ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

イオン注入

索引 イオン注入

イオン注入(イオンちゅうにゅう、)は、物質のイオンを固体に注入する加工方法である。イオン注入は固体の特性を変化させる点で材料工学に属し、工業的には半導体の生産に使用され、金属の表面処理など様々な材料科学の研究などが行われている。イオン注入は、対象の物質と別の元素を注入することにより、物質に化学的変化を与えると同時に、物質の破損または破壊など、構造的な変化も与える。 一般的なイオン注入装置は、目的とする元素のイオンを発生させるイオン源、必要なイオンだけを取り出す質量分析器、イオンを電気的に加速する加速器、対象物であるターゲットを高真空状態とするチャンバーから成る。イオンは単一の元素が使われる。このため、ドーズ量と呼ばれる注入された物質の総量は、イオン電流の時間積分で与えられる。イオン注入によって与えられる電流は、μAで表されるほど小さい。 一般的なイオンの加速エネルギーは10-500keV(1,600-80,000aJ)の範囲で使用される。1-10keVの範囲でも使用することは可能だが、イオンが表面近くの数nm程度のところで停止するため実用的ではない。さらに対象物の損傷を小さくする場合は、イオンビーム成長が用いられる。また、通常の加速器ではさらに高い5MeV程度の加速エネルギーまで印加可能であるが、対象の損傷が大きく、また、深さ方向の分布も広がるため、実効的な変化量は小さくなる。 打ち込まれたイオンはイオンと対象物の種別の他に、加速器で与えられる運動エネルギーと対象物質と衝突散乱による運動量の喪失によってその飛程、つまり浸透して停止する深さが決まり、そのバラツキはほぼガウス分布に従う。イオンは対象物の原子との衝突、および電子軌道のオーバーラップによる効力などにより次第にエネルギーを失っていく。多くの場合、注入深さは10nmから1μm程度である。対象物の結晶原子の配列方向が打ち込み方向と同一の場合には、原子の間をトンネルのようにすり抜けるものが出るため、深さの制御が難しくなる。これを避けるため結晶方向からは少し傾けて打ち込まれる。イオン注入は対象物の表面付近で化学変化・構造変化が求められる場合に特に有効である。.

35 関係: 半導体工業三フッ化ホウ素ナノメートルバンドギャップリンヒ化ガリウムヒ素フッ素ドーパントホウ素ホスフィンアモルファスアルシンアンペアイオンゲルマニウム元素固体窒素炭素物質表面処理金属電子電子ボルト電界効果トランジスタSOI材料工学格子欠陥正孔正規分布準位日刊工業新聞拡散

半導体

半導体(はんどうたい、semiconductor)とは、電気伝導性の良い金属などの導体(良導体)と電気抵抗率の大きい絶縁体の中間的な抵抗率をもつ物質を言う(抵抗率だけで半導体を論じるとそれは抵抗器と同じ特性しか持ち合わせない)。代表的なものとしては元素半導体のケイ素(Si)などがある。 電子工学で使用されるICのような半導体素子はこの半導体の性質を利用している。 良導体(通常の金属)、半導体、絶縁体におけるバンドギャップ(禁制帯幅)の模式図。ある種の半導体では比較的容易に電子が伝導帯へと遷移することで電気伝導性を持つ伝導電子が生じる。金属ではエネルギーバンド内に空き準位があり、価電子がすぐ上の空き準位に移って伝導電子となるため、常に電気伝導性を示す。.

新しい!!: イオン注入と半導体 · 続きを見る »

工業

工業(こうぎょう、industry)は、原材料を加工して製品を造る(つくる)こと、および、製品を造ることにかかわる諸事項のことである。工業の語には、製品を造る働き、製品を造る事業などについても含まれる。 工業は、第二次産業のうち(鉱業を除く)建設業および製造業の大部分に該当し、加工組立業といったりもする。.

新しい!!: イオン注入と工業 · 続きを見る »

三フッ化ホウ素

三フッ化ホウ素(さんフッかホウそ、boron trifluoride)は、化学式BF3で表される化学物質である。黄白色で毒性のある気体である。ジエチルエーテルと錯体を形成し、その錯体は液体のルイス酸として用いられる。ホウ素を中心とする正三角形の平面状分子である。不燃性である。目と粘膜を侵す。毒物及び劇物取締法により毒物に指定されている。.

新しい!!: イオン注入と三フッ化ホウ素 · 続きを見る »

ナノメートル

ナノメートル(nanometre、記号: nm)は、国際単位系の長さの単位で、10−9メートル (m).

新しい!!: イオン注入とナノメートル · 続きを見る »

バンドギャップ

バンドギャップ(Band gap、禁止帯、禁制帯)とは、広義の意味は、結晶のバンド構造において電子が存在できない領域全般を指す。 ただし半導体、絶縁体の分野においては、バンド構造における電子に占有された最も高いエネルギーバンド(価電子帯)の頂上から、最も低い空のバンド(伝導帯)の底までの間のエネルギー準位(およびそのエネルギーの差)を指す。 E-k空間上において電子はこの状態を取ることができない。バンドギャップの存在に起因する半導体の物性は半導体素子において積極的に利用されている。 半導体のバンド構造の模式図。Eは電子の持つエネルギー、kは波数。Egが'''バンドギャップ'''。半導体(や絶縁体)では「絶対零度で電子が入っている一番上のエネルギーバンド」が電子で満たされており(価電子帯)、その上に禁制帯を隔てて空帯がある(伝導帯)。 金属、および半導体・絶縁体のバンド構造の簡単な模式図(k空間無視) バンドギャップを表現する図は、E-k空間においてバンドギャップ周辺だけに着目した図、さらにk空間を無視してエネルギー準位だけを表現した図も良く用いられる。.

新しい!!: イオン注入とバンドギャップ · 続きを見る »

リン

リン(燐、、)は原子番号 15、原子量 30.97 の元素である。元素記号は P。窒素族元素の一つ。白リン(黄リン)・赤リン・紫リン・黒リンなどの同素体が存在する。+III(例:六酸化四リン PO)、+IV(例:八酸化四リン PO)、+V(例:五酸化二リン PO)などの酸化数をとる。.

新しい!!: イオン注入とリン · 続きを見る »

ヒ化ガリウム

ヒ化ガリウム(ヒかガリウム、gallium arsenide)はガリウムのヒ化物であり、組成式はGaAsである。化合物半導体であるため、その性質を利用して半導体素子の材料として多用されている。半導体分野ではガリウムヒ素(ガリウム砒素)という、さらにはそれを短縮したガリヒ素という呼称で呼ばれることも多い。.

新しい!!: イオン注入とヒ化ガリウム · 続きを見る »

ヒ素

ヒ素(砒素、ヒそ、arsenic、arsenicum)は、原子番号33の元素。元素記号は As。第15族元素(窒素族元素)の一つ。 最も安定で金属光沢があるため金属ヒ素とも呼ばれる「灰色ヒ素」、ニンニク臭があり透明なロウ状の柔らかい「黄色ヒ素」、黒リンと同じ構造を持つ「黒色ヒ素」の3つの同素体が存在する。灰色ヒ素は1気圧下において615 で昇華する。 ファンデルワールス半径や電気陰性度等さまざまな点でリンに似た物理化学的性質を示し、それが生物への毒性の由来になっている。.

新しい!!: イオン注入とヒ素 · 続きを見る »

フッ素

フッ素(フッそ、弗素、fluorine)は原子番号 9 の元素。元素記号はラテン語のFluorumの頭文字よりFが使われる。原子量は 18.9984 で、最も軽いハロゲン元素。また、同元素の単体であるフッ素分子(F2、二弗素)をも示す。 電気陰性度は 4.0 で全元素中で最も大きく、化合物中では常に -1 の酸化数を取る。反応性が高いため、天然には蛍石や氷晶石などとして存在し、基本的に単体では存在しない。.

新しい!!: イオン注入とフッ素 · 続きを見る »

ドーパント

ドーパント()とは、半導体にドーピングされる不純物のこと。元素によりドナーもしくはアクセプター、あるいは、深い準位となる。このドーパントの注入により、N型半導体もしくはP型半導体の作成が可能である。.

新しい!!: イオン注入とドーパント · 続きを見る »

ホウ素

ホウ素(ホウそ、硼素、boron、borium)は、原子番号 5、原子量 10.81、元素記号 B で表される元素である。高融点かつ高沸点な硬くて脆い固体であり、金属元素と非金属元素の中間の性質を示す(半金属)。1808年にゲイ.

新しい!!: イオン注入とホウ素 · 続きを見る »

ホスフィン

ホスフィン (phosphine) は分子式 PH3 で表される無機化合物。リン化水素(リンかすいそ、hydrogen phosphide)、水素化リン (phosphorus hydride)とも呼ばれる。IUPAC組織名はホスファン (phosphane) である。「ホスフィン」は PH3 を母化合物とする有機化合物 R3P の総称でもある。 ホスフィンは半導体製造のドーピングガスの原料であり、ケイ素をn形にする場合や、InGaP(インジウムガリウムリン)などといった半導体を製造するときにも用いる。 常温では無色腐魚臭の可燃性気体で、常温の空気中で自然発火する。極めて毒性が強く(許容量 0.3 ppm)、吸入すると肺水腫や昏睡状態に陥る。融点 -134 ℃、沸点 -87.8 ℃、密度 1.379 g/L (気体, 25 ℃)。日本ではその強い毒性から、毒物及び劇物取締法において、医薬用外毒物の指定を受けている。 アンモニアと同様に強酸性媒体中で水素イオンを受け取りホスホニウムイオン PH4^+ となる塩基としての作用を持つが、アンモニアと比べて弱塩基であり、水溶液中では水分子から水素イオンを受け取り水酸化物イオン OH- を放出する作用は極めて弱い。.

新しい!!: イオン注入とホスフィン · 続きを見る »

アモルファス

アモルファス、あるいは 非晶質(ひしょうしつ)とは、結晶のような長距離秩序はないが、短距離秩序はある物質の状態。これは熱力学的には、非平衡な準安定状態である。 は、(形を持つ)に「非」の意味の接頭辞 a‐ が付いた語(19世紀にスウェーデンのイェンス・ベルセリウスが非結晶の固体に対して命名した)。結晶は、明礬や水晶のようにそれぞれ固有の結晶形態を持っており、 である。しかし、急冷や不純物が混じった状態で出来た固体は、時間的空間的に規則的な原子配列が取れず非晶質となり、不定形である。 アモルファス状態は、非金属ではしばしば見られる状態である。しかし、金属にもアモルファス状態が存在することは、アメリカのポール・デュエイ カリフォルニア工科大学教授らが1960年に発見した。.

新しい!!: イオン注入とアモルファス · 続きを見る »

アルシン

アルシン.

新しい!!: イオン注入とアルシン · 続きを見る »

アンペア

アンペア(ampere 、記号: A)、は電流(量の記号、直流:I, 交流:i )の単位であり、国際単位系(SI)の7つの基本単位の一つである。 アンペアという名称は、電流と磁界との関係を示した「アンペールの法則」に名を残すフランスの物理学者、アンドレ=マリ・アンペール(André-Marie Ampère)に因んでいる共立化学大辞典第 26 版 (1981)。。 SIで定められた単位記号は"A"であるが、英語圏ではampと略記されることがあるSI supports only the use of symbols and deprecates the use of abbreviations for units.

新しい!!: イオン注入とアンペア · 続きを見る »

イオン

イオン(Ion、ion)とは、電子の過剰あるいは欠損により電荷を帯びた原子または原子団のことである。電離層などのプラズマ、電解質の水溶液、イオン結晶などのイオン結合性を持つ物質内などに存在する。 陰極や陽極に引かれて動くことから、ギリシャ語のἰόνイオン, ローマ字表記でion("going")より、 ion(移動)の名が付けられた。.

新しい!!: イオン注入とイオン · 続きを見る »

ゲルマニウム

ルマニウム(germanium )は原子番号32の元素。元素記号は Ge。炭素族の元素の一つ。ケイ素より狭いバンドギャップ(約0.7 eV)を持つ半導体で、結晶構造は金剛石構造である。.

新しい!!: イオン注入とゲルマニウム · 続きを見る »

元素

元素(げんそ、elementum、element)は、古代から中世においては、万物(物質)の根源をなす不可欠な究極的要素広辞苑 第五版 岩波書店を指しており、現代では、「原子」が《物質を構成する具体的要素》を指すのに対し「元素」は《性質を包括する抽象的概念》を示す用語となった。化学の分野では、化学物質を構成する基礎的な成分(要素)を指す概念を指し、これは特に「化学元素」と呼ばれる。 化学物質を構成する基礎的な要素と「万物の根源をなす究極的要素」としての元素とは異なるが、自然科学における元素に言及している文献では、混同や説明不足も見られる。.

新しい!!: イオン注入と元素 · 続きを見る »

固体

固体インスリンの単結晶形態 固体(こたい、solid)は物質の状態の一つ。固体内の原子は互いに強く結合しており、規則的な幾何学的格子状に並ぶ場合(金属や通常の氷などの結晶)と、不規則に並ぶ場合(ガラスなどのアモルファス)がある。 液体や気体と比較して、変形あるいは体積変化が非常に小さい。変形が全く起こらない剛体は理想化された固体の一つである。連続体力学においては、固体は静止状態においてもせん断応力の発生する物体と捉えられる。液体のように容器の形に合わせて流動することがなく、気体のように拡散して容器全体を占めることもない。 固体を扱う物理学は固体物理学と呼ばれ、物性物理学の一分野である。また物質科学はそもそも、強度や相変化といった固体の性質を扱う学問であり、固体物理学と重なる部分が多い。さらに固体化学の領域もこれらの学問と重なるが、特に新しい物質の開発(化学合成)に重点が置かれている。 今まで知られている最も軽い固体はエアロゲルであり、そのうち最も軽いものでは密度は約 1.9 mg/cm3 と水の密度の530分の1程度である。.

新しい!!: イオン注入と固体 · 続きを見る »

窒素

素(ちっそ、nitrogen、nitrogenium)は原子番号 7 の元素。元素記号は N。原子量は 14.007。空気の約78.08 %を占めるほか、アミノ酸をはじめとする多くの生体物質中に含まれており、地球のほぼすべての生物にとって必須の元素である。 一般に「窒素」という場合は、窒素の単体である窒素分子(窒素ガス、N2)を指すことが多い。窒素分子は常温では無味無臭の気体として安定した形で存在する。また、液化した窒素分子(液体窒素)は冷却剤としてよく使用されるが、液体窒素温度 (-195.8 ℃, 77 K) から液化する。.

新しい!!: イオン注入と窒素 · 続きを見る »

炭素

炭素(たんそ、、carbon)は、原子番号 6、原子量 12.01 の元素で、元素記号は C である。 非金属元素であり、周期表では第14族元素(炭素族元素)および第2周期元素に属する。単体・化合物両方において極めて多様な形状をとることができる。 炭素-炭素結合で有機物の基本骨格をつくり、全ての生物の構成材料となる。人体の乾燥重量の2/3は炭素である​​。これは蛋白質、脂質、炭水化物に含まれる原子の過半数が炭素であることによる。光合成や呼吸など生命活動全般で重要な役割を担う。また、石油・石炭・天然ガスなどのエネルギー・原料として、あるいは二酸化炭素やメタンによる地球温暖化問題など、人間の活動と密接に関わる元素である。 英語の carbon は、1787年にフランスの化学者ギトン・ド・モルボーが「木炭」を指すラテン語 carbo から名づけたフランス語の carbone が転じた。ドイツ語の Kohlenstoff も「炭の物質」を意味する。日本語の「炭素」という語は宇田川榕菴が著作『舎密開宗』にて用いたのがはじめとされる。.

新しい!!: イオン注入と炭素 · 続きを見る »

物質

物質(ぶっしつ)は、.

新しい!!: イオン注入と物質 · 続きを見る »

表面処理

表面処理(ひょうめんしょり、surface treatment、surface finishing)は、機械工学等の分野においては、めっきや塗装など、素材表面の性質を高めるために行われる機械工作法の一種である。硬さや耐摩耗性、潤滑性、耐食性、耐酸化性、耐熱性、断熱性、絶縁性、密着性、および、装飾性や美観など、これらの性質のいくつかを向上させることを主要な目的として施される。 材料技術 (''cf.'') の一分野であり、合金設計を頂点としその傘下の加工、熱処理、溶接、鋳造などの材料プロセス技術群に属するが、補助的技術群のひとつである。しかし熱処理や研磨技術と同様に、金属母材の性能を極限までに高める重要な技術であるにもかかわらず、性能理論が確定しておらず、その存在が極端な過小評価に陥る場合がある。.

新しい!!: イオン注入と表面処理 · 続きを見る »

金属

リウム の結晶。 リチウム。原子番号が一番小さな金属 金属(きんぞく、metal)とは、展性、塑性(延性)に富み機械工作が可能な、電気および熱の良導体であり、金属光沢という特有の光沢を持つ物質の総称である。水銀を例外として常温・常圧状態では透明ではない固体となり、液化状態でも良導体性と光沢性は維持される。 単体で金属の性質を持つ元素を「金属元素」と呼び、金属内部の原子同士は金属結合という陽イオンが自由電子を媒介とする金属結晶状態にある。周期表において、ホウ素、ケイ素、ヒ素、テルル、アスタチン(これらは半金属と呼ばれる)を結ぶ斜めの線より左に位置する元素が金属元素に当たる。異なる金属同士の混合物である合金、ある種の非金属を含む相でも金属様性質を示すものは金属に含まれる。.

新しい!!: イオン注入と金属 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: イオン注入と電子 · 続きを見る »

電子ボルト

物理学において、電子ボルト(エレクトロンボルト、electron volt、記号: eV)とはエネルギーの単位のひとつ。 素電荷(そでんか)(すなわち、電子1個分の電荷の符号を反転した値)をもつ荷電粒子が、 の電位差を抵抗なしに通過すると得るエネルギーが 。.

新しい!!: イオン注入と電子ボルト · 続きを見る »

電界効果トランジスタ

回路基板上に実装された状態の高出力N型チャネルMOSFET 電界効果トランジスタ(でんかいこうかトランジスタ、, FET)は、ゲート電極に電圧をかけることでチャネル領域に生じる電界によって電子または正孔の濃度を制御し、ソース・ドレイン電極間の電流を制御するトランジスタである。電子と正孔の2種類のキャリアの働きによるバイポーラトランジスタに対し、いずれか1種類のキャリアだけを用いるユニポーラトランジスタである。FETの動作原理は電界を使って電流を制御する点で真空管に類似している。 FETは主に接合型FET(ジャンクションFET, JFET)とMOSFETに大別される。他にも、MESFETなどの種類がある。また、それぞれの種別でチャネルの種類によりさらにn型のものとp型のものに分類される。 このページでは主にSiなどの無機半導体について述べる。有機半導体を用いたものについては有機電界効果トランジスタを参照。.

新しい!!: イオン注入と電界効果トランジスタ · 続きを見る »

SOI

従来のMOSFETの構造 SOIを用いたMOSFETの構造 SOI (Silicon on Insulator) は、CMOS LSIの高速性・低消費電力化を向上させる技術である。 従来の集積回路上のMOSFETは、素子間分離をPN接合の逆バイアスによって形成するが、寄生ダイオードやサブストレートとの間に浮遊容量が生じ、信号の遅延やサブストレートへのリーク電流が発生していた。この浮遊容量を低減するため、MOSFETのチャネルの下に絶縁膜を形成し、浮遊容量を減らしたものがSOIである。また、このような絶縁膜を内包したウエハをSOIウエハと呼び、従来のウエハはSOIウエハと区別するためにバルクシリコン(バルクウエハ)と呼ばれる場合がある。 浮遊容量はCMOSのMOSFETに対して、スイッチング時の遅延/電流を増加させる要因であるため、浮遊容量の低減は高速度化/低消費電力化の両方の面で有利になる。 また2次元的な素子間分離にもpn接合の逆方向バイアスによるものではなく、素子下の絶縁膜と結合させた絶縁材を形成することで、完全に分離されたMOSFETを構成できるようにしている。この場合、寄生ダイオードによって意図せず生成されるバイポーラトランジスタを抑制することができ、素子間の浮遊容量/リーク電流を低減することができる。 また素子間分離のためのウェルも小さくできるため、PMOS-NMOS間の距離を小さくでき、配置密度を高めることができる。 SOIウエハの製造法は、SIMOX(Separation by IMplantation of OXygen)方式と張り合わせ方式の2種類がある。SIMOX方式はIBMが中心となって開発した技術で、酸素分子をイオン注入によりシリコン結晶表面から埋め込み、それを高熱で酸化させることでシリコン結晶中に酸化シリコンの絶縁膜を形成する。現在ではSIMOX方式よりさらに表面特性の優れたSmartCut方式が主流になっている。これは、バルクウエハの表面に酸化膜を形成したのちもう一枚の加工されていないバルクウエハと表面同士で貼り合わせ、先のウエハを剥離して作成するものである。剥離厚は酸化膜より深部に事前に注入された水素イオンの表面からの距離によって制御され、剥離面は化学機械研磨(CMP)により表面仕上げされる。 SOIウエハの製造コストは、バルクシリコンのウエハに比べ工程が増えるためその分高価になる。.

新しい!!: イオン注入とSOI · 続きを見る »

材料工学

材料工学(ざいりょうこうがく、英語:materials science and engineering)または材料科学(ざいりょうかがく)は、工学の一分野であり、物理学、化学等の知識を融合して新しい材料(素材)やデバイスの設計と開発、そして評価をおこなう学問である。 プロセス技術(結晶の成長、薄膜化、焼結、鋳造、圧延、溶接、イオン注入、ガラス形成など)、分析評価技術(電子顕微鏡、X線回折、熱量計測など)および産業上の材料生産での費用対利潤の評価などを扱う。.

新しい!!: イオン注入と材料工学 · 続きを見る »

格子欠陥

格子欠陥(こうしけっかん, Lattice Defect)とは、結晶において空間的な繰り返しパターンに従わない要素である。格子欠陥は大別すると「不純物」と「原子配列の乱れ」があり、後者だけを格子欠陥と呼ぶときがある。狭い意味では特に格子空孔(後述)を指すこともある。伝導電子や正孔も広い意味では格子欠陥に含まれる。.

新しい!!: イオン注入と格子欠陥 · 続きを見る »

正孔

正孔(せいこう)は、ホール(Electron hole または単にhole)ともいい、物性物理学の用語。半導体(または絶縁体)において、(本来は電子で満たされているべき)価電子帯の電子が不足した状態を表す。たとえば光や熱などで価電子が伝導帯側に遷移することによって、価電子帯の電子が不足した状態ができる。この電子の不足によってできた孔(相対的に正の電荷を持っているように見える)が正孔(ホール)である。 半導体結晶中においては、周囲の価電子が次々と正孔に落ち込み別の場所に新たな正孔が生じる、という過程を順次繰り返すことで結晶内を動き回ることができ、あたかも「正の電荷をもった電子」のように振舞うとともに電気伝導性に寄与する。なお、周囲の価電子ではなく、伝導電子(自由電子)が正孔に落ち込む場合には、伝導電子と価電子の間のエネルギー準位の差に相当するエネルギーを熱や光として放出し、電流の担体(通常キャリアと呼ぶ)としての存在は消滅する。このことをキャリアの再結合と呼ぶ。 正孔は、伝導電子と同様に、電荷担体として振舞うことができる。正孔による電気伝導性をp型という。半導体にアクセプターをドーピングすると、価電子が熱エネルギーによってアクセプタ準位に遷移し、正孔の濃度が大きくなる。また伝導電子の濃度に対して正孔の濃度が優越する半導体をp型半導体と呼ぶ。 一般に正孔のドリフト移動度(あるいは単に移動度)は自由電子のそれより小さく、シリコン結晶中では電子のおよそ1/3になる。なお、これによって決まるドリフト速度は個々の電子や正孔の持つ速度ではなく、平均の速度であることに注意が必要である。 価電子帯の頂上ではE-k空間上で形状の異なる複数のバンドが縮退しており、それに対応して正孔のバンドも有効質量の異なる重い正孔(heavy hole)と軽い正孔(light hole)のバンドに分かれる。またシリコンなどスピン軌道相互作用が小さい元素においてはスピン軌道スプリットオフバンド(スピン分裂バンド)もエネルギー的に近く(Δ.

新しい!!: イオン注入と正孔 · 続きを見る »

正規分布

率論や統計学で用いられる正規分布(せいきぶんぷ、normal distribution)またはガウス分布(Gaussian distribution)は、平均値の付近に集積するようなデータの分布を表した連続的な変数に関する確率分布である。中心極限定理により、独立な多数の因子の和として表される確率変数は正規分布に従う。このことにより正規分布は統計学や自然科学、社会科学の様々な場面で複雑な現象を簡単に表すモデルとして用いられている。たとえば実験における測定の誤差は正規分布に従って分布すると仮定され、不確かさの評価が計算されている。 また、正規分布の確率密度関数のフーリエ変換は再び正規分布の密度関数になることから、フーリエ解析および派生した様々な数学・物理の理論の体系において、正規分布は基本的な役割を果たしている。 確率変数 が1次元正規分布に従う場合、X \sim N(\mu, \sigma^) 、確率変数 が 次元正規分布に従う場合、X \sim N_n(\mu, \mathit) などと表記される。.

新しい!!: イオン注入と正規分布 · 続きを見る »

準位

準位(じゅんい)とは、量子力学の用語で、あるエネルギーをもつ量子状態のこと。エネルギー準位。.

新しい!!: イオン注入と準位 · 続きを見る »

日刊工業新聞

日刊工業新聞(にっかん こうぎょうしんぶん)は、日本の産業経済紙。発行元は日刊工業新聞社。.

新しい!!: イオン注入と日刊工業新聞 · 続きを見る »

拡散

拡散(かくさん、独、英、仏: Diffusion) とは、粒子、熱、運動量などが自発的に散らばり広がる物理現象である。この現象は着色した水を無色の水に滴下したとき、煙が空気中に広がるときなど、日常よく見られる。これらは、化学反応や外力ではなく、流体の乱雑な運動の結果として起こるものである。.

新しい!!: イオン注入と拡散 · 続きを見る »

ここにリダイレクトされます:

イオン注入装置

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »