ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

エピタキシャル成長

索引 エピタキシャル成長

ピタキシャル成長(英語:epitaxial growth)とは、薄膜結晶成長技術のひとつである。基板となる結晶の上に結晶成長を行い、下地の基板の結晶面にそろえて配列する成長の様式である。基板と薄膜が同じ物質である場合をホモエピタキシャル、異なる物質である場合をヘテロエピタキシャルと呼ぶ。結晶成長の方法として分子線エピタキシー法や有機金属気相成長法、液相エピタキシー法などがある。 エピタキシャル成長が起こるには格子定数のほぼ等しい結晶を選ぶ必要があり、温度による膨張係数の近い物でなくてはならない。 なお、現在窒化ガリウム(GaN)はサファイア基板上に結晶成長をする方法が広く採られているが、両者の格子定数は大きく違うこと等があり、通常の方法ではエピタキシャル成長できない。これを解決するために赤崎勇が低温バッファー層を導入したことによりサファイア基板上にGaNをエピタキシャル成長することに成功した。GaNのエピタキシャル成長が成功したことにより窒化物系半導体を用いた発光ダイオード、レーザーダイオード、電子デバイス、受光素子の発展へとつながった。.

14 関係: 半導体レーザーヘテロ接合 (半導体)分子線エピタキシー法サファイア窒化ガリウム結晶結晶面結晶成長熱膨張率発光ダイオード赤崎勇英語格子定数有機金属気相成長法

半導体レーザー

レーザーダイオード本体。非常に小さい。 赤色レーザーダイオードの発振 半導体レーザー 半導体レーザー(はんどうたいレーザー、semiconductor laser)は、半導体の再結合発光を利用したレーザーである。 同じものを指すのに、ダイオードレーザー (diode laser) や、レーザーダイオードという名称も良く用いられLDと表記されることも多い。半導体の構成元素によって発振する中心周波数、つまりレーザー光の色が決まる。常温で動作するものの他に、共振器構造や出力電力によっては冷却が必要なものもある。.

新しい!!: エピタキシャル成長と半導体レーザー · 続きを見る »

ヘテロ接合 (半導体)

ヘテロ接合(英語:heterojunction)とは、異なる半導体同士の接合である。通常は格子整合系または格子定数が近い材料系で作られる。.

新しい!!: エピタキシャル成長とヘテロ接合 (半導体) · 続きを見る »

分子線エピタキシー法

分子線エピタキシー法(ぶんしせんエピタキシーほう、 MBE; Molecular Beam Epitaxy)は現在、半導体の結晶成長に使われている手法の一つである。真空蒸着法に分類され、物理吸着を利用する。 高真空のために、原料供給機構より放たれた分子が他の気体分子にぶつかることなく直進し、ビーム状の分子線となるのが名称の由来である。.

新しい!!: エピタキシャル成長と分子線エピタキシー法 · 続きを見る »

サファイア

ファイア 様々な色のサファイア。透明なものはカラーレス・サファイアまたはホワイト・サファイア、黄色のものはイエロー・サファイアとよばれる スターサファイア サファイアの宝石 サファイアのネックレス サファイアのネックレス サファイア(sapphire)または蒼玉、青玉(せいぎょく)は、コランダム(Al2O3、酸化アルミニウム)の変種で、ダイヤモンドに次ぐ硬度の、赤色以外の色の宝石。9月の誕生石。 語源は「青色」を意味するラテン語の「sapphirus(サッピルス)」、ギリシャ語の「sappheiros(サピロス)」に由来する。.

新しい!!: エピタキシャル成長とサファイア · 続きを見る »

窒化ガリウム

化ガリウム(ちっかガリウム、GaN)はガリウムの窒化物であり、主に青色発光ダイオード(青色LED)の材料として用いられる半導体である。ガリウムナイトライド (gallium nitride) とも呼ばれる。.

新しい!!: エピタキシャル成長と窒化ガリウム · 続きを見る »

結晶

結晶(けっしょう、crystal)とは原子や分子が空間的に繰り返しパターンを持って配列しているような物質である。より厳密に言えば離散的な空間並進対称性をもつ理想的な物質のことである。現実の物質の大きさは有限であるため、そのような理想的な物質は厳密には存在し得ないが、物質を構成する繰り返し要素(単位胞)の数が十分大きければ(アボガドロ定数個程度になれば)結晶と見なせるのである。 この原子の並びは、X線程度の波長の光に対して回折格子として働き、X線回折と呼ばれる現象を引き起こす。このため、固体にX線を当てて回折することを確認できれば、それが結晶していると判断できる。現実に存在する結晶には格子欠陥と呼ばれる原子の配列の乱れが存在し、これによって現実の結晶は理想的な性質から外れた状態となる。格子欠陥は、文字通り「欠陥」として物性を損ねる場合もあるが、逆に物質を特徴付けることもあり、例えば、一般的な金属が比較的小さな力で塑性変形する事は、結晶欠陥の存在によって説明される。 準結晶と呼ばれる構造は、並進対称性を欠くにもかかわらず、X線を回折する高度に規則的な構造を持っている。数学的には高次元結晶の空間への射影として記述される。また、液晶は3次元のうちの一つ以上の方向について対称性が失われた状態である。そして、規則正しい構造をもたない物質をアモルファス(非晶質)と呼び、これは結晶の対義語である。.

新しい!!: エピタキシャル成長と結晶 · 続きを見る »

結晶面

結晶面(けっしょうめん、crystal face, crystal plane)とは結晶の表面を形成する面のことである。結晶は結晶格子を構成単位としているので結晶面も結晶格子の幾何学的規則性を反映しているが、結晶格子の面と一対一で対応するものではなく、結晶格子内の原子(分子)を含む任意の平面になっている。 結晶の成長は環境に依存するため、必ずしも等方向的ではなく一定の形状にはならない。しかし結晶面同士の成す角度は結晶に固有で結晶の成長する方向が非等方向的であっても一定である。これを面角一定の法則あるいは面角不変の法則と呼ぶ。 Category:結晶.

新しい!!: エピタキシャル成長と結晶面 · 続きを見る »

結晶成長

結晶成長(けっしょうせいちょう、英語:crystal growth)とは、単結晶である支持結晶基板や種結晶を元にして、その結晶を増大させることである。結晶の原子の配列等を保ったまま結晶を増大させることを特にエピタキシャル成長という。多結晶等を付着させる場合は結晶成長ではなく堆積である。 大型の結晶を作成する手法として、チョクラルスキー法(Czochralski.

新しい!!: エピタキシャル成長と結晶成長 · 続きを見る »

熱膨張率

熱膨張率(ねつぼうちょうりつ、、略: )は、温度の上昇によって物体の長さ・体積が膨張(熱膨張)する割合を、温度当たりで示したものである。熱膨張係数(ねつぼうちょうけいすう)とも呼ばれる。温度の逆数の次元を持ち、単位は毎ケルビン(記号: )である。.

新しい!!: エピタキシャル成長と熱膨張率 · 続きを見る »

発光ダイオード

光ダイオード(はっこうダイオード、light emitting diode: LED)はダイオードの一種で、順方向に電圧を加えた際に発光する半導体素子である。 1962年、ニック・ホロニアックにより発明された。発明当時は赤色のみだった。1972年にによって黄緑色LEDが発明された。1990年代初め、赤崎勇、天野浩、中村修二らによって、窒化ガリウムによる青色LEDの半導体が発明された。 発光原理はエレクトロルミネセンス (EL) 効果を利用している。また、有機エレクトロルミネッセンス(OLEDs、有機EL)も分類上、LEDに含まれる。.

新しい!!: エピタキシャル成長と発光ダイオード · 続きを見る »

赤崎勇

赤﨑 勇(あかさき いさむ、1929年1月30日 - )は、日本の半導体工学者。学位は工学博士(名古屋大学)。名城大学大学院理工学研究科終身教授、名城大学先端科学技術研究所所長、名古屋大学特別教授・名誉教授、名古屋大学赤﨑記念研究センターフェロー。京都大学名誉博士。文化功労者、文化勲章受章者、日本学士院会員。2014年『高輝度青色発光ダイオードの発明』でノーベル物理学賞を受賞。 株式会社松下電器東京研究所基礎第4研究室室長、松下技研株式会社半導体部長、名古屋大学工学部教授などを歴任した。 「赤﨑」の「﨑」は山偏に竒(いわゆる「たつさき」)であるが、JIS X 0208に収録されていない文字のため、赤崎 勇と表記されることも多い。.

新しい!!: エピタキシャル成長と赤崎勇 · 続きを見る »

英語

アメリカ英語とイギリス英語は特徴がある 英語(えいご、)は、イ・ヨーロッパ語族のゲルマン語派に属し、イギリス・イングランド地方を発祥とする言語である。.

新しい!!: エピタキシャル成長と英語 · 続きを見る »

格子定数

格子定数(こうしていすう、こうしじょうすう、lattice constant)とは、結晶軸の長さや軸間角度のこと。単位格子の各稜間の角度 α,β,γ と、各軸の長さ a,b,c を表す6個の定数である。格子の形状等によっては、aの値のみを表すこともある。 軸の長さの単位は普通オングストロームを用い、自明として単位を付けずに数値のみを書く場合が多い。.

新しい!!: エピタキシャル成長と格子定数 · 続きを見る »

有機金属気相成長法

有機金属気相成長法(ゆうききんぞくきそうせいちょうほう、英語:metal organic chemical vapor deposition、略称:MOCVD)は、原料として有機金属やガスを用いた結晶成長方法、及びその装置である。結晶成長という観点を重視してMOVPE (metal-organic vapor phase epitaxy) とも言う。 化合物半導体結晶を作製するのに用いられ、MOCVDでは原子層オーダで膜厚を制御することができるため、半導体レーザを初めとするナノテクノロジーといった数nmの設計が必要な分野で用いられる。代表的な半導体結晶成長装置である分子線エピタキシー法 (MBE) と比較し、面内での膜厚の偏差が少なく、高速成長が可能であるほか、超高真空を必要としないために装置の大型化が容易である為、大量生産用の結晶成長装置としてLEDや半導体レーザを初めとした光デバイスの商用製品の作製に多く用いられている。.

新しい!!: エピタキシャル成長と有機金属気相成長法 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »