と比べ、人数が多い方の軍隊が大幅に有利になる(後述)。 なお、戦後になってからランチェスターの法則を導出した数理モデルは経営学にも一部応用されており、フォルクスワーゲンのセールス戦略をこれにより説明するなどがされている(後述)佐藤84。経営コンサルタントの田岡信夫は自身の研究を踏まえてこれを優しく解説した本を書いており佐藤84、日本では「ランチェスター経営戦略」と呼ばれている。.

新しい!!: グロッシュの法則とランチェスターの法則 · 続きを見る »

パーソナルコンピュータ

パーソナルコンピュータ(personal computer)とは、個人によって占有されて使用されるコンピュータのことである。 略称はパソコン日本独自の略語である。(著書『インターネットの秘密』より)またはPC(ピーシー)ただし「PC」という略称は、特にPC/AT互換機を指す場合もある。「Mac対PC」のような用法。。.

新しい!!: グロッシュの法則とパーソナルコンピュータ · 続きを見る »

パイプライン処理

パイプライン処理(パイプラインしょり)とは、コンピュータ等において、処理要素を直列に連結し、ある要素の出力が次の要素の入力となるようにして、並行(必ずしも並列とは限らない)に処理させるという利用技術である。要素間になんらかのバッファを置くことが多い。 コンピュータ関連のパイプラインには、次のようなものがある。; 命令パイプライン; グラフィックスパイプライン; ソフトウェアパイプライン; パイプ (コンピュータ).

新しい!!: グロッシュの法則とパイプライン処理 · 続きを見る »

オペレーションズ・リサーチ

ペレーションズ・リサーチ(英語:operations research、米)、オペレーショナル・リサーチ(英語:operational research、英、略称:OR)は、数学的・統計的モデル、アルゴリズムの利用などによって、さまざまな計画に際して最も効率的になるよう決定する科学的技法である。.

新しい!!: グロッシュの法則とオペレーションズ・リサーチ · 続きを見る »

コンピュータ

ンピュータ(Computer)とは、自動計算機、とくに計算開始後は人手を介さずに計算終了まで動作する電子式汎用計算機。実際の対象は文字の置き換えなど数値計算に限らず、情報処理やコンピューティングと呼ばれる幅広い分野で応用される。現代ではプログラム内蔵方式のディジタルコンピュータを指す場合が多く、特にパーソナルコンピュータやメインフレーム、スーパーコンピュータなどを含めた汎用的なシステムを指すことが多いが、ディジタルコンピュータは特定の機能を実現するために機械や装置等に組み込まれる組み込みシステムとしても広く用いられる。電卓・機械式計算機・アナログ計算機については各項を参照。.

新しい!!: グロッシュの法則とコンピュータ · 続きを見る »

コストパフォーマンス

トパフォーマンス(cost performance)とは、あるものが持つコスト(費用)とパフォーマンス(効果)を対比させた度合い。コスパやCPと略されることもあるほか、費用対効果や対費用効果ともいう。建設コンサルタントや官公庁での会議や打ち合わせでは benefit by cost を略してB/C(ビーバイシー)とも呼ばれている。 数値を算出する場合は、効果を費用で割る。すなわち、費用が安く、効果が高いほど、コストパフォーマンスが高い。.

新しい!!: グロッシュの法則とコストパフォーマンス · 続きを見る »

スーパーコンピュータ

ーパーコンピュータ(supercomputer)は、科学技術計算を主要目的とする大規模コンピュータである。日本国内での略称はスパコン。また、計算科学に必要となる数理からコンピュータシステム技術までの総合的な学問分野を高性能計算と呼ぶ。スーパーコンピュータでは計算性能を最重要視し、最先端の技術が積極的に採用されて作られる。.

新しい!!: グロッシュの法則とスーパーコンピュータ · 続きを見る »

Cray-1

ドイツ博物館に保管されているCray-1 EPFLのCray-1 Cray-1(クレイ ワン)は、シーモア・クレイ率いるクレイ・リサーチ社が設計したベクトル型スーパーコンピュータである。この種類のコンピュータの基本構成を確立し、当時世界最高速であった。最初のCray-1システムはロスアラモス国立研究所に 1976年に納入された。Cray-1のアーキテクトはシーモア・クレイ、主任技術者はクレイ・リサーチの共同創設者であるレスター・デーヴィスだった。.

新しい!!: グロッシュの法則とCray-1 · 続きを見る »

牧野淳一郎

牧野 淳一郎(まきの じゅんいちろう、1963年1月6日 - )は日本の天文学者、神戸大学大学院教授。専門分野は計算天文学。 岐阜県生まれ。杉本大一郎の研究室である宇宙地球科学教室にてGRAPEの開発を行い、初期のGRAPEシリーズを伊藤智義らと共に開発する。その後、GRAPEのASIC化へと進み、現在に至る。.

新しい!!: グロッシュの法則と牧野淳一郎 · 続きを見る »

法則の一覧

法則の一覧(ほうそくのいちらん)は、固有名として使われる法則を示す。学問上の法則、社会一般で言われる法則を含む。法則の名称の後ろの注記は分野を示す。ただし「法則」という言葉は、しばしば書籍のタイトル等に用いられるが、この項では混乱を避けるためそういった類のものは省略している。物理に関する法則は「物理法則一覧」を参照。.

新しい!!: グロッシュの法則と法則の一覧 · 続きを見る »

演算装置

演算装置(えんざんそうち)は、コンピュータ(プロセッサ)の構成要素のひとつで、論理演算や四則演算などの演算をおこなう装置である。.

新しい!!: グロッシュの法則と演算装置 · 続きを見る »

ここにリダイレクトされます:

グロシュの法則

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »