ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

カタラン数

索引 カタラン数

初等組合せ論におけるカタラン数(カタランすう、Catalan number)は、ベルギーの数学者に因んで名付けられた自然数のクラスである。n番目のカタラン数 C は で表される。カタラン数を数列として順に列記すると となる。.

23 関係: 偶数奇数対角線二分木メルセンヌ数ディック言語ベルギーウォリス積近似自然数集合の分割格子 (数学)母関数漸化式数え上げ数学数学者1132142424295

偶数

偶数(ぐうすう、even number) とは、 を約数に持つ整数、すなわち で割り切れる整数のことをいう。逆に で割り切れない整数のことは、奇数という。 具体的な偶数の例として などが挙げられる。これらはそれぞれ に等しいため、 で割っても余りが生じず、 で割り切ることができる。 より派生して、 で割り切れるが では割り切れない整数を単偶数または半偶数という。これに対して、 で割り切れる整数を複偶数 または全偶数という。 偶数と奇数は、偶数全体、奇数全体をそれぞれ 1 つの元と見て、2 つの元からなる有限体の例を与える。.

新しい!!: カタラン数と偶数 · 続きを見る »

奇数

奇数(きすう、 odd number)とは、2で割り切れない整数のことをいう。一方、2で割り切れる整数のことは、偶数という。−15, −3, 1, 7, 19 などは全て奇数である。 10進法では、一の位が 1, 3, 5, 7, 9 である数は奇数である。2進法では、20 の位(すなわち一の位)が 1 ならば奇数で、0 ならば偶数である。一般に 2n 進法(n は自然数)において、ある数が偶数であるか奇数であるかは、一の位(n0 の位)を見るだけで判別できる。 偶数と奇数は、位数が2の体の例を与える。.

新しい!!: カタラン数と奇数 · 続きを見る »

対角線

対角線(たいかくせん、diagonal)は、多角形上の異なる2つの頂点同士を結ぶ線分のうち辺を除く線分のことである。三角形以外の多角形は全て2本以上の対角線を持つ。 ある多角形の全ての内角が180度未満であるならば全ての対角線はその多角形の内部に存在し、その逆もまた成り立つ。 n角形の対角線の本数dは異なるn個の頂点から2点を選ぶ組み合わせから隣り合った2つの頂点同士を結ぶ線(つまり辺)の本数nを引くことで次のように計算できる。 正五角形の5本全ての対角線をつなげると五芒星になる。これは5本の線分を用いて辺を共有しない5つの三角形を作る方法としても知られる。 正六角形の9本の対角線のうち短い6本を組み合わせた図形はダビデの星の形として有名な六芒星になる。.

新しい!!: カタラン数と対角線 · 続きを見る »

二分木

二分木(binary tree; 二進木、バイナリツリー)は、データ構造の1つである。根付き木構造の中で、あるノード(節点 node)が持つ子の数が高々2であるものをいう。典型的には2つの子はそれぞれ「左」「右」と呼ばれる。 たとえば、二分探索や二分ヒープを実装するために使われる。 簡単な二分木。大きさ9、深さ3、根は値2を持つ 以後、括弧の中は英語表記。.

新しい!!: カタラン数と二分木 · 続きを見る »

メルセンヌ数

メルセンヌ数(メルセンヌすう、)とは、2の冪よりも 小さい自然数、すなわち ( は自然数)の形の自然数のことである。これを で表すことが多い。2進数表記では、 桁の となる。 が素数ならば もまた素数であるが、逆は成立しない。素数であるメルセンヌ数をメルセンヌ素数(メルセンヌそすう、)という。 なお、「メルセンヌ数」という語で、 が素数であるもののみを指したり、さらに狭くメルセンヌ素数を指す場合もある。.

新しい!!: カタラン数とメルセンヌ数 · 続きを見る »

ディック言語

ディック言語(ディックげんご)とは形式言語理論分野、数学分野および言語学分野において研究されている形式言語の一種である。この言語は開括弧()から構成されており、どの閉括弧についても、それ以前に出現した開括弧のいずれかと対応する。さらに文字列の終端に達した際には開括弧と閉括弧の個数が一致している。前半部分の説明は、文字列中のどの括弧についても、文字列の先頭からその括弧までたどった際に存在する開括弧の数がそれまでたどった際に存在する閉括弧の数と等しいかそれよりも多くなっていると言い換えることもできる。つまり、対応する括弧を対として考えるとどの対もその外にある括弧の対に必ず内包されており、この性質は様々な表現の構文解析等において重要である。名前の由来はドイツの数学者、である。.

新しい!!: カタラン数とディック言語 · 続きを見る »

ベルギー

ベルギー王国(ベルギーおうこく)、通称ベルギーは、西ヨーロッパに位置する連邦立憲君主制国家。隣国のオランダ、ルクセンブルクと合わせてベネルクスと呼ばれる。首都のブリュッセル(ブリュッセル首都圏地域)は欧州連合(EU)の主要機関の多くが置かれているため、"EUの首都"とも言われており、その通信・金融網はヨーロッパを越えて地球規模である。憲法上の首都は19の基礎自治体から成るブリュッセル首都圏の自治体の一つ、ブリュッセル市である。 19世紀にネーデルラント連合王国から独立した国家で、オランダ語の一種であるフラマン語が公用語の北部フランデレン地域とフランス語が公用語の南部ワロン地域とにほぼ二分される(この他にドイツ語が公用語の地域もある)。建国以来、単一国家であったが、オランダ語系住民とフランス語系住民の対立(言語戦争)が続いたため、1993年にフランデレン地域とワロン地域とブリュッセル首都圏の区分を主とする連邦制に移行した。.

新しい!!: カタラン数とベルギー · 続きを見る »

ウォリス積

数学において、ウォリス積 (Wallis' product) とは無限積 \prod_^ \left(\frac \cdot \frac\right).

新しい!!: カタラン数とウォリス積 · 続きを見る »

近似

近似(きんじ、approximation)とは、数学や物理学において、複雑な対象の解析を容易にするため、細部を無視して、対象を単純化する行為、またはその方法。近似された対象のより単純な像は、近似モデルと呼ばれる。 単純化は解析の有効性を失わない範囲内で行われなければならない。解析の内容にそぐわないほど、過度に単純化されたモデルにもとづいた解析は、近似モデルの適用限界を見誤った行為であり、誤った解析結果をもたらす。しかしながら、ある近似モデルが、どこまで有効性を持つのか、すなわち適用限界がどこにあるのかは、実際にそのモデルに基づいた解析を行ってみなければ分からないことが多い。.

新しい!!: カタラン数と近似 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: カタラン数と自然数 · 続きを見る »

集合の分割

集合を6つの部分に分割した図(オイラー図による表現) 数学において、集合 X の分割 (partition) とは、X 全体を互いに重ならない部分/ブロック/セルに分けることを言う。より形式的に言えば、それらの「セル」は分割された集合から見て相互に排他的で完全な全体集合 (MECE) となっている。.

新しい!!: カタラン数と集合の分割 · 続きを見る »

格子 (数学)

数学における、特に初等幾何学および群論における、n-次元空間 Rn 内の格子(こうし、lattice)とは、実ベクトル空間 Rn を生成するような Rn の離散部分群をいう。すなわち、Rn の任意の格子は、ベクトル空間としての基底から、その整数係数線型結合の全体として得られる。ひとつの格子は、その基本領域あるいはによる正多面体空間充填 (regular tiling) と見ることもできる。 格子には多くの顕著な応用があり、純粋数学では特にリー環論、数論および群論に関係がある。応用数学でいえば、まず暗号理論において、いくつかの格子問題の計算が困難であることに起因する符号理論に関連する。また、物理科学においてもいくつかのやり方で応用があり、例えば物質科学および固体物理学では、「格子」は結晶構造の「枠組み」の同義語であり、結晶において原子や分子が隣接して占める正多面体状の三次元的な空間配列を意味する。より一般に、物理学において格子モデルが(しばしば計算物理の手法を用いて)研究される。.

新しい!!: カタラン数と格子 (数学) · 続きを見る »

母関数

数学において、母関数(ぼかんすう、generating function; 生成関数)は、(自然数で添字付けられた)数列 に関する情報を内包した係数を持つ、形式的冪級数である。母関数は、一般線型回帰問題の解決のためにド・モアブルによって1730年に初めて用いられた。複数の自然数で添字付けられる数の配列(多重数列)の情報を取り込んだ多変数冪級数を同様に考えることもできる。 母関数には、通常型母関数、指数型母関数、ランベルト級数、ベル級数、ディリクレ級数 など様々なものがある。これらについては定義と例を後述する。原理的にはあらゆる列についてそれぞれの種類の母関数が存在する(ただし、ランベルト級数とディリクレ型は添字を 1 から始めることが必要)が、扱い易さについてはそれぞれの種類で相当異なるかもしれない。どの母関数が最も有効かは、その列の性質と解くべき問題の詳細に依存する。 母関数を、形式的冪級数に対する演算・操作を用いるなどして(級数の形ではなく)の式で表すこともよく行われる。このような母関数の表示は、母関数の不定元を x とすれば、四則演算、母関数のx に関する微分、他の母関数へ代入すること、などを行った結果として得られる。これらの操作は関数に対しても定義されるものであるし、結果として得られる式もやはり x の関数であるかのように見える。実際、母関数を x の(十分小さい)具体的な値で評価することのできる関数として解釈することができる場合も少なくない(このとき、母関数の冪級数表示は、母関数の閉じた形の式のテイラー級数と解釈される)のであり、それがこの式が「母関数」と呼ばれる所以でもある。しかし、形式的冪級数は x に何らかの数値を代入したときに収束するかどうかは問題にしないのであって、母関数についてそのような関数としての解釈が可能であるということは必ずしも要求されるものではないし、同様に x の関数として意味を持つ式がいずれも形式的冪級数に対して意味を持つわけではない。 慣例的に母「関数」と呼ばれてはいるが、始域から終域への写像という関数の厳密な意味に照らして言えば母関数は関数ではなく、今日的には生成級数(母級数)と呼ぶこともしばしばである。.

新しい!!: カタラン数と母関数 · 続きを見る »

漸化式

数学における漸化式(ぜんかしき、recurrence relation; 再帰関係式)は、各項がそれ以前の項の函数として定まるという意味で数列を再帰的に定める等式である。 ある種の漸化式はしばしば差分方程式 (difference equation) と呼ばれる。また、「差分方程式」という言葉を単に「漸化式」と同義なものとして扱うことも多い。 漸化式の例として、ロジスティック写像 が挙げられる。このような単純な形の漸化式が、しばしば非常に複雑な(カオス的な)挙動を示すことがあり、このような現象についての研究は非線型解析学などと呼ばれる分野を形成している。 漸化式を解くとは、 添字 n に関する非再帰的な函数として、一般項を表すの式を得ることをいう。.

新しい!!: カタラン数と漸化式 · 続きを見る »

数え上げ数学

数学における初等組合せ論 (elementary combinatorics), 有限組合せ論 (finite combinatorics), 数え上げ組合せ論 (enumerative combinatorics) あるいは数え上げの数学(かぞえあげのすうがく、mathematics of counting)とは、一定のパターンに従って形作られる方法の総数を扱う組合せ論の一分野を言う。この種の問題の代表例が組合せと順列の総数を算えることである。より一般には、自然数で添字付けられた有限集合 の無限族が与えられたとき、各 に対する に属する元の総数を数える「計数函数」(counting function) を記述することを模索するのが数え上げ数学の主題である。特定の集合に属する元の数を算えるというのはより広汎なであるにも拘らず、そのような問題の多くは単純な組合せ論的記述に関連した応用から生じてくるのである。は順列、組合せおよび分割の数え上げに対する統一的な枠組みを与える。 最も単純な種類のパターンではそのような計数函数が、四則演算や冪あるいは階乗などの初等的な函数の合成となるような、として与えられる。例えば、 枚のカードからなる山札に対して、可能なすべての相異なる並べ方の総数は で与えられる。このような閉じた式を求める問題はとも呼ばれ、しばしば漸化式や母函数を導いてそれらを適切に解くことにより所望の閉じた形へ到達する。 閉じた形の式が複雑になると、算える対象の数の増加に伴って計数函数がどのように振る舞うかが洞察しづらくなることがよく起きる。そのような場合においては、単純な近似が有効となりうる。ここで函数 が の漸近近似である: とは、 が成り立つことを言う。.

新しい!!: カタラン数と数え上げ数学 · 続きを見る »

数学者

数学者(すうがくしゃ、mathematician)とは、数学に属する分野の事柄を第一に、調査および研究する者を指していう呼称である。.

新しい!!: カタラン数と数学者 · 続きを見る »

1

一」の筆順 1(一、いち、ひと、ひとつ)は、最小の正の整数である。0 を自然数に含めない流儀では、最小の自然数とも言える。整数の通常の順序において、0 の次で 2 の前の整数である。1 はまた、実数を位取り記数法で記述するための数字の一つでもある。 「無」を意味する 0 に対して、1 は有・存在を示す最原初的な記号なので、物事を測る基準単位、つまり数や順序を数える際の初めである。英語の序数詞では、1st、first となる。ラテン語では unus(ウーヌス)で、接頭辞 uni- はこれに由来する。.

新しい!!: カタラン数と1 · 続きを見る »

132

132(百三十二、ひゃくさんじゅうに)は自然数、また整数において、131の次で133の前の数である。.

新しい!!: カタラン数と132 · 続きを見る »

14

14(十四、じゅうし、じゅうよん、とおよん、とおあまりよつ)は自然数、また整数において、13 の次で 15 の前の数である。ラテン語では quattuordecim(クァットゥオルデキム)。.

新しい!!: カタラン数と14 · 続きを見る »

2

二」の筆順 2(二、に、じ、ふた、ふたつ)は、自然数、また整数において、1 の次で 3 の前の数である。英語の序数詞では、2nd、second となる。ラテン語では duo(ドゥオ)。.

新しい!!: カタラン数と2 · 続きを見る »

42

42(四十二、しじゅうに、よんじゅうに、よそふた、よそじあまりふたつ)は、自然数また整数において、41 の次で 43 の前の数である。.

新しい!!: カタラン数と42 · 続きを見る »

429

429 (四百二十九、よんひゃくにじゅうきゅう)は自然数、また整数において、 428 の次で 430 の前の数である。.

新しい!!: カタラン数と429 · 続きを見る »

5

五」の筆順 5(五、ご、う、いつ)は、自然数、また整数において、4 の次で 6 の前の数である。英語の序数詞では、5th、fifthとなる。ラテン語ではquinque(クゥィンクゥェ)。.

新しい!!: カタラン数と5 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »