ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ギガヘルツ

索引 ギガヘルツ

ヘルツ (GHz) は国際単位系における周波数の単位で、10↑9ヘルツ (Hz) (.

50 関係: AMD Accelerated Processing Unit単位ナノ秒ミリ波マーケティングマイクロプロセッサマイクロ波メガヘルツレーダーヘルツプロセッサテラヘルツ周波数周波数の比較周期アドバンスト・マイクロ・デバイセズインテルインテル ターボ・ブースト・テクノロジーオーバークロックキャンペーンキロヘルツクロックセンチメートル波サブミリ波国際単位系CPU無線LAN電子レンジ電磁波電波FreeDOSIntel A100Intel CeleronMicrosoft WindowsMicrosoft Windows 10Microsoft Windows 7Microsoft Windows VistaSI組立単位SI接頭辞VIA Nano携帯電話極超短波1999年2000年2006年2008年2011年2012年2014年

AMD Accelerated Processing Unit

AMD Accelerated Processing Unit (エーエムディー・アクセラレーテッド・プロセッシング・ユニット、略称:AMD APU) とは、AMDが2006年から開発を行なっている、CPUとGPUとを合成・統合させた新しい製品の名称である。AMDはもともとCPUおよびチップセットを手がけるメーカーだったが、このAPUの計画は、AMDによるATIの買収により浮上した。AMD APUの当初の開発コード名はAMD Fusion(フュージョン)であり、2011年の正式製品発表当初は「AMD Fusion APU」と表記されていたが、2012年後半以降、AMDは単に「APU」と呼称している。.

新しい!!: ギガヘルツとAMD Accelerated Processing Unit · 続きを見る »

単位

単位(たんい、unit)とは、量を数値で表すための基準となる、約束された一定量のことである。約束ごとなので、同じ種類の量を表すのにも、社会や国により、また歴史的にも異なる多数の単位がある。.

新しい!!: ギガヘルツと単位 · 続きを見る »

ナノ秒

ナノ秒(ナノびょう、nanosecond、記号: ns)は、10億分の1秒(10 s, 1/1,000,000,000 s)に等しい時間の単位である。 「ナノ秒」という語は、SI接頭辞「ナノ」とSI基本単位「秒」で構成されている。その記号は ns である。 1ナノ秒は1000ピコ秒およびマイクロ秒に等しい。次のSI単位が1000倍大きいので、10秒および10秒のオーダーの時間は、通常、数十ナノ秒および数百ナノ秒として表現される。 この大きさの時間は、電気通信、パルスレーザー、電子工学の分野でよく使用される。ナノ秒で表される時間については時間の比較を参照。.

新しい!!: ギガヘルツとナノ秒 · 続きを見る »

ミリ波

ミリ波(ミリは)とは波長、波長が1〜10mm、30〜300GHzの周波数の電波をいう。 英語では Extremely High Frequency、略してEHFと呼ばれる。.

新しい!!: ギガヘルツとミリ波 · 続きを見る »

マーケティング

マーケティング(marketing)とは、企業などの組織が行うあらゆる活動のうち、「顧客が真に求める商品やサービスを作り、その情報を届け、顧客がその価値を効果的に得られるようにする」ための概念である。また顧客のニーズを解明し、顧客価値を生み出すための経営哲学、戦略、仕組み、プロセスを指す。.

新しい!!: ギガヘルツとマーケティング · 続きを見る »

マイクロプロセッサ

マイクロプロセッサ(Microprocessor)とは、コンピュータなどに搭載される、プロセッサを集積回路で実装したものである。 マイクロプロセッサは小型・低価格で大量生産が容易であり、コンピュータのCPUの他、ビデオカード上のGPUなどにも使われている。また用途により入出力などの周辺回路やメモリを内蔵するものもあり、一つのLSIでコンピュータシステムとして動作するものを特にワンチップマイコンと呼ぶ。マイクロプロセッサは一つのLSIチップで機能を完結したものが多いが、複数のLSIから構成されるものもある(チップセットもしくはビットスライスを参照)。 「CPU」、「プロセッサ」、「マイクロプロセッサ」、「MPU」は、ほぼ同義語として使われる場合も多い。本来は「プロセッサ」は処理装置の総称、「CPU」はシステム上で中心的なプロセッサ、「マイクロプロセッサ」および「MPU(Micro-processing unit)」はマイクロチップに実装されたプロセッサである。本項では、主にCPU用のマイクロプロセッサについて述べる。 当初のコンピュータにおいて、CPUは真空管やトランジスタなどの単独素子を大量に使用して構成されたり、集積回路が開発されてからも、たくさんの集積回路の組み合わせとして構成されてきた。製造技術の発達、設計ルールの微細化が進むにつれてチップ上に集積できる素子の数が増え、一つの大規模集積回路にCPU機能を納めることが出来るようになった。汎用のマイクロプロセッサとして最初のものは、1971年にインテルが開発したIntel 4004である。このマイクロプロセッサは当初電卓用に開発された、性能が非常に限られたものであったが、生産や利用が大幅に容易となったため大量に使われるようになり、その後に性能は著しく向上し、価格も低下していった。この過程でパーソナルコンピュータやRISCプロセッサも誕生した。ムーアの法則に従い、集積される素子数は増加し続けている。現在ではマイクロプロセッサは、大きなメインフレームから小さな携帯電話や家電まで、さまざまなコンピュータや情報機器に搭載されている。.

新しい!!: ギガヘルツとマイクロプロセッサ · 続きを見る »

マイクロ波

マイクロ波(マイクロは、Microwave)は、電波の周波数による分類の一つである。「マイクロ」は、電波の中で最も短い波長域であることを意味する。.

新しい!!: ギガヘルツとマイクロ波 · 続きを見る »

メガヘルツ

メガヘルツ(megahertz、記号:MHz)は、国際単位系における周波数の単位で、106ヘルツ(Hz)(.

新しい!!: ギガヘルツとメガヘルツ · 続きを見る »

レーダー

レーダー用パラボラアンテナ(直径40m) レーダー(Radar)とは、電波を対象物に向けて発射し、その反射波を測定することにより、対象物までの距離や方向を測る装置である。.

新しい!!: ギガヘルツとレーダー · 続きを見る »

ヘルツ

ヘルツ(hertz、記号:Hz)は、国際単位系 (SI) における周波数・振動数の単位である。その名前は、ドイツの物理学者で、電磁気学の分野で重要な貢献をしたハインリヒ・ヘルツに因む。.

新しい!!: ギガヘルツとヘルツ · 続きを見る »

プロセッサ

プロセッサ は、コンピュータシステムの中で、ソフトウェアプログラムに記述された命令セット(データの転送、計算、加工、制御、管理など)を実行する(=プロセス)ためのハードウェアであり、演算装置、命令や情報を格納するレジスタ、周辺回路などから構成される。内蔵されるある程度の規模の記憶装置までを含めることもある。プロセッサー、プロセサ、プロセッシングユニット、処理装置(しょりそうち)ともいう。「プロセッサ」は処理装置の総称で、システムの中心的な処理を担うものを「CPU()」(この呼称はマイクロプロセッサより古くからある)、集積回路に実装したものをマイクロプロセッサ、またメーカーによっては(モトローラなど)「MPU()」と呼んでいる。 プロセッサの構成要素の分類として、比較的古い分類としては、演算装置と制御装置に分けることがある。また、理論的な議論では、厳密には記憶装置であるレジスタすなわち論理回路の用語で言うところの順序回路の部分を除いた、組み合わせ論理の部分のみを指すことがある(状態機械モデルと相性が悪い)。の分類としては、実行すべき命令を決め、全体を制御するユニットと、命令を実行する実行ユニットとに分けることがある。.

新しい!!: ギガヘルツとプロセッサ · 続きを見る »

テラヘルツ

テラヘルツ(THz)は国際単位系における周波数の単位で、1012ヘルツ(Hz)(.

新しい!!: ギガヘルツとテラヘルツ · 続きを見る »

周波数

周波数(しゅうはすう 英:frequency)とは、工学、特に電気工学・電波工学や音響工学などにおいて、電気振動(電磁波や振動電流)などの現象が、単位時間(ヘルツの場合は1秒)当たりに繰り返される回数のことである。.

新しい!!: ギガヘルツと周波数 · 続きを見る »

周波数の比較

本項では、周波数の比較(しゅうはすうのひかく)ができるよう、昇順に表にする。.

新しい!!: ギガヘルツと周波数の比較 · 続きを見る »

周期

周期(しゅうき)は、定期的に同じことが繰り返される事象において、任意のある時点の状態に一度循環して戻るまでの期間(時間)または段数のことである。 周期を数える場合は、事象1回の循環を1周期と表す。「2周期」、「3周期」、「半周期」というような使い方をする。.

新しい!!: ギガヘルツと周期 · 続きを見る »

アドバンスト・マイクロ・デバイセズ

アドバンスト・マイクロ・デバイセズ(Advanced Micro Devices, Inc.

新しい!!: ギガヘルツとアドバンスト・マイクロ・デバイセズ · 続きを見る »

インテル

インテル(英:Intel Corporation)は、アメリカ合衆国カリフォルニア州に本社を置く半導体素子メーカーである。 社名の由来はIntegrated Electronics(集積されたエレクトロニクス)の意味である。.

新しい!!: ギガヘルツとインテル · 続きを見る »

インテル ターボ・ブースト・テクノロジー

インテル ターボ・ブースト・テクノロジー (Intel Turbo Boost Technology) とは、インテルが開発した、プロセッサを自動的に定格の動作周波数より高速で動作させる機能である。Nehalemマイクロアーキテクチャ以降のCore i9、Core i7、Core i5、Core MとXeonに搭載されている。略語は、TBT、TB、Turbo Boost、ターボ・ブースト、等が使用されている。本項では以降、Turbo Boostと表記する。.

新しい!!: ギガヘルツとインテル ターボ・ブースト・テクノロジー · 続きを見る »

オーバークロック

ーバークロック (Overclocking) とは、クロック同期設計の機器の動作クロックの周波数を定格の最高を上回る周波数にすること。主にパーソナルコンピュータで行われる。ここではそれについて説明する。 消費電力や発熱の増加、信頼性・安定性の低下のリスクがあるが、それでもより高い処理能力を得るために行われる。.

新しい!!: ギガヘルツとオーバークロック · 続きを見る »

キャンペーン

ャンペーン()とは、.

新しい!!: ギガヘルツとキャンペーン · 続きを見る »

キロヘルツ

ヘルツ(kilohertz、記号:kHz)は、国際単位系における周波数の単位で、103ヘルツ(Hz)(.

新しい!!: ギガヘルツとキロヘルツ · 続きを見る »

クロック

ック信号(クロックしんごう、)、クロックパルスあるいはクロックとは、クロック同期設計のデジタル論理回路が動作する時に複数の回路のタイミングを合わせる(同期を取る)ためにメトロノームのように使用される、電圧が高い状態と低い状態を周期的にとる信号である。信号という言葉には様々な意味があるが、ここでは「情報を運ぶことができるエネルギーの流れ」を意味する。信号線のシンボルなどではCLKという略記がしばしば用いられる。 クロック信号はクロック生成回路で作られる。最も典型的なクロック信号はデューティ比50%の矩形波で、一定の周波数を保つ。クロック信号により同期をとる回路は信号の立ち上がりの部分(電圧が低い状態から高い状態に遷移する部分)で動作することが多く、ダブルデータレートの場合は立ち下がりの部分でも動作する。.

新しい!!: ギガヘルツとクロック · 続きを見る »

センチメートル波

ンチメートル波(センチメートルは)は、波長が1cmから10cm、3GHzから30GHzの周波数の電波をいう。 英語では Super High Frequency、略してSHFと呼ばれる。.

新しい!!: ギガヘルツとセンチメートル波 · 続きを見る »

サブミリ波

ブミリ波は波長が0.1mm~1mmの電磁波でマイクロ波の一部であり、テラヘルツ波の3THz未満の帯域にも含まれる。 電波法施行規則ではデシミリメートル波である。.

新しい!!: ギガヘルツとサブミリ波 · 続きを見る »

国際単位系

国際単位系(こくさいたんいけい、Système International d'unités、International System of Units、略称:SI)とは、メートル法の後継として国際的に定めた単位系である。略称の SI はフランス語に由来するが、これはメートル法がフランスの発案によるという歴史的経緯による。SI は国際単位系の略称であるため「SI 単位系」というのは誤り。(「SI 単位」は国際単位系の単位という意味で正しい。) なお以下の記述や表(番号を含む。)などは国際単位系の国際文書第 8 版日本語版による。 国際単位系 (SI) は、メートル条約に基づきメートル法のなかで広く使用されていたMKS単位系(長さの単位にメートル m、質量の単位にキログラム kg、時間の単位に秒 s を用い、この 3 つの単位の組み合わせでいろいろな量の単位を表現していたもの)を拡張したもので、1954年の第10回国際度量衡総会 (CGPM) で採択された。 現在では、世界のほとんどの国で合法的に使用でき、多くの国で使用することが義務づけられている。しかしアメリカなど一部の国では、それまで使用していた単位系の単位を使用することも認められている。 日本は、1885年(明治18年)にメートル条約に加入、1891年(明治24年)施行の度量衡法で尺貫法と併用することになり、1951年(昭和26年)施行の計量法で一部の例外を除きメートル法の使用が義務付けられた。 1991年(平成3年)には日本工業規格 (JIS) が完全に国際単位系準拠となり、JIS Z 8203「国際単位系 (SI) 及びその使い方」が規定された。 なお、国際単位系 (SI) はメートル法が発展したものであるが、メートル法系の単位系の亜流として「工学単位系(重力単位系)」「CGS単位系」などがあり、これらを区別する必要がある。 SI単位と非SI単位の分類.

新しい!!: ギガヘルツと国際単位系 · 続きを見る »

CPU

Intel Core 2 Duo E6600) CPU(シーピーユー、Central Processing Unit)、中央処理装置(ちゅうおうしょりそうち)は、コンピュータにおける中心的な処理装置(プロセッサ)。 「CPU」と「プロセッサ」と「マイクロプロセッサ」という語は、ほぼ同義語として使われる場合も多いが、厳密には以下に述べるように若干の範囲の違いがある。大規模集積回路(LSI)の発達により1個ないしごく少数のチップに全機能が集積されたマイクロプロセッサが誕生する以前は、多数の(小規模)集積回路(さらにそれ以前はディスクリート)から成る巨大な電子回路がプロセッサであり、CPUであった。大型汎用機を指す「メインフレーム」という語は、もともとは多数の架(フレーム)から成る大型汎用機システムにおいてCPUの収まる主要部(メイン)、という所から来ている。また、パーソナルコンピュータ全体をシステムとして見た時、例えば電源部が制御用に内蔵するワンチップマイコン(マイクロコントローラ)は、システム全体として見た場合には「CPU」ではない。.

新しい!!: ギガヘルツとCPU · 続きを見る »

(びょう、記号 s)は、国際単位系 (SI) 及びMKS単位系、CGS単位系における時間の物理単位である。他の量とは関係せず完全に独立して与えられる7つのSI基本単位の一つである。秒の単位記号は、「s」であり、「sec」などとしてはならない(後述)。 「秒」は、歴史的には地球の自転の周期の長さ、すなわち「一日の長さ」(LOD)を基に定義されていた。すなわち、LODを24分割した太陽時を60分割して「分」、さらにこれを60分割して「秒」が決められ、結果としてLODの86 400分の1が「秒」と定義されてきた。しかしながら、19世紀から20世紀にかけての天文学的観測から、LODには10−8程度の変動があることが判明し和田 (2002)、第2章 長さ、時間、質量の単位の歴史、pp. 34–35、3.時間の単位:地球から原子へ、時間の定義にはそぐわないと判断された。そのため、地球の公転周期に基づく定義を経て、1967年に、原子核が持つ普遍的な現象を利用したセシウム原子時計が秒の定義として採用された。 なお、1秒が人間の標準的な心臓拍動の間隔に近いことから誤解されることがあるが偶然に過ぎず、この両者には関係はない。.

新しい!!: ギガヘルツと秒 · 続きを見る »

無線LAN

無線LAN(むせんラン)とは、無線通信を利用してデータの送受信を行うLANシステムのことである。ワイヤレスLAN(, )、もしくはそれを略してとも呼ばれる。著名な無線LANの規格としてIEEE 802.11がある。.

新しい!!: ギガヘルツと無線LAN · 続きを見る »

電子レンジ

電子レンジ 電子レンジ(でんしレンジ、microwave oven)とは、電磁波(電波)により、水分を含んだ食品などを発熱させる調理機器である。 日本における「電子レンジ」という名称は、1961年(昭和36年)12月、急行電車のビュフェ(サハシ153形)で東芝の製品をテスト運用した際に、国鉄の担当者がネーミングしたのが最初とされる。その後市販品にも使われ、一般的な名称となっていった。 英語では microwave oven (マイクロウェーブ・オーブン、直訳すると「マイクロ波オーブン」)で、しばしば microwave と略される。electronic ovenとも呼ばれる。.

新しい!!: ギガヘルツと電子レンジ · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

新しい!!: ギガヘルツと電磁波 · 続きを見る »

電波

ムネイル 電波(でんぱ)とは、電磁波のうち光より周波数が低い(言い換えれば波長の長い)ものを指す。光としての性質を備える電磁波のうち最も周波数の低いものを赤外線(又は遠赤外線)と呼ぶが、それよりも周波数が低い。.

新しい!!: ギガヘルツと電波 · 続きを見る »

FreeDOS

FreeDOSは、PC/AT互換機のためのオペレーティングシステム (OS) である。MS-DOS互換の自由な代替環境などを目的として作られた。現在の最新バージョンは2016年12月25日に公開された1.2である。 多くのハードウェアをサポートしており、1981年発売の旧式IBM PCをはじめ、最新のIntel Core i7 CPUや各種組み込み機器上でも動作する。MS-DOSと同様に、FreeDOSはカーネルを介したディスクおよびファイルシステムへのアクセスおよび、簡易メモリ管理機能を提供している。GUIは搭載されていないが、OpenGEMがGUIとして推奨されている。MS-DOS同様、フロッピーディスクまたはハードディスクから起動することができ、ROMからの起動もサポートされている。MS-DOSとは異なり、CD-ROMからも起動できる。FreeDOSはGNU GPLのもとでライセンスされているオープンソースソフトウェアであり、誰でもロイヤリティを払うことなしに自由に独自のディストリビューションを作成し、配布することができる。.

新しい!!: ギガヘルツとFreeDOS · 続きを見る »

Intel A100

Intel A100(インテル エー100)は、インテルのLPIAカテゴリのIA-32マイクロプロセッサ。IntelのCPUとしては例外的にブランドを持たず、形式番号のみで呼称されている。そのため、シリーズを表す場合はトップナンバーのA100が用いられる。コードネームは Stealey(スティーリィ)。LPIAカテゴリの後続のプロセッサはAtomブランド(シリーズ)である。.

新しい!!: ギガヘルツとIntel A100 · 続きを見る »

Intel Celeron

Intel Celeron(インテル セレロン)はインテルの x86 アーキテクチャの マイクロプロセッサ のうち、低価格(エントリー、ローエンド、廉価)PC向けの マイクロプロセッサに与えられるブランド名である。.

新しい!!: ギガヘルツとIntel Celeron · 続きを見る »

Microsoft Windows

Microsoft Windows(マイクロソフト ウィンドウズ)は、マイクロソフトが開発・販売するオペレーティングシステム (OS) の製品群。グラフィカルユーザインタフェース (GUI)を採用している。.

新しい!!: ギガヘルツとMicrosoft Windows · 続きを見る »

Microsoft Windows 10

Windows 10(ウィンドウズ テン)は、マイクロソフトが開発およびリリースしている、Windowsシリーズに属するパーソナルコンピュータおよび8インチ以上のタブレット用のオペレーティングシステム (OS) である。バージョン1507・1511のコードネームは「Threshold(スレッショルド)」、バージョン1607からのコードネームは「Redstone(レッドストーン)」。.

新しい!!: ギガヘルツとMicrosoft Windows 10 · 続きを見る »

Microsoft Windows 7

Windows 7(ウィンドウズ セブン)は、マイクロソフトが2009年にリリースした、Windowsシリーズに属するパーソナルコンピュータ用のオペレーティングシステム (OS) である。2009年7月22日に開発が完了し、2009年9月1日にボリューム ライセンス契約者へ提供が開始され、2009年10月22日に一般発売を開始した。 初期の開発コードネームは「Blackcomb」であったが、のちに「Vienna」となり、さらに「Windows 7」に改められた。本来次期クライアント用 Windows の社内開発コードネームだったものが、そのまま製品版の名称として採用された。 米国の調査会社 Net Applicationsによると、2018年2月現在の時点における世界のOSシェアに関してはWindows 7が首位である (41.61%)。.

新しい!!: ギガヘルツとMicrosoft Windows 7 · 続きを見る »

Microsoft Windows Vista

Windows Vista (ウィンドウズ ビスタ)は、マイクロソフトが2006年にリリースした、Windowsシリーズに属するパーソナルコンピュータ用のオペレーティングシステム(OS)である。.

新しい!!: ギガヘルツとMicrosoft Windows Vista · 続きを見る »

SI組立単位

SI組立単位(エスアイくみたてたんい、SI derived unit)は、国際単位系 (SI) の基本単位を組み合わせて作ることができる単位である。基本単位の冪乗の乗除だけで作ることができる組立単位は「一貫性のある組立単位」と言い、国際単位系は全ての組立単位が一貫性のある組立単位である、「一貫性のある単位系」である。 ラジアンとステラジアンは、以前は補助単位とされていたが、1995年の国際度量衡総会(CGPM)において、補助単位という区分は廃止すること、この2つの単位は無次元の組立単位として解釈することが決議された。.

新しい!!: ギガヘルツとSI組立単位 · 続きを見る »

SI接頭辞

SI接頭辞(エスアイせっとうじ、SI prefix)は、国際単位系 (SI) において、SI単位の十進の倍量・分量単位を作成するために、単一記号で表記するSI単位(ただし、質量の単位は例外であってSI基本単位でない「g(グラム)」に適用する。)の前につけられる接頭辞である。 国際単位系 (SI) 国際文書第8版(2006年)日本語版や理科年表、日本工業規格(JIS Z 8203、JIS Z 8202、他多数)ではSI接頭語(エスアイせっとうご)と言う。また、計量単位令(政令)や計量単位規則(省令)では単に接頭語と言う。 SI接頭辞は、SIの構成要素として国際度量衡総会 (CGPM) によって決定されている。.

新しい!!: ギガヘルツとSI接頭辞 · 続きを見る »

VIA Nano

300px VIA Nano(ヴィア ナノ)は、台湾VIA Technologiesが販売するCPUの名称である。.

新しい!!: ギガヘルツとVIA Nano · 続きを見る »

携帯電話

折りたたみ式の携帯電話 スライド式の携帯電話 携帯電話(けいたいでんわ、mobile phone)は、有線電話系通信事業者による電話機を携帯する形の移動体通信システム、電気通信役務。端末を携帯あるいはケータイと略称することがある。 有線通信の通信線路(電話線等)に接続する基地局・端末の間で電波による無線通信を利用する。無線電話(無線機、トランシーバー)とは異なる。マルチチャネルアクセス無線技術の一種でもある。.

新しい!!: ギガヘルツと携帯電話 · 続きを見る »

極超短波

極超短波(ごくちょうたんぱ、UHF.

新しい!!: ギガヘルツと極超短波 · 続きを見る »

1999年

1990年代最後の年であり、1000の位が1になる最後の年でもある。 この項目では、国際的な視点に基づいた1999年について記載する。.

新しい!!: ギガヘルツと1999年 · 続きを見る »

2000年

400年ぶりの世紀末閏年(20世紀および2千年紀最後の年)である100で割り切れるが、400でも割り切れる年であるため、閏年のままとなる(グレゴリオ暦の規定による)。。Y2Kと表記されることもある(“Year 2000 ”の略。“2000”を“2K ”で表す)。また、ミレニアムとも呼ばれる。 この項目では、国際的な視点に基づいた2000年について記載する。.

新しい!!: ギガヘルツと2000年 · 続きを見る »

2006年

この項目では、国際的な視点に基づいた2006年について記載する。.

新しい!!: ギガヘルツと2006年 · 続きを見る »

2008年

この項目では、国際的な視点に基づいた2008年について記載する。.

新しい!!: ギガヘルツと2008年 · 続きを見る »

2011年

この項目では、国際的な視点に基づいた2011年について記載する。.

新しい!!: ギガヘルツと2011年 · 続きを見る »

2012年

この項目では、国際的な視点に基づいた2012年について記載する。.

新しい!!: ギガヘルツと2012年 · 続きを見る »

2014年

この項目では、国際的な視点に基づいた2014年について記載する。.

新しい!!: ギガヘルツと2014年 · 続きを見る »

ここにリダイレクトされます:

GHz

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »