ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

エディントンのイプシロン

索引 エディントンのイプシロン

ディントンのイプシロンは、数学で用いられる記号。交代記号、レヴィ.

21 関係: 多様体外積代数対称群三重積 (ベクトル解析)交代行列ミンコフスキー空間マクスウェルの方程式ツイスター理論テンソルホッジ双対ベクトルクロネッカーのデルタクロス積スピノール特殊相対性理論行列式計量テンソル超対称性理論接ベクトル空間正規直交基底時空

多様体

多様体(たようたい、manifold, Mannigfaltigkeit)とは、局所的にはユークリッド空間と見なせるような図形や空間(位相空間)のことである。多様体上には好きなところに局所的に座標を描き込むことができる。.

新しい!!: エディントンのイプシロンと多様体 · 続きを見る »

外積代数

数学におけるベクトルの外積(がいせき、exterior product)あるいは楔積(くさびせき、ウェッジ積、wedge product)はクロス積をある特定の性質に着目して、より高次元の場合へ一般化する代数的な構成である。クロス積やスカラー三重積のようにベクトル同士の外積はユークリッド幾何学において面積や体積およびそれらの高次元における類似物の研究に用いられる。線型代数学において外積は、線型変換の行列式や小行列式を記述する基底の取り方に依存しない抽象代数的な仕方を提供し、階数や線型独立性といった概念に根本的に関係してくる。 外積代数(がいせきだいすう、exterior algebra)は、ヘルマン・グラスマンに因んでグラスマン代数(グラスマンだいすう、Grassmann algebra)としても知られ、与えられた体 上のベクトル空間 上の外積によって生成される多元環である。多重線型代数やその関連分野と同様に、微分形式の成す多元環を通じて現代幾何学、特に微分幾何学と代数幾何学において広く用いられる。 形式的には、外積代数は あるいは で表され、 を線型部分空間として含む、楔積あるいは外積と呼ばれる で表される乗法を持つ、体 上の単位的結合代数である。楔積は結合的で双線型な乗法 であり、本質的な性質として 上の交代性 を持つものである。これは以下の性質 をも特別の場合として含む。 圏論の言葉で言えば、外積代数は普遍構成によって与えられる、ベクトル空間の圏上の函手の典型である。この普遍構成によって、体上のベクトル空間だけに限らず、可換環上の加群やもっとほかの興味ある構造にたいしても外積代数を定義することができる。外積代数は双代数のひとつの例である。つまり、外積代数の(ベクトル空間としての)双対空間にも乗法が定義され、その双対的な乗法が楔積と両立する。この双対代数は特に 上の重線型形式全体の成す多元環で、外積代数とその双対代数との双対性は内積によって与えられる。.

新しい!!: エディントンのイプシロンと外積代数 · 続きを見る »

対称群

対称群(たいしょうぐん、)とは、「ものを並べ替える」という操作を元とする群である。この場合の「ものを並べ替える」操作のことを置換(ちかん、)という。数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてを調べる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、)と呼ばれる。置換群が空間 の変換群として与えられているとき、 の元 の置換は で与えられる の部分群の分だけ潰れているが、これは のなかに と「同じ」元が複数含まれている場合に対応しており、 の中でこれらを区別することができれば の元の置換から対称群 が回復される。.

新しい!!: エディントンのイプシロンと対称群 · 続きを見る »

三重積 (ベクトル解析)

三重積とは3次元ユークリッド空間における3つのベクトルの積であり、ベクトル解析におけるスカラー三重積とベクトル三重積の総称である。.

新しい!!: エディントンのイプシロンと三重積 (ベクトル解析) · 続きを見る »

交代行列

線型代数学において、交代行列(こうたいぎょうれつ、alternative matrix)、歪対称行列(わいたいしょうぎょうれつ、skew-symmetric matrix)または反対称行列(はんたいしょうぎょうれつ、antisymmetric matrix, antimetric matrix; 反称行列)は、正方行列 であってその転置 が自身の 倍となるものをいう。すなわち、転置に対して反対称性を持つ行列は交代行列である。交代行列とは逆に、転置に対して対称な行列は対称行列と呼ばれる。本項において(何も言わなければ)、係数体の標数 は でない と仮定する。標数が のとき、任意のスカラーは自身を反数として持つので、任意の歪対称行列は対称行列の概念に一致する。歪対称行列に付随する双線型形式は歪対称形式であり、標数 のときは対称形式になる。一方、付随する双線型形式が交代形式であるような行列を「交代行列」と呼べば、標数 のとき「交代行列」は歪対称(.

新しい!!: エディントンのイプシロンと交代行列 · 続きを見る »

ミンコフスキー空間

ミンコフスキー空間(ミンコフスキーくうかん、Minkowski space)とは、非退化で対称な双線型形式を持つ実ベクトル空間である。ドイツの数学者のヘルマン・ミンコフスキーに因んで名付けられている。アルベルト・アインシュタインによる特殊相対性理論を定式化する枠組みとして用いられる。この特定の設定の下では空間に時間を組み合わせた時空を表現するため、物理学の文脈ではミンコフスキー時空とも呼ばれる。.

新しい!!: エディントンのイプシロンとミンコフスキー空間 · 続きを見る »

マクスウェルの方程式

マクスウェルの方程式(マクスウェルのほうていしき、Maxwell's equations)は、電磁場のふるまいを記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理された。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれ、マクスウェルはマックスウェルとも表記される。 真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。 なお、電磁気学の単位系は、国際単位系に発展したMKSA単位系のほか、ガウス単位系などがあるが、以下では原則として、国際単位系を用いることとする。.

新しい!!: エディントンのイプシロンとマクスウェルの方程式 · 続きを見る »

ツイスター理論

ツイスター理論(ツイスターりろん、)は、ロジャー・ペンローズによって1960年代後半に提唱された数学の理論の一つである。.

新しい!!: エディントンのイプシロンとツイスター理論 · 続きを見る »

テンソル

テンソル(tensor, Tensor)とは、線形的な量または線形的な幾何概念を一般化したもので、基底を選べば、多次元の配列として表現できるようなものである。しかし、テンソル自身は、特定の座標系によらないで定まる対象である。個々のテンソルについて、対応する量を記述するのに必要な配列の添字の組の数は、そのテンソルの階数とよばれる。 例えば、質量や温度などのスカラー量は階数0のテンソルだと理解される。同様にして力や運動量などのベクトル的な量は階数1のテンソルであり、力や加速度ベクトルの間の異方的な関係などをあらわす線型変換は階数2のテンソルで表される。 物理学や工学においてしばしば「テンソル」と呼ばれているものは、実際には位置や時刻を引数としテンソル量を返す関数である「テンソル場」であることに注意しなければならない。いずれにせよテンソル場の理解のためにはテンソルそのものの概念の理解が不可欠である。.

新しい!!: エディントンのイプシロンとテンソル · 続きを見る »

ホッジ双対

数学において、ホッジスター作用素(ホッジスターさようそ、Hodge star operator)、もしくは、ホッジ双対(ホッジそうつい、Hodge dual)は、(Hodge)により導入された線型写像である。ホッジ双対は、有限次元の向き付けられた内積空間の外積代数の上で定義される -ベクトルのなす空間から-ベクトルのなす空間への線形同型である。 他のベクトル空間に対する多くの構成と同様に、ホッジスター作用素は多様体の上のベクトルバンドルへの作用に拡張することができる。 たとえば余接束の外積代数(すなわち、多様体上の微分形式の空間)に対して、ホッジスター作用素を用いてラプラス=ド・ラーム作用素を定義し、コンパクトなリーマン多様体上の微分形式のホッジ分解を導くことができる。.

新しい!!: エディントンのイプシロンとホッジ双対 · 続きを見る »

ベクトル

ベクトル()またはベクター() ベクトルは Vektor に由来し、ベクターは vector に由来する。物理学などの自然科学の領域ではベクトル、プログラミングなどコンピュータ関係ではベクターと表記される、という傾向が見られることもある。また、技術文書などではしばしばJIS規格に準拠する形で、長音を除いたベクタという表記が用いられる。 は「運ぶ」を意味するvehere に由来し、18世紀の天文学者によってはじめて使われた。 ベクトルは通常の数(スカラー)と区別するために矢印を上に付けたり(例: \vec,\ \vec)、太字で書いたりする(例: \boldsymbol, \boldsymbol)が、分野によっては矢印も太字もせずに普通に書くこともある(主に解析学)。 ベクトル、あるいはベクターに関する記事と用法を以下に挙げる。.

新しい!!: エディントンのイプシロンとベクトル · 続きを見る »

クロネッカーのデルタ

ネッカーのデルタ()とは、集合 T(多くは自然数の部分集合)の元 i, j に対して によって定義される二変数関数 δij: T×T → のことをいう。つまり、T×T の対角成分の特性関数のことである。名称は、19世紀のドイツの数学者レオポルト・クロネッカーに因む。 アイバーソンの記法を用いると と書ける。 単純な記号だが、色々な場面で有用である。例えば、単位行列は (δij) と書けたり、n 次元直交座標の基底ベクトルの内積は、(ei, ej).

新しい!!: エディントンのイプシロンとクロネッカーのデルタ · 続きを見る »

クロス積

ベクトル積()とは、ベクトル解析において、3次元の向き付けられた内積空間において定義される、2つのベクトルから新たなベクトルを与える二項演算である。2つのベクトル a、b のベクトル積は a×b や で表される。演算の記号からクロス積()と呼ばれることもある。2つのベクトルからスカラーを与える二項演算である内積に対して外積(がいせき)とも呼ばれるが、英語では直積を意味するので注意を要する。ベクトル積を拡張した外積代数があり、ベクトル積はその3次元における特殊な場合である。.

新しい!!: エディントンのイプシロンとクロス積 · 続きを見る »

スピノール

数学および物理学におけるスピノル(spinor; スピノール、スピナー)は、特に直交群の理論に於いて空間ベクトルの概念を拡張する目的で導入された複素ベクトル空間の元である。これらが必要とされるのは、与えられた次元における回転群の全体構造を見るためには余分の次元を必要とするからである。 もっと形式的に、スピノルは与えられた二次形式付きベクトル空間から、代数的なあるいは量子化の手続きを用いることで構成される幾何学的な対象として定義することもできる。与えられた二次形式は、スピノルのいくつかことなる型を記述するかも知れない。与えられた型のスピノル全体の成す集合は、それ自身回転群の作用を持つ線型空間であるが、作用の符号について曖昧さがある。それゆえに、スピノル全体の空間は回転群のを導く。符号の曖昧さは、スピノル全体の空間を、スピン群 Spin(n) のある線型表現と見なすことによって除くこともできる。この形式的な観点では、スピノルについての多くの本質的で代数的な性質が(空間幾何での話に比べて)よりはっきり見て取れるが、もとの空間幾何との繋がりはわかりにくい。他にも、複素係数の使用が最小限に押さえられる。 一般のスピノルは、1913年にエリ・カルタンによって発見された。後に、スピノルは、電子や他のフェルミ粒子の内在する角運動量、即ちスピン角運動量の性質を研究するために、量子力学に適用された。今日、スピノルは物理学の様々な分野で用いられている。古典的に、が非相対論的な電子のスピンを記述するのに用いられた。ディラック方程式では、相対論的な電子の量子状態を数学的に記述する際に、ディラック・スピノルが必須となる。場の量子論では、相対論的な多粒子系の状態は、スピノルで記述される。 数学、殊に微分幾何学およびにおいて、スピノルが発見されて以来、代数的位相幾何学・微分位相幾何学、斜交幾何学、ゲージ理論、複素代数幾何、指数定理、および特殊ホロノミー などに対して幅広い応用がなされている。.

新しい!!: エディントンのイプシロンとスピノール · 続きを見る »

特殊相対性理論

特殊相対性理論(とくしゅそうたいせいりろん、Spezielle Relativitätstheorie、Special relativity)とは、慣性運動する観測者が電磁気学的現象および力学的現象をどのように観測するかを記述する、物理学上の理論である。アルベルト・アインシュタインが1905年に発表した論文に端を発する。特殊相対論と呼ばれる事もある。.

新しい!!: エディントンのイプシロンと特殊相対性理論 · 続きを見る »

行列式

数学における行列式(ぎょうれつしき、)とは、正方行列に対して定義される量で、歴史的には行列が表す一次方程式の可解性を判定する指標として導入された。幾何的には線型空間またはより一般の有限生成自由加群上の自己準同型に対して定義され、線型変換によって空間の体積要素が何倍に変わるかという概念を抽象化したものと見なすことができる。行列の可逆性を判定する指標として線型代数学における最も重要な指標の一つと見なされている。.

新しい!!: エディントンのイプシロンと行列式 · 続きを見る »

計量テンソル

計量テンソル(けいりょうテンソル、metric tensor)は、リーマン幾何学において、空間内の距離と角度を定義する、階数()が2のテンソルである。多様体が与えられたとき、多様体の接空間で、滑らかに変化する非負の2次関数を選ぶことができる場合、その多様体をリーマン多様体と呼ぶ。そのため、計量テンソルは、リーマン計量()と呼ばれることもある。 ひとたび、ある座標系 が選ばれると、計量テンソルは行列形式で定義される。通常、 として表記され、各成分は と表される。以下では、添え字の和に関してアインシュタインの縮約記法を用いる。 点 から までの曲線の長さは、 をパラメータとして、 と定義される。2つの接ベクトル()U.

新しい!!: エディントンのイプシロンと計量テンソル · 続きを見る »

超対称性理論

超対称性理論(ちょうたいしょうせいりろん)とは、理論のボース粒子とフェルミ粒子に対して、それぞれ対応するフェルミ粒子とボース粒子(超対称性粒子)が存在すると考える理論、仮説のこと。ボース粒子とフェルミ粒子を入れ替える数学的変換を超対称変換と呼び、特にゲージ粒子に対しても超対称性粒子を考える理論の事を超対称ゲージ理論と呼ぶ。また、超対称性を考えた標準模型や重力理論(一般相対論)は、それぞれ超対称標準模型、超重力理論と呼ばれる。超弦理論も超対称性理論の一種である。 もし超対称性が自然界で近似としてではなく実現されているならば、現在までに知られている各素粒子に、その対となる同質量の超対称粒子が存在する。すなわち、素粒子の数が既知のものから倍増するはずである。しかしながら、現在、超対称粒子はひとつも実験的に発見されていない。2008年に稼動予定のLHC実験計画は、この超対称粒子の発見を目的のひとつとして推進されている。.

新しい!!: エディントンのイプシロンと超対称性理論 · 続きを見る »

接ベクトル空間

多様体上の接ベクトル空間(せつベクトルくうかん、英語:tangent vector space)あるいは 接空間(英語:tangent space)とは、多様体上の各点で定義されるベクトル空間であり、その点における全ての接ベクトルの集合である。接ベクトル空間は、ユークリッド空間内の曲線や曲面における接ベクトルの一般化ともいえる。.

新しい!!: エディントンのイプシロンと接ベクトル空間 · 続きを見る »

正規直交基底

数学において、特に線型代数学において、有限次元内積空間 V の正規直交基底(せいきちょっこうきてい、orthonormal basis)とは、正規直交系を成すような V の基底をいう。例えば、ユークリッド空間 Rn の標準基底は、ベクトルの点乗積を内積としての正規直交基底である。また、標準基底の回転や鏡映(一般に任意の直交変換)による像もまた正規直交基底であり、なおかつ Rn の任意の正規直交基底はこの方法で得られる。 一般の内積空間 V に対して、その正規直交基底は V 上の正規化された直交座標系を定めるのに利用できる。そのような座標系のもとでは内積をベクトルの点乗積と同一視することができるから、正規直交基底の存在については(一般の有限次元内積空間を調べるのではなくて)点乗積を伴う Rn の場合を調べれば十分である。従って任意の有限次元内積空間は正規直交基底を持つが、実際にこれを得るには任意の基底にグラム・シュミットの正規直交化法を用いればよい。 函数解析学では、正規直交基底の概念を一般の(必ずしも有限次元でない)内積空間(前ヒルベルト空間)に対しても定義することができる。前ヒルベルト空間 H が与えられたとき、H の正規直交基底とは、H の正規直交系であって、H を位相的に生成するものをいう。即ち、H の各ベクトルが、基底に属するベクトルの''無限''線型結合として一意に表される。この場合の正規直交基底を、H のヒルベルト基底と呼ぶこともある。この意味での正規直交基底は、無限線型結合を用いることから、一般にはベクトル空間としての基底(ハメル基底)でないことに注意すべきである。よりはっきり述べれば、正規直交基底によって張られる部分空間(正規直交基底に属するベクトルの有限線型結合全体)は全空間 H において稠密ではあるが、全空間 H に一致するとは限らない。.

新しい!!: エディントンのイプシロンと正規直交基底 · 続きを見る »

時空

時空(じくう、spacetime)は、時間と空間を合わせて表現する物理学の用語、または、時間と空間を同時に、場合によっては相互に関連したものとして扱う概念である。時空間()とも。.

新しい!!: エディントンのイプシロンと時空 · 続きを見る »

ここにリダイレクトされます:

レヴィ=チヴィタ記号レヴィ–チヴィタ記号レヴィ・チヴィタ記号レヴィ・チビタ記号レヴィ゠チヴィタ記号レヴィ=チヴィタ記号レビ・チビタ記号交代記号

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »