ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

オイラーのφ関数

索引 オイラーのφ関数

φ(''n'')の最初の1000個の値 オイラーのトーシェント関数(オイラーのトーシェントかんすう、Euler's totient function)は各正の整数 に対して、 から までの自然数のうち と互いに素なものの個数を として与えることによって定まる数論的関数 である。慣例的に と表記されるため、オイラーの 関数(ファイかんすう、phi function)とも呼ばれる。また、簡略的にオイラーの関数と呼ぶこともある。 例えば、 のうち と互いに素なのは の 2 個であるから、定義によれば である。また例えば のうち 以外は全て と互いに素だから、 と定まる。なおトーシェント関数の値域に含まれない自然数をノントーシェントという。 から までの値は以下の通りである。 1761年にレオンハルト・オイラーが発見したとされるが、それより数年前に日本の久留島義太が言及したとも言われる。.

29 関係: 可逆元完全トーティエント数巡回群乗法的関数久留島喜内互いに素位数 (群論)ノントーティエントレオンハルト・オイラーフェルマーの小定理初等整数論オイラーの定理 (数論)オイラーの定数ガロア群元 (数学)剰余類環値域素因数素因数分解素数約数関数生成 (数学)最大公約数日本数論的関数整数1761年1の冪根223092870

可逆元

数学、とくに代数学における可逆元(かぎゃくげん、invertible element)または単元(たんげん、unit)とは、一般に代数系の乗法と呼ばれる二項演算に対する逆元を持つ元のことをいう。.

新しい!!: オイラーのφ関数と可逆元 · 続きを見る »

完全トーティエント数

完全トーティエント数(かんぜんトーティエントすう、perfect totient number)、完全トーシェント数は、自然数のうち、以下の等式を満たす数 n である。 ここで φ はオイラーのトーシェント関数である。例えば 327 は と 1 になるまで次々と φ 関数の値を計算し、それらの総和が 216 + 72 + 24 + 8 + 4 + 2 + 1.

新しい!!: オイラーのφ関数と完全トーティエント数 · 続きを見る »

巡回群

群論における巡回群(じゅんかいぐん、cyclic group、monogenous group)とは、ただ一つの元で生成される群(単項生成群)のことである。ここで群が「ただ一つの元で生成される」というのは、その群の適当な元 g をとれば、その群のどの元も(群が乗法的に書かれている場合は)g の整数冪として(群が加法的に書かれている場合は g の整数倍として)表されるということであり、このような元 g はこの群の生成元 (generator) あるいは原始元 (primitive) と呼ばれる。.

新しい!!: オイラーのφ関数と巡回群 · 続きを見る »

乗法的関数

数論における乗法的関数(じょうほうてきかんすう、multiplicative function)とは、正の整数 n の数論的関数 f(n) であって、f(1).

新しい!!: オイラーのφ関数と乗法的関数 · 続きを見る »

久留島喜内

久留島 喜内(くるしま きない、1690年頃? - 宝暦7年11月29日(1758年1月9日))は江戸時代の和算家で将棋指し。本名は義太(よしひろ)。沾数(扇数)と号した。収入のほとんどを酒につぎ込むほどの酒好きで、自身では著書をほとんど残さなかった。その独創的な学説が伝わるのは、弟子が彼の原稿・理論をまとめたことによる。.

新しい!!: オイラーのφ関数と久留島喜内 · 続きを見る »

互いに素

二つの整数 が互いに素(たがいにそ、coprime, co-prime, relatively prime, mutually prime)であるとは、 を共に割り切る正の整数が のみであることをいう。このことは の最大公約数 が であることと同値である。 が互いに素であることを、記号で と表すこともある。 例えば と を共に割り切る正の整数は に限られるから、これらは互いに素である。一方で と は共に で割り切れるから、これらは互いに素でない。 互いに素であることの判定は素因数分解を用いて行うこともできるが、二つの整数のうち少なくとも一方が巨大である場合など一般には困難である。素因数分解によって公約数を調べる方法よりも、ユークリッドの互除法によって最大公約数を調べる方法のほうが遥かに高速である。 正の整数 と互いに素となる( から の間の)整数の個数は、オイラー関数 によって与えられる。 三つの整数 が互いに素であるとは、 が成り立つことをいう。また、、、 がすべて に等しいとき、 は対ごとに素(pairwise coprime)またはどの二つも互いに素であるという。一般に、互いに素であるからといって対ごとに素であるとは限らない(例:)。一般の 個の整数についても同様に定義される。.

新しい!!: オイラーのφ関数と互いに素 · 続きを見る »

位数 (群論)

数学の分野である群論において、m.

新しい!!: オイラーのφ関数と位数 (群論) · 続きを見る »

ノントーティエント

ノントーティエント(nontotient)、ノントーシェントは、自然数の内、オイラーのトーシェント関数 φ の値域に含まれない数であり、φ(x).

新しい!!: オイラーのφ関数とノントーティエント · 続きを見る »

レオンハルト・オイラー

レオンハルト・オイラー(Leonhard Euler, 1707年4月15日 - 1783年9月18日)は、18世紀の数学者・天文学者(天体物理学者)。 18世紀の数学の中心となり、続く19世紀の厳密化・抽象化時代の礎を築いた 日本数学会編『岩波数学辞典 第4版』、岩波書店、2007年、項目「オイラー」より。ISBN 978-4-00-080309-0 C3541 。スイスのバーゼルに生まれ、現在のロシアのサンクトペテルブルクにて死去した。.

新しい!!: オイラーのφ関数とレオンハルト・オイラー · 続きを見る »

フェルマーの小定理

数論において、フェルマーの小定理(フェルマーのしょうていり、Fermat's little theorem)は素数の性質についての定理であり、実用としてもRSA暗号に応用されている定理である。.

新しい!!: オイラーのφ関数とフェルマーの小定理 · 続きを見る »

初等整数論

初等整数論(しょとうせいすうろん、Elementary number theory)とは、代数的な道具・手法(群、イデアルなど)や解析的な道具・手法(関数、極限など)を用いない初等的な整数論(数論)のことである。対象が、「整数」に限られることが多いためか、「初等数論」と呼ばれることは稀である。また、「初等的整数論」と呼ばれることも稀である。 内容については、中学程度の数学の知識があれば理解できる部分から始まること、パズル的な要素をもつ部分が多いことなどから、初心者にもある程度の人気がある。しかし、「初等」(的)とは、必ずしも常に「簡単である」ということを意味するわけではない。例えば、素数定理の「初等」的な(解析的な手法を用いない)証明は、決して簡単ではない。.

新しい!!: オイラーのφ関数と初等整数論 · 続きを見る »

オイラーの定理 (数論)

数論において、オイラーの定理(Euler's theorem)は初等整数論の最も基本的な定理の一つである。.

新しい!!: オイラーのφ関数とオイラーの定理 (数論) · 続きを見る »

オイラーの定数

イラーの定数(オイラーのていすう、)は、数学定数の1つで、以下のように定義される。 オイラー・マスケローニ定数、オイラーの とも呼ぶ。ちなみに、オイラーはこの定数を表わすのに記号 を用いた。 を用いたのはである。 この値は、およそ0.57721 56649 01532 86060 65120 90082 40243 10421 59335 93992 35988 05767 23488 48677 26777 66467 09369 47063 29174 67495...である。 オイラーの定数は超越数であろうと予想されているが、無理数であるかどうかさえ分かっていない。.

新しい!!: オイラーのφ関数とオイラーの定数 · 続きを見る »

ガロア群

ア群(英:Galois Group)とは、代数方程式または体の拡大から定義される群のことである。発見者であるフランスの数学者エヴァリスト・ガロアから命名された。これらの群を用い方程式などの数学的対象について研究する分野をガロア理論と呼ぶ。.

新しい!!: オイラーのφ関数とガロア群 · 続きを見る »

元 (数学)

数学において元(げん、element)とは、集合を構成する個々の数学的対象のことである。ジュゼッペ・ペアノの導入した記法に従えば、対象 が集合 の元であることを と書き表す。このとき対象 が集合 に属する(ぞくする、membership)、あるいは集合 は対象 を含むとも言う。 「属する」という二項関係は、数学的対象と集合(あるいは一般にクラス)との間に定まる非対称な関係(帰属関係)である。外延性の公理により、集合はそれに属する全ての数学的対象を指定することで特徴づけられる。 通常用いられる においては基礎の公理が述べるところによって帰属関係は整礎、すなわち任意の集合は自身を元として含むことはない(帰属関係は反対称関係である)。しかし、基礎の公理の代わりにを置くではそのような制約を受けないが存在し得る。 帰属関係は推移的でない。これは集合の包含関係がそうであることと対照的である。.

新しい!!: オイラーのφ関数と元 (数学) · 続きを見る »

剰余類環

数学において、自然数 を法とする合同類環(ごうどうるいかん)あるいは剰余(類)環(じょうよかん、n, n)は、整数を で割った「剰余」を抽象的な類別として捉えたものである。 本項は剰余類環 の代数的な定義と性質について述べる。合同類別に関するより平易な導入については整数の合同を参照のこと。.

新しい!!: オイラーのφ関数と剰余類環 · 続きを見る »

値域

数学、特に素朴集合論における写像の値域(ちいき、range)は、その写像の終域または像の何れかの意味で用いられる。現代的な用法ではほとんど全ての場合において「像」の意味である。.

新しい!!: オイラーのφ関数と値域 · 続きを見る »

素因数

数学において、ある自然数の素因数(そいんすう、prime factor)とは、その約数になる素数のことである。ある数の素因数を求めてその積の形で表すことを素因数分解という。例えば 60 は 22×3×5 と素因数分解されるので 60 の相異なる素因数は 2, 3, 5 の3つである。また、7 は素数であるため、7 の素因数は 7 自身のみとなる。素因数のことを素因子(そいんし)、素因数分解のことを素因子分解ということもある。 2つの自然数が互いに素であることと、2つの自然数が共通の素因数を持たないことは同値である。なお 1 は素因数を持たない数であり、したがって 1 は全ての(1 自身を含めた)自然数と互いに素である。 自然数の素因数分解の結果は、素因数を掛ける順番の違いを除けば一意的に決まる。この事実は算術の基本定理と呼ばれている。 スミス数は自然数であって、その素因数の数字の和と各桁の数字の和が等しい数のことである。また、ルース=アーロン・ペアは連続する自然数の組であって、それぞれの素因数の和が互いに等しいような二数のことである。.

新しい!!: オイラーのφ関数と素因数 · 続きを見る »

素因数分解

素因数分解 (そいんすうぶんかい、prime factorization) とは、ある正の整数を素数の積の形で表すことである。ただし、1 に対する素因数分解は 1 と定義する。 素因数分解には次のような性質がある。.

新しい!!: オイラーのφ関数と素因数分解 · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

新しい!!: オイラーのφ関数と素数 · 続きを見る »

約数関数

約数関数(やくすうかんすう、divisor function)は、自然数 n を変数とする関数で、n の全ての約数を整数乗した数の総和を値にとるものである。.

新しい!!: オイラーのφ関数と約数関数 · 続きを見る »

生成 (数学)

数学における生成(せいせい、generate)とは、与えられた対象と条件に対して、その条件を満たしかつ与えられた対象を全て含むような最小の構成物を求めることである。このとき与えられた対象の集まりを生成系(生成集合)(generating set) といい、生成集合の各元を生成元 (generator) という。また、「最小の構成物」は生成系から生成されるという。生成系が1つの対象からなるような場合には、生成系と生成元は同一視できる。.

新しい!!: オイラーのφ関数と生成 (数学) · 続きを見る »

最大公約数

40と15に関する次の要素が埋め込まれた図: 積(600)、 商と剰余(40÷15.

新しい!!: オイラーのφ関数と最大公約数 · 続きを見る »

日本

日本国(にっぽんこく、にほんこく、ひのもとのくに)、または日本(にっぽん、にほん、ひのもと)は、東アジアに位置する日本列島(北海道・本州・四国・九州の主要四島およびそれに付随する島々)及び、南西諸島・伊豆諸島・小笠原諸島などから成る島国広辞苑第5版。.

新しい!!: オイラーのφ関数と日本 · 続きを見る »

数論的関数

数論的関数(すうろんてきかんすう、arithmetic(al) function)とは、定義域が正整数である複素数を値に持つ関数のことである。 複素数の無限数列 \_ は n\mapsto a_n という対応で、数論的関数とみなすことができる。.

新しい!!: オイラーのφ関数と数論的関数 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: オイラーのφ関数と整数 · 続きを見る »

1761年

記載なし。

新しい!!: オイラーのφ関数と1761年 · 続きを見る »

1の冪根

1の冪根(いちのべきこん、root of unity)、または1の累乗根(いちのるいじょうこん)は、数学において、冪乗して 1 になる(冪単である)ような数のことである。すなわち、ある自然数 n が存在して となる z のことである。通常は複素数の範囲で考えるが、場合によっては ''p'' 進数のような他の数の体系内で考える場合もある。以下では主として複素数の場合について述べる。 自然数 n に対し、m (\zeta_n.

新しい!!: オイラーのφ関数と1の冪根 · 続きを見る »

223092870

223092870 は、自然数、また整数において 223092869 の次で 223092871 の前の数である。.

新しい!!: オイラーのφ関数と223092870 · 続きを見る »

ここにリダイレクトされます:

トーティエントトーティエント関数トーシェント関数オイラーのφ函数オイラーのトーティエント関数オイラーのトーシェント函数オイラーのトーシェント関数オイラー関数

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »