ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

カントールの対角線論法

索引 カントールの対角線論法

ントールの対角線論法(カントールのたいかくせんろんぽう)は、数学における証明テクニック(背理法)の一つ。1891年にゲオルク・カントールによって非可算濃度を持つ集合の存在を示した論文の中で用いられたのが最初だとされている。 その後対角線論法は、数学基礎論や計算機科学において写像やアルゴリズム等が存在しない事を示す為の代表的な手法の一つとなり、例えばゲーデルの不完全性定理、停止性問題の決定不能性、時間階層定理といった重要な定理の証明で使われている。.

23 関係: 停止性問題可算集合二進法ポール・コーエン (数学者)ラッセルのパラドックスパラドックスヒルベルトの23の問題カントールの定理クラス (集合論)クルト・ゲーデルゲーデルの不完全性定理ゲオルク・カントール全単射公理的集合論元 (数学)背理法自然数連続体仮説連続体濃度濃度濃度 (数学)1874年1891年

停止性問題

計算可能性理論において停止(性)問題(ていしせいもんだい・ていしもんだい、halting problem)は、あるチューリング機械(≒コンピュータプログラム・アルゴリズム)が、そのテープのある初期状態(≒入力)に対し、有限時間で停止するか、という問題。アラン・チューリングが1936年、停止性問題を解くチューリング機械が存在しない事をある種の対角線論法のようにして証明した。すなわち、そのようなチューリング機械の存在を仮定すると「自身が停止すると判定したならば無限ループを行い、停止しないと判定したならば停止する」ような別のチューリング機械が構成でき、矛盾となる。.

新しい!!: カントールの対角線論法と停止性問題 · 続きを見る »

可算集合

可算集合(かさんしゅうごう、countable set 又は denumerable set)もしくは可付番集合とは、おおまかには、自然数全体と同じ程度多くの元を持つ集合のことである。各々の元に 1, 2, 3, … と番号を付けることのできる、すなわち元を全て数え上げることのできる無限集合と表現してもよい。 有限集合も、数え上げることができる集合という意味で、可算集合の一種とみなすことがある。そのため、はっきりと区別を付ける必要がある場合には、冒頭の意味での集合を可算無限集合と呼び、可算無限集合と有限集合を合わせて高々可算の集合と呼ぶ。可算でない無限集合を非可算集合という。非可算集合は可算集合よりも「多く」の元を持ち、全ての元に番号を付けることができない。そのような集合の存在は、カントールによって初めて示された。.

新しい!!: カントールの対角線論法と可算集合 · 続きを見る »

二進法

二進法(にしんほう)とは、2 を底(てい、基(base)とも)とし、底の冪の和で数を表現する方法である。 英語でバイナリ (binary) という。binaryという語には「二進法」の他に「二個一組」「二個単位」といったような語義もある(例: バイナリ空間分割)。.

新しい!!: カントールの対角線論法と二進法 · 続きを見る »

ポール・コーエン (数学者)

ポール・コーエン (Paul Joseph Cohen, 1934年4月2日 - 2007年3月23日)はアメリカ合衆国の数学者。 スタンフォード大学教授。専門は集合論、調和解析、偏微分方程式。.

新しい!!: カントールの対角線論法とポール・コーエン (数学者) · 続きを見る »

ラッセルのパラドックス

ラッセルのパラドックス(Russell's paradox)とは、素朴集合論において矛盾を導くパラドックスである。バートランド・ラッセルからゴットロープ・フレーゲへの1902年6月16日付けの書簡における、フレーゲの『算術の基本法則』における矛盾を指摘する記述に表れる。これは1903年に出版されたフレーゲの『算術の基本法則』第II巻(Grundgesetze der Arithmetik II)の後書きに収録されている。同じパラドックスはツェルメロが1年先に発見していたが、彼はその発見を公開せず、ヒルベルトやフッサールなどのゲッティンゲン大学の同僚たちだけに知られているだけだった。 ラッセルが型理論(階型理論)を生み出した目的にはこの種のパラドックスを解消するということも含まれていた。.

新しい!!: カントールの対角線論法とラッセルのパラドックス · 続きを見る »

パラドックス

パラドックス()とは、正しそうに見える前提と、妥当に見える推論から、受け入れがたい結論が得られる事を指す言葉である。逆説、背理、逆理とも言われる。.

新しい!!: カントールの対角線論法とパラドックス · 続きを見る »

ヒルベルトの23の問題

ヒルベルトの23の問題(ヒルベルトの23のもんだい、)は、ドイツ人の数学者であるダフィット・ヒルベルトによりまとめられた、当時未解決だった23の数学問題である。ヒルベルト問題 とも呼ばれる。 1900年8月8日に、パリで開催されていた第2回国際数学者会議 (ICM) のヒルベルトの公演で、23題の内10題(問題1, 2, 6, 7, 8, 13, 16, 19, 21, 22)が公表され、残りは後に出版されたヒルベルトの著作で発表された。.

新しい!!: カントールの対角線論法とヒルベルトの23の問題 · 続きを見る »

カントールの定理

初等的な集合論において、カントールの定理 (Cantor's theorem) は次のように述べている。任意の集合 A に対して、A のすべての部分集合の集合(A の冪集合)は A 自身よりも真に大きい濃度を持つ。有限集合に対して、カントールの定理は下に与えられる証明よりもはるかにシンプルな証明によって正しいと確かめることができる。n 個の要素からなる集合に対して、空部分集合、ただ 1 つの要素を持つ A の部分集合、etc.

新しい!!: カントールの対角線論法とカントールの定理 · 続きを見る »

クラス (集合論)

集合論及びその応用としての数学におけるクラスまたは類(るい、class)は、集合(または、しばしば別の数学的対象)の集まりで、それに属する全ての元が共通にもつ性質によって紛れなく定義されるものである。「クラス」の正確な定義は、議論の基礎となる文脈に依存する。例えば、ツエルメロ=フレンケル集合論 (ZF) ではクラスは厳密には存在しないが、他の集合論(たとえば、ノイマン=ベルナイス=ゲーデル集合論 (NBG))では、「クラス」の概念は公理化されている(NBG の例だと、別の量 (entity) の要素にならないような量としてクラスが定義される)。 (どのような定式化を選んだとしても)「全ての集合の集まり」はクラスである。(ZF では厳密な言い方ではないが)このクラスだが集合でないようなものは真のクラス (proper class) と呼ばれ、集合となるようなクラス(つまり集合)は小さいクラス (small class) とも呼ばれる。例えば、全ての順序数からなるクラスや全ての集合からなるクラスは、多くの形式体系において真のクラスである。 集合論以外の文脈では「クラス」を「集合」の同義語として使うこともある。この用法はクラスと集合が現代的な集合論の用語法に基づく区別をされていなかった時代からある。19世紀以前の多くの"クラス"に関する議論は集合のことを指していた、もしくはもっと曖昧な概念をさしていた。この意味でのクラスは「級」という訳語を当てることがある(たとえば滑らかさのクラスの C1-級など)。.

新しい!!: カントールの対角線論法とクラス (集合論) · 続きを見る »

クルト・ゲーデル

ルト・ゲーデル(Kurt Gödel, 1906年4月28日 - 1978年1月14日)は、オーストリア・ハンガリー二重帝国(現チェコ)のブルノ生まれの数学者・論理学者である。業績には、完全性定理及び不完全性定理、連続体仮説に関する研究が知られる。.

新しい!!: カントールの対角線論法とクルト・ゲーデル · 続きを見る »

ゲーデルの不完全性定理

ーデルの不完全性定理(ゲーデルのふかんぜんせいていり、)又は単に不完全性定理とは、数学基礎論における重要な定理で、クルト・ゲーデルが1930年に証明したものである。;第1不完全性定理: 自然数論を含む帰納的公理化可能な理論が、ω無矛盾であれば、証明も反証もできない命題が存在する。;第2不完全性定理: 自然数論を含む帰納的公理化可能な理論が、無矛盾であれば、自身の無矛盾性を証明できない。.

新しい!!: カントールの対角線論法とゲーデルの不完全性定理 · 続きを見る »

ゲオルク・カントール

ルク・カントール ゲオルク・フェルディナント・ルートヴィッヒ・フィリップ・カントール(Georg Ferdinand Ludwig Philipp Cantor, 1845年3月3日 - 1918年1月6日)は、ドイツで活躍した数学者。.

新しい!!: カントールの対角線論法とゲオルク・カントール · 続きを見る »

全単射

数学において、全単射(ぜんたんしゃ)あるいは双射(そうしゃ)(bijective function, bijection) とは、写像であって、その写像の終域となる集合の任意の元に対し、その元を写像の像とする元が、写像の定義域となる集合に常にただ一つだけ存在するようなもの、すなわち単射かつ全射であるような写像のことを言う。例としては、群論で扱われる置換が全単射の良い例である。 全単射であることを一対一上への写像 (one-to-one onto mapping)あるいは一対一対応 (one-to-one correspondence) ともいうが、紛らわしいのでここでは使用しない。 写像 f が全単射のとき、fは可逆であるともいう。.

新しい!!: カントールの対角線論法と全単射 · 続きを見る »

公理的集合論

公理的集合論(こうりてきしゅうごうろん、axiomatic set theory)とは、公理化された集合論のことである。.

新しい!!: カントールの対角線論法と公理的集合論 · 続きを見る »

元 (数学)

数学において元(げん、element)とは、集合を構成する個々の数学的対象のことである。ジュゼッペ・ペアノの導入した記法に従えば、対象 が集合 の元であることを と書き表す。このとき対象 が集合 に属する(ぞくする、membership)、あるいは集合 は対象 を含むとも言う。 「属する」という二項関係は、数学的対象と集合(あるいは一般にクラス)との間に定まる非対称な関係(帰属関係)である。外延性の公理により、集合はそれに属する全ての数学的対象を指定することで特徴づけられる。 通常用いられる においては基礎の公理が述べるところによって帰属関係は整礎、すなわち任意の集合は自身を元として含むことはない(帰属関係は反対称関係である)。しかし、基礎の公理の代わりにを置くではそのような制約を受けないが存在し得る。 帰属関係は推移的でない。これは集合の包含関係がそうであることと対照的である。.

新しい!!: カントールの対角線論法と元 (数学) · 続きを見る »

背理法

背理法(はいりほう、proof by contradiction, reduction to the absurd, indirect proof, apagogical argument など、reductio ad absurdum)とは、ある命題 P を証明したいときに、P が偽であると仮定して、そこから矛盾を導くことにより、P が偽であるという仮定が誤り、つまり P は真であると結論付けることである。帰謬法(きびゅうほう)とも言う。 P を仮定すると、矛盾が導けることにより、P の否定 ¬P を結論付けることは否定の導入などと呼ばれる。これに対して ¬P を仮定すると矛盾が導けることにより P を結論付けることを狭義の背理法あるいは否定の除去ということがある。否定の導入と狭義の背理法をあわせて広義の背理法ということもある。 一般的には、背理法と言った場合広義の背理法を指す。否定の導入により、¬P から矛盾が導けた場合、¬¬P を結論できるが、いわゆる古典論理では推論規則として二重否定の除去が認められているため、結局 P が結論できることになる。排中律や二重否定の除去が成り立たない直観論理では、狭義の背理法による証明は成立しないが、否定の導入や、¬¬¬P から ¬P を結論することは、認められる。 背理法を使って証明される有名な定理には、\sqrt が無理数であること、素数が無限に存在すること、中間値の定理,ハイネ・カントールの定理などがあり、無限を相手にした証明には基本的に背理法のスタイルを取らざるを得ないものが多くある。 しかし例えば、\sqrt が無理数である(すなわち有理数でない)ことの証明は、狭義の背理法ではなく否定の導入によって証明することができる。 背理法の証明において仮定に矛盾する結論を導く場合は,容易に非背理法証明に直すことができる.たとえば,ハイネ・カントールの定理:「有界閉集合上の連続関数は一様連続である」は,有界閉集合上の連続関数 f は一様連続でないと仮定して議論を進め, f が連続でないことを導いて矛盾を出すが,これは連続性を仮定せず「有界閉集合上の関数 f が一様連続でない」と仮定し,連続でないことを示すことによって,対偶としてハイネ・カントールの定理が直接証明できる(((P かつ Q)⇒R) ⇔ ((P かつ ¬R)⇒¬Q) ということを用いる)..

新しい!!: カントールの対角線論法と背理法 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: カントールの対角線論法と自然数 · 続きを見る »

連続体仮説

連続体仮説(れんぞくたいかせつ、Continuum Hypothesis, CH)とは、可算濃度と連続体濃度の間には他の濃度が存在しないとする仮説。19世紀にゲオルク・カントールによって提唱された。現在の数学で用いられる標準的な枠組みのもとでは「連続体仮説は証明も反証もできない命題である」ということが明確に証明されている。.

新しい!!: カントールの対角線論法と連続体仮説 · 続きを見る »

連続体濃度

集合論における連続体濃度(れんぞくたいのうど、cardinality of the continuum)とは、実数全体の成す集合 R の濃度(あるいは基数、集合の「大きさ」の尺度)のことである。連続体濃度を持った集合を連続体 (continuum) と呼ぶこともある。これは無限濃度のひとつであり、|R|, 2ℵ0(ℵはヘブライ文字のアレフ), または \mathfrak c(ドイツ文字小文字の c)などの記号で表される。.

新しい!!: カントールの対角線論法と連続体濃度 · 続きを見る »

濃度

濃度(のうど)は、従来、「溶液中の溶質の割合を濃度という、いろいろな表し方がある。質量パーセント濃度、モル濃度等」(日本化学会編 第2版標準化学用語辞典)と定義されている。しかし、濃度をより狭く「特に混合物中の物質を対象に、量を全体積で除した商を示すための量の名称に追加する用語」(日本工業規格(JIS))『JISハンドブック 49 化学分析』日本規格協会;2008年と定義している場合がある。 後者に従えば「質量モル濃度」と訳されているMolarityは「濃度」ではない。しかし、MolarityやMolalityにそれぞれ「質量モル濃度」「重量モル濃度」等「~濃度」以外の訳語は見られない。.

新しい!!: カントールの対角線論法と濃度 · 続きを見る »

濃度 (数学)

数学、とくに集合論において、濃度(のうど)あるいは基数(きすう)(cardinal number, cardinality, power)とは、集合の「元の個数」という概念を拡張したものである。有限集合については、濃度は「元の個数」の同意語に過ぎない。。。.

新しい!!: カントールの対角線論法と濃度 (数学) · 続きを見る »

1874年

記載なし。

新しい!!: カントールの対角線論法と1874年 · 続きを見る »

1891年

記載なし。

新しい!!: カントールの対角線論法と1891年 · 続きを見る »

ここにリダイレクトされます:

対角線論法

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »