ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

イミタンス

索引 イミタンス

イミタンス(Immittance、しばしばイミッタンス)は、圧と流れの比であるインピーダンスと、流れと圧の比であるアドミタンスの双方の総称である。インピーダンスとアドミタンスからなる造語 (impedance + admittance) である。圧と流れの積は仕事率である。 交流電気回路では電圧と電流の比、及びその逆数を表す複素数のことを指す。音響工学でも音圧とフォノン速度 (音速ではない) の比、及びその逆数をイミタンスという。 イミタンスは固定的な定義による物理量ではないために特定の次元あるいは単位を持たない。しかしながら、インピーダンスとアドミタンスを同時に扱う分野などで有用な用語である。例えばスミスチャートではインピーダンスとアドミタンスを同時に扱うことがあり、特にイミタンスチャートという。 電磁気に関する双対性の帰結として、インピーダンス系 (電圧/電流) の合成では直列接続は加法で並列接続は逆数の加法、アドミタンス系 (電流/電圧) の合成では並列接続は加法で直列接続は逆数の加法となる。.

26 関係: 単位双対並列交流仕事率圧力リアクタンスアドミタンスインピーダンスインピーダンス整合オームコンダクタンスジーメンススミスチャートサセプタンス無次元量直列音圧音響学複素数量の次元電圧電気抵抗電流虚数単位流れ

単位

単位(たんい、unit)とは、量を数値で表すための基準となる、約束された一定量のことである。約束ごとなので、同じ種類の量を表すのにも、社会や国により、また歴史的にも異なる多数の単位がある。.

新しい!!: イミタンスと単位 · 続きを見る »

双対

双対(そうつい、dual, duality)とは、互いに対になっている2つの対象の間の関係である。2つの対象がある意味で互いに「裏返し」の関係にあるというようなニュアンスがある(双対の双対はある意味で "元に戻る")。また、2つのものが互いに双対の関係にあることを「双対性がある」などとよぶ。双対は数学や物理学をはじめとする多くの分野に表れる。 なお読みについて、双対を「そうたい」と読む流儀もあり「相対 (relative)」と紛らわしい。並行して相対を「そうつい」と読む流儀もある。一般には「双対」を「そうつい」、「相対」を「そうたい」と呼び分ける場合が多いようである。 双対の具体的な定義は、双対関係の成立している対象の種類によって様々に与えられる。.

新しい!!: イミタンスと双対 · 続きを見る »

並列

並列(へいれつ).

新しい!!: イミタンスと並列 · 続きを見る »

交流

三角波、鋸歯状波 交流(こうりゅう、)とは、時間とともに周期的に向きが変化する電流(交流電流)を示す言葉であり、「交番電流」の略。また、同様に時間とともに周期的に大きさとその正負が変化する電圧を交流電圧というが、電流・電圧の区別をせずに交流または交流信号と呼ぶこともある。 交流の代表的な波形は正弦波であり、狭義の交流は正弦波交流()を指すが、広義には周期的に大きさと向きが変化するものであれば正弦波に限らない波形のものも含む。正弦波以外の交流は非正弦波交流()といい、矩形波交流や三角波交流などがある。.

新しい!!: イミタンスと交流 · 続きを見る »

仕事率

仕事率(しごとりつ)とは工率(こうりつ)やパワー()とも呼び、単位時間内にどれだけのエネルギーが使われている(仕事が行われている)かを表す物理量である。「動力性能」という語があるが、その場合これを指すことが多い。.

新しい!!: イミタンスと仕事率 · 続きを見る »

圧力

圧力(あつりょく、pressure)とは、.

新しい!!: イミタンスと圧力 · 続きを見る »

リアクタンス

リアクタンス(reactance)とは、交流回路のインダクタ(コイル)やキャパシタ(コンデンサ)における電圧と電流の比である。 リアクタンスは電気抵抗と同じ次元を持ち、単位としてはオームを持つが、リアクタンスはエネルギーを消費しない擬似的な抵抗である。誘導抵抗、感応抵抗ともいう。 リアクタンスは、電流の微分方程式の1次微分項の係数および1次積分項の係数であり、ずれた位相成分の比率を示す係数である。.

新しい!!: イミタンスとリアクタンス · 続きを見る »

アドミタンス

アドミタンス(admittance、アドミッタンス)は、交流回路における電流と電圧の比である。慣習的に記号 Y、単位としてはジーメンス(表記は)が用いられる。計算を簡略化するため複素数表示(フェーザ表示)で表されることが多い。直流回路における電気伝導の代わりに用いられる。 交流回路における電圧と電流の比である インピーダンス Z とは次の関係がある。 以下では、j: 虚数単位、ω: 交流の角周波数とする。.

新しい!!: イミタンスとアドミタンス · 続きを見る »

インピーダンス

インピーダンス(impedance)は、圧と流の比を表す単語である。圧と流の積は仕事率である。.

新しい!!: イミタンスとインピーダンス · 続きを見る »

インピーダンス整合

インピーダンス整合(インピーダンスせいごう、impedance matching)とは、一例としては電気信号の伝送路において、送り出し側回路の出力インピーダンスと、受け側回路の入力インピーダンスを合わせることである。概念として、より広く力学一般に、音響その他の振動系に拡張できる。損失なく最大の効率で伝送を行うために、また特に高周波では整合がとれていない接続部分で反射が起きるため、整合するよう設計しなければならない。.

新しい!!: イミタンスとインピーダンス整合 · 続きを見る »

オーム

ーム()は、インピーダンスや電気抵抗(レジスタンス)、リアクタンスの単位である。国際単位系 における組立単位のひとつである。 名称は、電気抵抗に関するオームの法則を発見したドイツの物理学者、ゲオルク・ジーモン・オームにちなむ。記号はギリシャ文字のオメガ ('''Ω''') を用いる。これは、オームの頭文字であるアルファベットのO(オー)では、数字の0(ゼロ)と混同されやすいからである(なお、オームの名前をギリシャ文字で表記するとΓκέοργκ Ωμとなる)。 電気抵抗を表すための単位は、初期の電信業務に関連して経験的にいくつか作られてきた。1861年にが、質量・長さ・時間の単位から組み立てた実用上便利な大きさの単位としてオームを提唱した。オームの定義はその後何度か修正された。.

新しい!!: イミタンスとオーム · 続きを見る »

コンダクタンス

ンダクタンス (conductance) とは、回路における電流の流れやすさのこと。すなわち、直流回路では電気抵抗の逆数、交流回路ではインピーダンスの逆数の実数部。記号 G。単位ジーメンス(記号 S )、またはモー(記号\mho )。電気伝導力とも言う。.

新しい!!: イミタンスとコンダクタンス · 続きを見る »

ジーメンス

ーメンス(siemens, 記号: S)は、コンダクタンス・アドミタンス・サセプタンスの単位で、SI組立単位の一つである。 その名はドイツの物理学者ヴェルナー・フォン・ジーメンスにちなむ。1971年の第14回国際度量衡総会(CGPM)において、ジーメンスをSI組立単位に導入することが採択された。 コンダクタンスは電気抵抗の逆数であり、ジーメンスは電気抵抗の単位オーム (Ω) の逆数として定義される。日本の計量単位令では「1アンペアの直流の電流が流れる導体の二点間の直流の電圧が1ボルトであるときのその二点間の電気のコンダクタンス」と定義している。 ジーメンスを他の単位で表すと以下のようになる。.

新しい!!: イミタンスとジーメンス · 続きを見る »

スミスチャート

ミスチャート(データは未記入) 実用チャートでは外囲に波数比の目盛りがつく スミスチャート(Smith chart)とは、電子工学において伝送路のインピーダンス整合を設計する際に用いられる、複素インピーダンスを示す円形の図表である。1939年にRCAのエンジニアでアマチュア無線家(コールサイン 1ANB)でもあるフィリップ・スミスにより発明されたとされる。発明の理由をスミス氏は「計算尺が使えるようになった頃から、数学的な関係を図で表現することに興味を持っていた」と説明した。スミスの提案の2年前、日本無線電信株式会社の水橋東作は1937年(昭和12年)に発表した論文中第1図で、「反射係数\gammaのZ_(及Z_)に対する円線図」という正規化インピーダンスに対するスミスチャートと等価の計算図表を提案し、この「便利な図」を用いてグラフィカルにインピーダンスの計算ができることを示した。このため日本国内では、スミスチャートは水橋チャートまたは水橋-スミスチャートと呼称するのが妥当であるとの意見が存在する。 スミスチャートの基本は次の式で示される。 \Gammaは複素反射係数(散乱係数sまたはs_とも呼ばれる)、z_Lは伝送路の負荷の正規化インピーダンスで、Z_L/Z_0に等しい。ここで、 である。 この図自体は複素平面であり、水平軸は複素反射係数の実数部、垂直軸は虚数部を表す。また、各円上はインピーダンスの実数(抵抗)成分が一定、上下に曲がった曲線上(実は円弧)はインピーダンスの虚数(リアクタンス)成分が一定である。図の中心は負荷と伝送線路が整合された場合に対応する。図の周囲は100%の反射に対応し、周囲に書かれた角度は反射係数の位相を0から180度(半波長)で示す。 インピーダンスではなくアドミタンスを表すスミスチャートをアドミタンスチャートと言う。アドミタンスチャートはスミスチャートを180度回転して作成される。スミスチャートにアドミタンスチャートを重ね合わせたものをイミタンスチャートと言う。 コンピュータの時代になり、紙のスミスチャートが問題を解くために使われることは少なくなったが、高周波の複素インピーダンスを直感的にわかるかたちで示す方法として、非常に有用な方法である。また、電磁気学(特に電波工学)を学ぶ学生には、通常はこの図表を用いた演習問題が課されており、依然として重要な教育手段である。 ネットワークアナライザと呼ばれる計測器では、スミスチャートの形で結果を表示する。ネットワークアナライザは、現代の高周波回路の設計に欠かせない計測器である。.

新しい!!: イミタンスとスミスチャート · 続きを見る »

サセプタンス

プタンス(susceptance)は、交流回路において位相を変化させる要素である。アドミタンスの虚数成分と等しい。単位は国際単位系では、ジーメンス (S) が用いられる。かつては、パーミタンスという言葉が用いられた。アドミタンスとの関係は以下のように表される。 Y.

新しい!!: イミタンスとサセプタンス · 続きを見る »

無次元量

無次元量(むじげんりょう、dimensionless quantity)とは、全ての次元指数がゼロの量である。慣習により無次元量と呼ばれるが無次元量は次元を有しており、指数法則により無次元量の次元は1である。 無次元数(むじげんすう、)、無名数(むめいすう、)とも呼ばれる。 無次元量の数値は単位の選択に依らないので、一般的な現象を特徴付けるパラメータとして数学、物理学、工学、経済など多くの分野で広く用いられる。このようなパラメータは現実には物質ごとに決まるなど必ずしも操作可能な量ではないが、理論や数値実験においては操作的な変数として取り扱うこともある。.

新しい!!: イミタンスと無次元量 · 続きを見る »

直列

列(ちょくれつ).

新しい!!: イミタンスと直列 · 続きを見る »

音圧

音圧(おんあつ)とは、音による圧力の大気圧からの変動分である。単位はパスカル (Pa) である。 健康な人間の最小可聴音圧は実効値で 20 µPa であり、これを基準音圧として音圧をデシベル (dB) で表したものを音圧レベルと言う。.

新しい!!: イミタンスと音圧 · 続きを見る »

音響学

音響学(おんきょうがく、acoustics)とは、音の発生、音の伝播、聴覚器官による音響感覚、音楽、騒音 等々、音に関するあらゆる現象を扱う学問でありブリタニカ百科事典「音響学」、その領域は物理学・工学・心理学・生理学など多くの分野にわたる。.

新しい!!: イミタンスと音響学 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: イミタンスと複素数 · 続きを見る »

量の次元

量の次元(りょうのじげん、)とは、ある量体系に含まれる量とその量体系の基本量との関係を、基本量と対応する因数の冪乗の積として示す表現である。 ISOやJISなどの規格では量 の次元を で表記することが規定されているが、しばしば角括弧で括って で表記されるISOやJISなどにおいては、角括弧を用いた は単位を表す記号として用いられている。なお、次元は単位と混同が多い概念であるが、単位の選び方に依らない概念である。。 次元は量の間の関係を表す方法であり、量方程式の乗法を保つ。ある量 が二つの量 によって量方程式 で表されているとき、それぞれの量の次元の間の関係は量方程式の形を反映して となる。基本量 と対応する因子を で表したとき、量 の次元は の形で一意に表される。このとき冪指数 は次元指数と呼ばれる。全ての次元指数がゼロとなる量の次元は指数法則により1である。次元1の量は無次元量()とも呼ばれる。.

新しい!!: イミタンスと量の次元 · 続きを見る »

電圧

電圧(でんあつ、voltage)とは直観的には電気を流そうとする「圧力のようなもの」である-->。単位としては, SI単位系(MKSA単位系)ではボルト(V)が使われる。電圧を意味する記号には、EやVがよく使われる。 電圧は電位差ないしその近似によって定義される。 電気の流れに付いては「電流」を参照の事。.

新しい!!: イミタンスと電圧 · 続きを見る »

電気抵抗

電気抵抗(でんきていこう、レジスタンス、electrical resistance)は、電流の流れにくさのことである。電気抵抗の国際単位系 (SI) における単位はオーム(記号:Ω)である。また、その逆数はコンダクタンス と呼ばれ、電流の流れやすさを表す。コンダクタンスのSIにおける単位はジーメンス(記号:S)である。.

新しい!!: イミタンスと電気抵抗 · 続きを見る »

電流

電流(でんりゅう、electric current電磁気学に議論を留める限りにおいては、単に と呼ぶことが多い。)は、電子に代表される荷電粒子他の荷電粒子にはイオンがある。また物質中の正孔は粒子的な性格を持つため、荷電粒子と見なすことができる。の移動に伴う電荷の移動(電気伝導)のこと、およびその物理量として、ある面を単位時間に通過する電荷の量のことである。 電線などの金属導体内を流れる電流のように、多くの場合で電流を構成している荷電粒子は電子であるが、電子の流れは電流と逆向きであり、直感に反するものとなっている。電流の向きは正の電荷が流れる向きとして定義されており、負の電荷を帯びる電子の流れる向きは電流の向きと逆になる。これは電子の詳細が知られるようになったのが19世紀の末から20世紀初頭にかけての出来事であり、導電現象の研究は18世紀の末から進んでいたためで、電流の向きの定義を逆転させることに伴う混乱を避けるために現在でも直感に反する定義が使われ続けている。 電流における電荷を担っているのは電子と陽子である。電線などの電気伝導体では電子であり、電解液ではイオン(電子が過不足した粒子)であり、プラズマでは両方である。 国際単位系 (SI) において、電流の大きさを表す単位はアンペアであり、単位記号は A であるアンペアはSI基本単位の1つである。。また、1アンペアの電流で1秒間に運ばれる電荷が1クーロンとなる。SI において電荷の単位を電流と時間の単位によって構成しているのは、電荷より電流の測定の方が容易なためである。電流は電流計を使って測定する。数式中で電流量を表すときは または で表現される。.

新しい!!: イミタンスと電流 · 続きを見る »

虚数単位

虚数単位(きょすうたんい、imaginary unit)とは、−1 の平方根(2乗して −1 になる数)である2つの数のうちの1つの数のことである(どちらかを特定することはできない)。そのような数を記号で i または \sqrt で表す。 任意の実数の2乗は0以上なので、虚数単位は実数でない。数の概念を複素数に拡張すると登場する数である。 虚数単位の記号 i は imaginary の頭文字から採られている。ただし、i を別の意味(電流など)の記号として使う場合は、虚数単位を j などで表すことがある(どの文字を用いるかは自由である。その場合にはどの文字を用いるかを初めに必ず宣言する)。 積の交換法則が成り立たないことを許容すると、異なる3個以上の虚数単位からなる数の体系(非可換体)を考えることができる。3個の虚数単位の場合は i,j,k、7つ以上の虚数単位の組には i_1,i_2,\cdots といったように一つずつ添字を付けて表すことが多い。.

新しい!!: イミタンスと虚数単位 · 続きを見る »

流れ

流れ(ながれ)は.

新しい!!: イミタンスと流れ · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »