ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

クエン酸シンターゼ

索引 クエン酸シンターゼ

ン酸シンターゼ(クエンさんシンターゼ、Citrate synthase)は、ほぼ全ての生細胞に含まれ、クエン酸回路の第一段階の速度を調整する酵素である。クエン酸シンターゼは、真核生物細胞のミトコンドリアマトリックスに局在するが、ミトコンドリアではなく細胞核のDNAによってコードされる。細胞質のリボソームで合成され、その後ミトコンドリアのマトリックスに輸送される。クエン酸シンターゼは、完全なミトコンドリアの存在量を示すマーカーとしても用いられている。 クエン酸シンターゼは、アセチルCoAの酢酸残基をオキサロ酢酸に付加し、クエン酸を合成する反応を触媒する。オキサロ酢酸は、クエン酸回路を一周すると再生される。 アセチルCoA + オキサロ酢酸 + 水 → クエン酸 + 補酵素A オキサロ酢酸が最初に酵素に結合すると、酵素の形が変化し、アセチルCoAの結合部位が形成される。シトロイルCoAが生成するとさらに構造が変化し、チオエステルを加水分解し、補酵素Aを遊離する。これにより、チオエステル結合の切断により放出されるエネルギーが縮合反応を駆動する。.

40 関係: 加水分解加水分解酵素単結合不対電子三次構造二重結合ミトコンドリアミトコンドリアマトリックスチオエステルリボソームリガーゼプロトンプロトン化ヒドロキシ基デオキシリボ核酸ニコチンアミドアデニンジヌクレオチドアミンアロステリック効果アセチルCoAエノールオキサロ酢酸カルボニル基クエン酸クエン酸回路スクシニルCoA窒素細胞細胞質細胞核真核生物炭素補酵素A触媒脱プロトン化酢酸酸素酵素電子活性部位

加水分解

加水分解(かすいぶんかい、hydrolysis)とは、反応物に水が反応し、分解生成物が得られる反応のことである。このとき水分子 (H2O) は、生成物の上で H(プロトン成分)と OH(水酸化物成分)とに分割して取り込まれる。反応形式に従った分類により、加水分解にはいろいろな種類の反応が含まれる。 化合物ABが極性を持ち、Aが陽性、Bが陰性であるとき、ABが水と反応するとAはOHと結合し、BはHと結合する形式の反応が一般的である。 加水分解の逆反応は脱水縮合である。.

新しい!!: クエン酸シンターゼと加水分解 · 続きを見る »

加水分解酵素

加水分解酵素(かすいぶんかいこうそ、hydrolase)とはEC第3群に分類される酵素で、加水分解反応を触媒する酵素である。ヒドロラーゼと呼ばれる。代表的な反応はタンパク質、脂質、多糖〈炭水化物〉をアミノ酸、脂肪酸、ブドウ糖などに消化分解する生化学反応に関与する。あるいはコリンエステラーゼ、環状ヌクレオチドホスホジエステラーゼやプロテインホスファターゼのような生体内のシグナル伝達に関与するものも多い。.

新しい!!: クエン酸シンターゼと加水分解酵素 · 続きを見る »

単結合

共有結合における単結合は通常、σ結合(シグマ結合)と呼ばれる結合でできている。 詳しい議論には、量子化学の知識が必要である。.

新しい!!: クエン酸シンターゼと単結合 · 続きを見る »

不対電子

一酸化窒素のN原子上には1つの不対電子がある。 不対電子(ふついでんし、unpaired electron)とは、分子や原子の最外殻軌道に位置する対になっておらず、電子対を作っていない電子のこと。共有結合を作る共有電子対や非共有電子対に比べ、化学的に不安定であり、反応性が高い。有機化学においては、不対電子を持つ、寿命の短いラジカルが反応経路を説明するのに重要な役割を果たしている。 電子は量子数によって決められる電子軌道を運動している。 s軌道やp軌道は、原子価を満たすようにsp3、sp2、spなどの混成軌道を形成するので、不対電子が現れることは少ない。これらの軌道ではラジカルは二量化し、電子が非局在化して安定化する。対照的に、d軌道やf軌道において、不対電子はよく見られる。これは、1つの電子軌道に入ることができる電子の数が多く、結合が弱くなるためである。またこれらの軌道においては、が比較的小さく、二量体にはなりにくい。 たとえば原子番号8の酸素は8個の電子を持つ。1s、2s軌道に各2個、2p軌道には4個の電子が配置される。2p軌道には1個あるいはスピンの向きが反対の2個の電子を入れることのできる軌道が3組あるので、酸素原子の最外殻には1組(2s軌道の2個を除いて)の対になった電子と、対になっていない2個の電子が存在することになる。 酸素分子は酸素原子2個からなるが、酸素分子の分子軌道では、2p軌道の計8個の電子は、もともと対になっている4個(2組)と、共有され対になった2個と、対になっていない2個という配置になる。 また一酸化窒素も不対電子をもつ物質の一つである。 対になっていない電子があることが磁性の特性をきめる。.

新しい!!: クエン酸シンターゼと不対電子 · 続きを見る »

三次構造

生化学において三次構造(さんじこうぞう、tertiary structure)は、タンパク質やその他の高分子が取る三次元構造で、その空間配置は原子座標によって定義される。.

新しい!!: クエン酸シンターゼと三次構造 · 続きを見る »

二重結合

二重結合(にじゅうけつごう、double bond)は、通常2つの代わりに4つの結合電子が関与する、2元素間の化学結合である。最も一般的な二重結合は、2炭素原子間のものでアルケンで見られる。2つの異なる元素間の二重結合には多くの種類が存在する。例えばカルボニル基は炭素原子と酸素原子間の二重結合を含む。その他の一般的な二重結合は、アゾ化合物 (N.

新しい!!: クエン酸シンターゼと二重結合 · 続きを見る »

ミトコンドリア

ミトコンドリアの電子顕微鏡写真。マトリックスや膜がみえる。 ミトコンドリア(mitochondrion、複数形: mitochondria)は真核生物の細胞小器官であり、糸粒体(しりゅうたい)とも呼ばれる。二重の生体膜からなり、独自のDNA(ミトコンドリアDNA=mtDNA)を持ち、分裂、増殖する。mtDNAはATP合成以外の生命現象にも関与する。酸素呼吸(好気呼吸)の場として知られている。また、細胞のアポトーシスにおいても重要な役割を担っている。mtDNAとその遺伝子産物は一部が細胞表面にも局在し突然変異は自然免疫系が特異的に排除 する。ヒトにおいては、肝臓、腎臓、筋肉、脳などの代謝の活発な細胞に数百、数千個のミトコンドリアが存在し、細胞質の約40%を占めている。平均では1細胞中に300-400個のミトコンドリアが存在し、全身で体重の10%を占めている。ヤヌスグリーンによって青緑色に染色される。 9がミトコンドリア典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) '''ミトコンドリア'''、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体.

新しい!!: クエン酸シンターゼとミトコンドリア · 続きを見る »

ミトコンドリアマトリックス

ミトコンドリアマトリックス(Mitochondrial matrix)は、ピルビン酸その他の小さな有機分子の酸化を触媒する可溶性酵素を含むミトコンドリアの部分である。 マトリックスはミトコンドリアDNAとリボソームも含む。「マトリックス」という用語は、この空間が細胞質と比較すると粘着質であることに由来する。細胞質の水分含量はタンパク質1mg当たり3.8μlであるのに対し、ミトコンドリアマトリックスでは、タンパク質1mg当たり0.8μlの水分含量である 。ミトコンドリアがどのようにして、ミトコンドリア内膜内外の浸透圧の平衡を保っているのかは分かっていないが、膜は、水の輸送を調整する導管と考えられているアクアポリンを持つ。ミトコンドリアマトリックスのpHは、約7.8である 。.

新しい!!: クエン酸シンターゼとミトコンドリアマトリックス · 続きを見る »

チオエステル

チオエステル (thioester) とはカルボン酸とチオールが脱水縮合した構造 (R−CO−S−R') を持つ化合物である。チオエステルの特性基 (R−CO−S−R') をチオエステル結合と呼ぶ。また、C.

新しい!!: クエン酸シンターゼとチオエステル · 続きを見る »

リボソーム

典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) '''リボソーム'''、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) ミトコンドリア、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体 リボソームまたはリボゾーム(; ライボソーム)は、あらゆる生物の細胞内に存在する構造であり、粗面小胞体 (rER) に付着している膜結合リボソームと細胞質中に存在する遊離リボソームがある。mRNAの遺伝情報を読み取ってタンパク質へと変換する機構である翻訳が行われる場である。大小2つのサブユニットから成り、これらはタンパク質(リボソームタンパク、ribosomal protein)とRNA(リボソームRNA、rRNA; ribosomal RNA)の複合体である。細胞小器官に分類される場合もある。2000年、X線構造解析により立体構造が決定された。.

新しい!!: クエン酸シンターゼとリボソーム · 続きを見る »

リガーゼ

リガーゼ(ligase)とはEC番号6群に属する酵素であり、ATPなど高エネルギー化合物の加水分解に共役して触媒作用を発現する特徴を持つ。英語の発音に従ってライゲースと表記される場合もある文部科学省監修学術用語集の「学術語の訳字通則」に従うとリアーゼ、シンテターゼ、シンターゼが正式となる。投稿雑誌によっては英語読みのカタカナ表記であるライエース、シンセテース、シンセースは推奨されない場合がある。リガーゼは別名としてシンテターゼ(シンセテース)と呼ばれる。日本語ではリガーゼを指して合成酵素と呼ぶことがあるが、合成酵素といった場合はEC6群のシンテターゼの他にEC4群のシンターゼを含むので留意が必要である。シンテターゼはATPなどの高エネルギー化合物分解と共役しているのに対して、シンターゼ(シンセース)はリアーゼ(ライエース)の一種であり高エネルギー化合物分解の共役は不要である。.

新しい!!: クエン酸シンターゼとリガーゼ · 続きを見る »

プロトン

記載なし。

新しい!!: クエン酸シンターゼとプロトン · 続きを見る »

プロトン化

プロトン化 (protonation) とは、原子、分子、イオンにプロトン (H+) を付加することである。プロトン化は、脱プロトン化の逆反応である。 プロトン化は最も基礎的な化学反応の1つで、多くの化学量論過程や触媒過程の1段階となっている。イオンや分子の中には、複数のプロトン化が起こって多価塩基になるものもある。これは、多くの生体高分子についても当てはまる。 基質にプロトン化が起こると、質量や電荷はそれぞれ1単位増加する。分子やイオンのプロトン化や脱プロトン化は、電荷や質量の他にも、疎水性、還元電位、光学活性等、様々な化学的性質を変化させる。またプロトン化はエレクトロスプレーイオン化 (ESI) 質量分析等の化学分析を行う際にも必須である。 ほとんどの酸塩基反応では、プロトン化や脱プロトン化が起こる。ブレンステッド-ローリーの酸塩基理論では、他の物質をプロトン化する物質を酸、他の物質からプロトン化される物質を塩基と定義している。.

新しい!!: クエン酸シンターゼとプロトン化 · 続きを見る »

ヒドロキシ基

ヒドロキシ基(ヒドロキシき、hydroxy group)は、有機化学において構造式が −OH と表される1価の官能基。旧IUPAC命名則ではヒドロキシル基 (hydroxyl group) と呼称していた。 無機化合物における陰イオン OH− は「水酸化物イオン」を参照のこと。.

新しい!!: クエン酸シンターゼとヒドロキシ基 · 続きを見る »

デオキシリボ核酸

DNAの立体構造 デオキシリボ核酸(デオキシリボかくさん、deoxyribonucleic acid、DNA)は、核酸の一種。地球上の多くの生物において遺伝情報の継承と発現を担う高分子生体物質である。.

新しい!!: クエン酸シンターゼとデオキシリボ核酸 · 続きを見る »

ニコチンアミドアデニンジヌクレオチド

ニコチンアミドアデニンジヌクレオチド (nicotinamide adenine dinucleotide) とは、全ての真核生物と多くの古細菌、真正細菌で用いられる電子伝達体である。さまざまな脱水素酵素の補酵素として機能し、酸化型 (NAD) および還元型 (NADH) の2つの状態を取り得る。二電子還元を受けるが、中間型は生じない。略号であるNAD(あるいはNADでも同じ)のほうが論文や口頭でも良く使用されている。またNADH2とする人もいるが間違いではない。 かつては、ジホスホピリジンヌクレオチド (DPN)、補酵素I、コエンザイムI、コデヒドロゲナーゼIなどと呼ばれていたが、NADに統一されている。別名、ニコチン酸アミドアデニンジヌクレオチドなど。.

新しい!!: クエン酸シンターゼとニコチンアミドアデニンジヌクレオチド · 続きを見る »

アミン

アミン(amine)とは、アンモニアの水素原子を炭化水素基または芳香族原子団で置換した化合物の総称である。 置換した数が1つであれば第一級アミン、2つであれば第二級アミン、3つであれば第三級アミンという。また、アルキル基が第三級アミンに結合して第四級アンモニウムカチオンとなる。一方アンモニアもアミンに属する。 塩基、配位子として広く利用される。.

新しい!!: クエン酸シンターゼとアミン · 続きを見る »

アロステリック効果

アロステリック効果(アロステリックこうか)とは、タンパク質の機能が他の化合物(制御物質、エフェクター)によって調節されることを言う。主に酵素反応に関して用いられる用語であるが、近年、Gタンパク質共役受容体 (GPCR) を中心とする受容体タンパク質の活性化制御において、アロステリック効果を示す化学物質 (アロステリックモジュレーター) の存在が知られるようになってきた。 アロステリー(allostery、その形容詞がアロステリックallosteric)という言葉は、ギリシア語で「別の」を意味するallosと「形」を意味するstereosから来ている。これは、一般にアロステリックタンパク質のエフェクターが基質と大きく異なる構造をしていることによる。このことから、制御中心が活性中心から離れた場所にあると考えられたのである。 しかし下記のヘモグロビンにおける酸素分子のように、同じ分子がエフェクターかつ基質となる例もあり、アロステリック効果は一般にヘモグロビンのようなオリゴマー構造でモデル化することができる(「アロステリック制御のモデル」の項参照)。 このため、アロステリック効果は と拡張定義されることも多い。.

新しい!!: クエン酸シンターゼとアロステリック効果 · 続きを見る »

アセチルCoA

アセチルCoA (アセチルコエンザイムエー、アセチルコエー、Acetyl-CoA)は、アセチル補酵素Aの略で、化学式がC23H38P3N7O17Sで表される分子量が809.572 g/mol の有機化合物である。補酵素Aの末端のチオール基が酢酸とチオエステル結合したもので、主としてβ酸化やクエン酸回路、メバロン酸経路でみられる。テルペノイドはアセチルCoA二分子の反応によって生じるアセトアセチルCoAを原料とする。消費されない過剰のアセチルCoAは、脂肪酸生合成の原料となり、中性脂肪を生成する(脂肪酸#脂肪酸生合成系参照)。そのため、アセチルCoAの代謝を抑制することで動脈硬化、高脂血症を防ぐ研究が進行中である。.

新しい!!: クエン酸シンターゼとアセチルCoA · 続きを見る »

エノール

ノール (enol) または アルケノール (alkenol) は、アルケンの二重結合の片方の炭素にヒドロキシ基が置換したアルコールのこと。ビニルアルコールの誘導体。エノールとカルボニル化合物(ケトンやアルデヒド)は互変異性体の関係にあり、以下のようにケト-エノール互変異性化を起こす。 エノール型は図の右側である。エノール型は一般に不安定であり、平衡は左側のケト型に偏っている(ただし、フェノールのような例外もある)。これは、酸素原子が炭素より陰性で多重結合を形成しやすいからである。炭素-酸素二重結合は炭素-酸素単結合よりも結合エネルギーにして2倍以上強く、一方で炭素-炭素二重結合の結合エネルギーは炭素-炭素単結合2個分の結合エネルギーよりも弱い。 酸によるアルドール反応において、反応中間体とされる。.

新しい!!: クエン酸シンターゼとエノール · 続きを見る »

オキサロ酢酸

酢酸(オキサロさくさん、Oxaloacetic acid)は、示性式 CH2CO(COOH)2、分子量 132.072 のジカルボン酸の一種。IUPAC命名法では2-オキソブタン二酸 (2-oxobutanedioic acid) になる。CAS登録番号は 328-42-7。旧名オキサル酢酸。.

新しい!!: クエン酸シンターゼとオキサロ酢酸 · 続きを見る »

カルボニル基

ルボニル基(カルボニルき、carbonyl group)は有機化学における置換基のひとつで、−C(.

新しい!!: クエン酸シンターゼとカルボニル基 · 続きを見る »

クエン酸

ン酸(クエンさん、)は、示性式 C(OH)(CH2COOH)2COOH で、柑橘類などに含まれる有機化合物で、ヒドロキシ酸のひとつである。 漢字では「枸櫞酸」と記される。枸櫞とは漢名でマルブシュカン(シトロン)を指す。レモンをはじめ柑橘類に多く含まれていることからこの名がついた。柑橘類の酸味の原因はクエン酸の味に因るものが多い。また、梅干しにも多量に含まれている。.

新しい!!: クエン酸シンターゼとクエン酸 · 続きを見る »

クエン酸回路

ン酸回路。クリックで拡大 クエン酸回路(クエンさんかいろ)とは好気的代謝に関する最も重要な生化学反応回路であり、酸素呼吸を行う生物全般に見られる。1937年にドイツの化学者ハンス・クレブスが発見し、この功績により1953年にノーベル生理学・医学賞を受賞している。 解糖や脂肪酸のβ酸化によって生成するアセチルCoAがこの回路に組み込まれ、酸化されることによって、電子伝達系で用いられるNADHなどが生じ、効率の良いエネルギー生産を可能にしている。またアミノ酸などの生合成の前駆体も供給する。 クエン酸回路の呼称は高等学校の生物学でよく用いられるが、大学以降ではTCA回路、TCAサイクル (tricarboxylic acid cycle) と呼ばれる場合が多い。その他に、トリカルボン酸回路、クレブス回路 (Krebs cycle) などと呼ばれる場合もある。.

新しい!!: クエン酸シンターゼとクエン酸回路 · 続きを見る »

スクシニルCoA

ニルCoA(スクシニルこえー、スクシニルこえんざいむえー、succinyl-CoA、SucCoA)は、コハク酸と補酵素Aからなる有機化合物である。.

新しい!!: クエン酸シンターゼとスクシニルCoA · 続きを見る »

窒素

素(ちっそ、nitrogen、nitrogenium)は原子番号 7 の元素。元素記号は N。原子量は 14.007。空気の約78.08 %を占めるほか、アミノ酸をはじめとする多くの生体物質中に含まれており、地球のほぼすべての生物にとって必須の元素である。 一般に「窒素」という場合は、窒素の単体である窒素分子(窒素ガス、N2)を指すことが多い。窒素分子は常温では無味無臭の気体として安定した形で存在する。また、液化した窒素分子(液体窒素)は冷却剤としてよく使用されるが、液体窒素温度 (-195.8 ℃, 77 K) から液化する。.

新しい!!: クエン酸シンターゼと窒素 · 続きを見る »

細胞

動物の真核細胞のスケッチ 細胞(さいぼう)とは、全ての生物が持つ、微小な部屋状の下部構造のこと。生物体の構造上・機能上の基本単位。そして同時にそれ自体を生命体と言うこともできる生化学辞典第2版、p.531-532 【単細胞生物】。 細胞を意味する英語の「cell」の語源はギリシャ語で「小さな部屋」を意味する語である。1665年にこの構造を発見したロバート・フックが自著においてcellと命名した。.

新しい!!: クエン酸シンターゼと細胞 · 続きを見る »

細胞質

滑面小胞体 (9)ミトコンドリア (10)液胞 (11)'''細胞質''' (12)リソソーム (13)中心小体 細胞質(さいぼうしつ、cytoplasm)は、細胞の細胞膜で囲まれた部分である原形質のうち、細胞核以外の領域のことを指す。細胞質は細胞質基質の他、特に真核生物の細胞では様々な細胞小器官を含む。細胞小器官の多くは生体膜によって他の部分と隔てられている。細胞質は生体内の様々な代謝や、細胞分裂などの細胞活動のほとんどが起こる場所である。細胞質基質を意図して誤用される場合も多い。 細胞質のうち、細胞小器官以外の部分を細胞質基質または細胞質ゲルという。細胞質基質は複雑な混合物であり、細胞骨格、溶解した分子、水分などからなり、細胞の体積の大きな部分を占めている。細胞質基質はゲルであり、繊維のネットワークが溶液中に散らばっている。この細孔状のネットワークと、タンパク質などの高分子の濃度の高さのため、細胞質基質の中では分子クラウディングと呼ばれる現象が起こり、理想溶液にはならない。このクラウディングの効果はまた細胞質基質内部の反応も変化させる。.

新しい!!: クエン酸シンターゼと細胞質 · 続きを見る »

細胞核

細胞核(さいぼうかく、cell nucleus)とは、真核生物の細胞を構成する細胞小器官のひとつ。細胞の遺伝情報の保存と伝達を行い、ほぼすべての細胞に存在する。通常は単に核ということが多い。.

新しい!!: クエン酸シンターゼと細胞核 · 続きを見る »

真核生物

真核生物(しんかくせいぶつ、学名: 、英: Eukaryote)は、動物、植物、菌類、原生生物など、身体を構成する細胞の中に細胞核と呼ばれる細胞小器官を有する生物である。真核生物以外の生物は原核生物と呼ばれる。 生物を基本的な遺伝の仕組みや生化学的性質を元に分類する3ドメイン説では、古細菌(アーキア)ドメイン、真正細菌(バクテリア)ドメインと共に生物界を3分する。他の2つのドメインに比べ、非常に大型で形態的に多様性に富むという特徴を持つ。かつての5界説では、動物界、植物界、菌界、原生生物界の4界が真核生物に含まれる。.

新しい!!: クエン酸シンターゼと真核生物 · 続きを見る »

炭素

炭素(たんそ、、carbon)は、原子番号 6、原子量 12.01 の元素で、元素記号は C である。 非金属元素であり、周期表では第14族元素(炭素族元素)および第2周期元素に属する。単体・化合物両方において極めて多様な形状をとることができる。 炭素-炭素結合で有機物の基本骨格をつくり、全ての生物の構成材料となる。人体の乾燥重量の2/3は炭素である​​。これは蛋白質、脂質、炭水化物に含まれる原子の過半数が炭素であることによる。光合成や呼吸など生命活動全般で重要な役割を担う。また、石油・石炭・天然ガスなどのエネルギー・原料として、あるいは二酸化炭素やメタンによる地球温暖化問題など、人間の活動と密接に関わる元素である。 英語の carbon は、1787年にフランスの化学者ギトン・ド・モルボーが「木炭」を指すラテン語 carbo から名づけたフランス語の carbone が転じた。ドイツ語の Kohlenstoff も「炭の物質」を意味する。日本語の「炭素」という語は宇田川榕菴が著作『舎密開宗』にて用いたのがはじめとされる。.

新しい!!: クエン酸シンターゼと炭素 · 続きを見る »

補酵素A

補酵素A(ほこうそA、コエンザイムA あるいは CoA)は、生物にとって極めて重要な補酵素(助酵素)である。パントテン酸とアデノシン二リン酸、および 2-メルカプトエチルアミンから構成されており、化学式はC21H36P3N7O16S、分子量は767.5 g/molである。 末端にあるチオール基に様々な化合物のアシル基がチオエステル結合することによってクエン酸回路やβ酸化などの代謝反応に関わる。例えばアセチル基が結合したものはアセチルCoAである。その他にも多くの補酵素Aのチオエステル化合物がある。 1945年、ピルビン酸からクエン酸回路に入る過程の中間体「活性酢酸」(アセチルCoA)としてリップマンによって発見された。この業績により、彼は1953年にノーベル賞を受賞した。なお、同年、一緒に授賞したクレブスは、1937年にクエン酸回路を完成したことで有名である。しかし、1937年当時は補酵素Aはまだ知られておらず、中間代謝の研究におけるリップマンの業績は非常に大きいといえる。.

新しい!!: クエン酸シンターゼと補酵素A · 続きを見る »

触媒

触媒(しょくばい)とは、特定の化学反応の反応速度を速める物質で、自身は反応の前後で変化しないものをいう。また、反応によって消費されても、反応の完了と同時に再生し、変化していないように見えるものも触媒とされる。「触媒」という用語は明治の化学者が英語の catalyser、ドイツ語の Katalysator を翻訳したものである。今日では、触媒は英語では catalyst、触媒の作用を catalysis という。 今日では反応の種類に応じて多くの種類の触媒が開発されている。特に化学工業や有機化学では欠くことができない。また、生物にとっては酵素が重要な触媒としてはたらいている。.

新しい!!: クエン酸シンターゼと触媒 · 続きを見る »

脱プロトン化

脱プロトン化 (deprotonation) は、分子からプロトン (H+) を除去して共役塩基を作る反応である。 分子がプロトンを離す相対能力は、pKa に依る。低い pKa 値は、物質が酸性でプロトンを容易に塩基に渡すことを意味する。化合物の pKa 値は様々な要素に依存するが、最も大きいのは負の電荷を持った共役塩基の安定性である。負の電荷は、広い表面や長い鎖に広がると安定化する。鎖や環に負の電荷を分散させる機構の1つが共鳴である。溶媒も共役塩基の負電荷の安定性に寄与する。 脱プロトン化に用いる塩基は、対象の pKa に依る。プロトンが酸性ではなく、離れにくい場合は、水酸化物よりも強い塩基が必要である。水素化物はそのような強い塩基の1つであり、水素化ナトリウムや水素化カリウムが良く用いられる。水素化物は他の分子からプロトンを奪って、水素ガスを発生する。水素は大気中では酸素と反応して発火して危険なため、窒素ガスのような不活性雰囲気中で行わなければならない。.

新しい!!: クエン酸シンターゼと脱プロトン化 · 続きを見る »

酢酸

酢酸(さくさん、醋酸、acetic acid)は、化学式は示性式 CH3COOH、分子式 C2H4O2と表される簡単なカルボン酸の一種である。IUPAC命名法では酢酸は許容慣用名であり、系統名はエタン酸 (ethanoic acid) である。純粋なものは冬に凍結することから氷酢酸(ひょうさくさん)と呼ばれる。2分子の酢酸が脱水縮合すると別の化合物の無水酢酸となる。 食酢(ヴィネガー)に含まれる弱酸で、強い酸味と刺激臭を持つ。遊離酸・塩・エステルの形で植物界に広く分布する。酸敗したミルク・チーズのなかにも存在する。 試薬や工業品として重要であり、合成樹脂のアセチルセルロースや接着剤のポリ酢酸ビニルなどの製造に使われる。全世界での消費量は年間およそ6.5メガトンである。このうち1.5メガトンが再利用されており、残りは石油化学原料から製造される。生物資源からの製造も研究されているが、大規模なものには至っていない。.

新しい!!: クエン酸シンターゼと酢酸 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

新しい!!: クエン酸シンターゼと酸素 · 続きを見る »

酵素

核酸塩基代謝に関与するプリンヌクレオシドフォスフォリラーゼの構造(リボン図)研究者は基質特異性を考察するときに酵素構造を抽象化したリボン図を利用する。 酵素(こうそ、enzyme)とは、生体で起こる化学反応に対して触媒として機能する分子である。酵素によって触媒される反応を“酵素的”反応という。このことについて酵素の構造や反応機構を研究する古典的な学問領域が、酵素学 (こうそがく、enzymology)である。.

新しい!!: クエン酸シンターゼと酵素 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: クエン酸シンターゼと電子 · 続きを見る »

水面から跳ね返っていく水滴 海水 水(みず)とは、化学式 HO で表される、水素と酸素の化合物である広辞苑 第五版 p. 2551 【水】。特に湯と対比して用いられ、温度が低く、かつ凝固して氷にはなっていないものをいう。また、液状のもの全般を指すエンジンの「冷却水」など水以外の物質が多く含まれているものも水と呼ばれる場合がある。日本語以外でも、しばしば液体全般を指している。例えば、フランス語ではeau de vie(オー・ドゥ・ヴィ=命の水)がブランデー類を指すなど、eau(水)はしばしば液体全般を指している。そうした用法は、様々な言語でかなり一般的である。。 この項目では、HO の意味での水を中心としながら、幅広い意味の水について解説する。.

新しい!!: クエン酸シンターゼと水 · 続きを見る »

活性部位

酵素反応の誘導適合モデル 分子生物学における活性部位(かっせいぶい、active site)は、基質が結合し化学反応が進む酵素の部位のことである。多くの酵素はタンパク質からできているが、リボザイムと呼ばれるリボ核酸でできた酵素も存在する。酵素の活性部位は、基質の認識に関わるアミノ酸(又は核酸)が並んだ溝又はポケットで見られる。触媒反応に直接関わる残基は、活性部位残基と呼ばれる。.

新しい!!: クエン酸シンターゼと活性部位 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »