ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

スヴァンテ・アレニウス

索引 スヴァンテ・アレニウス

ヴァンテ・アウグスト・アレニウス(アレーニウス、Svante August Arrhenius, 1859年2月19日 - 1927年10月2日)は、スウェーデンの科学者で、物理学・化学の領域で活動した。物理化学の創始者の1人といえる。1903年に電解質の解離の理論に関する業績により、ノーベル化学賞を受賞。アレニウスの式、月のクレーター Arrhenius、ストックホルム大学の研究所名などに名を残している。.

107 関係: 塩基天体物理学天文学太陽系寺田寅彦小川清彦 (天文学者)岩波文庫岩波書店一戸直蔵二酸化炭素会計帳簿彗星地球温暖化地質学化学化石燃料ペール・テオドール・クレーベミランコビッチ・サイクルミルティン・ミランコビッチノーベル化学賞ノーベル賞マイケル・ファラデーポジティブフィードバックヤコブス・ヘンリクス・ファント・ホッフリガルートヴィッヒ・ボルツマンルドルフ・クラウジウスヴュルツブルクヴァルター・ネルンストヴィルヘルム・オストヴァルトパンスペルミア説パウル・エールリヒフランクリン・メダルフランク・ワシントン・ヴェリーフリードリッヒ・コールラウシュアムステルダムアレニウスの式アレゲニー天文台イオンウプサラウプサラ大学ウィラード・ギブズ賞オーロラオスカル・クラインカリフォルニア大学カタル性炎症クレータークヌート・オングストロームグラーツ...コロナシュテファン=ボルツマンの法則ジョゼフ・フーリエストックホルムストックホルム大学スウェーデンスウェーデン王立工科大学スウェーデン王立科学アカデミーセオドア・リチャーズソグン・オ・フィヨーラネ県タンパク質サミュエル・ラングレー優生学王立協会フェロー現代宇宙論神童科学者等差数列算術生理学物理学物理化学解離 (化学)黄道光胞子赤外線酸と塩基英語電解質電解液電気伝導体電気分解電流抗毒素恒星毒素水素水蒸気水酸化物イオン氷河時代気候変動に関する政府間パネル気候感度活性化エネルギー温室効果測量溶液放射圧数学10月2日1859年1903年1927年2月19日 インデックスを展開 (57 もっと) »

塩の結晶 塩(しお)は、塩化ナトリウムを主な成分とし、海水の乾燥・岩塩の採掘によって生産される物質。塩味をつける調味料とし、また保存(塩漬け・塩蔵)などの目的で食品に使用されるほか、ソーダ工業用・融氷雪用・水処理設備の一種の軟化器に使われるイオン交換樹脂の再生などにも使用される。 日本の塩事業法にあっては、「塩化ナトリウムの含有量が100分の40以上の固形物」(ただし、チリ硝石、カイニット、シルビニットその他財務省令で定める鉱物を除く)と定義される(塩事業法2条1項)。.

新しい!!: スヴァンテ・アレニウスと塩 · 続きを見る »

塩基

塩基(えんき、base)は化学において、酸と対になってはたらく物質のこと。一般に、プロトン (H+) を受け取る、または電子対を与える化学種。歴史の中で、概念の拡大をともないながら定義が考え直されてきたことで、何種類かの塩基の定義が存在する。 塩基としてはたらく性質を塩基性(えんきせい)、またそのような水溶液を特にアルカリ性という。酸や塩基の定義は相対的な概念であるため、ある系で塩基である物質が、別の系では酸としてはたらくことも珍しくはない。例えば水は、塩化水素に対しては、プロトンを受け取るブレンステッド塩基として振る舞うが、アンモニアに対しては、プロトンを与えるブレンステッド酸として作用する。塩基性の強い塩基を強塩基(強アルカリ)、弱い塩基を弱塩基(弱アルカリ)と呼ぶ。また、核酸が持つ核酸塩基のことを、単に塩基と呼ぶことがある。.

新しい!!: スヴァンテ・アレニウスと塩基 · 続きを見る »

天体物理学

天体物理学(てんたいぶつりがく、英語:astrophysics)は、天文学及び宇宙物理学の一分野で、恒星・銀河・星間物質などの天体の物理的性質(光度・密度・温度・化学組成など)や天体間の相互作用などを研究対象とし、それらを物理学的手法を用いて研究する学問である。宇宙物理学とも。天文学の中でも19世紀以降に始まった比較的新しい分野で、天文学の近代部門の代表的な分野と目されている。 例として、宇宙論の研究は、理論天体物理学の中で最も規模の大きな対象を扱う学問であるが、逆に宇宙論(特にビッグバン理論)では、我々が知っている最も高いエネルギー領域を扱うがゆえに、宇宙を観測することがそのまま最も微小なスケールでの物理学の実験そのものにもなっている。 実際には、ほぼ全ての近代天文学の研究は、物理学の要素を多く含んでいる。多くの国の天文学系の大学院博士課程の名称は、「天文学 (Astronomy)」や「天体物理学 (Astrophysics)」などまちまちだが、これは専攻の学問内容よりもその研究室の歴史を反映しているに過ぎない。.

新しい!!: スヴァンテ・アレニウスと天体物理学 · 続きを見る »

天文学

星空を観察する人々 天文学(てんもんがく、英:astronomy, 独:Astronomie, Sternkunde, 蘭:astronomie (astronomia)カッコ内は『ラランデ歴書』のオランダ語訳本の書名に見られる綴り。, sterrenkunde (sterrekunde), 仏:astronomie)は、天体や天文現象など、地球外で生起する自然現象の観測、法則の発見などを行う自然科学の一分野。主に位置天文学・天体力学・天体物理学などが知られている。宇宙を研究対象とする宇宙論(うちゅうろん、英:cosmology)とは深く関連するが、思想哲学を起源とする異なる学問である。 天文学は、自然科学として最も早く古代から発達した学問である。先史時代の文化は、古代エジプトの記念碑やヌビアのピラミッドなどの天文遺産を残した。発生間もない文明でも、バビロニアや古代ギリシア、古代中国や古代インドなど、そしてイランやマヤ文明などでも、夜空の入念な観測が行われた。 とはいえ、天文学が現代科学の仲間入りをするためには、望遠鏡の発明が欠かせなかった。歴史的には、天文学の学問領域は位置天文学や天測航法また観測天文学や暦法などと同じく多様なものだが、近年では天文学の専門家とはしばしば天体物理学者と同義と受け止められる。 天文学 (astronomy) を、天体の位置と人間界の出来事には関連があるという主張を基盤とする信念体系である占星術 (astrology) と混同しないよう注意が必要である。これらは同じ起源から発達したが、今や完全に異なるものである。.

新しい!!: スヴァンテ・アレニウスと天文学 · 続きを見る »

太陽系

太陽系(たいようけい、この世に「太陽系」はひとつしかないので、固有名詞的な扱いをされ、その場合、英語では名詞それぞれを大文字にする。、ラテン語:systema solare シュステーマ・ソーラーレ)とは、太陽および、その重力で周囲を直接的、あるいは間接的に公転する天体惑星を公転する衛星は、後者に当てはまるから構成される構造である。主に、現在確認されている8個の惑星歴史上では、1930年に発見された冥王星などの天体が惑星に分類されていた事もあった。惑星の定義も参照。、5個の準惑星、それを公転する衛星、そして多数の太陽系小天体などから成るニュートン (別2009)、1章 太陽系とは、pp.18-19 太陽のまわりには八つの惑星が存在する。間接的に太陽を公転している天体のうち衛星2つは、惑星では最も小さい水星よりも大きい太陽と惑星以外で、水星よりも大きいのは木星の衛星ガニメデと土星の衛星タイタンである。。 太陽系は約46億年前、星間分子雲の重力崩壊によって形成されたとされている。総質量のうち、ほとんどは太陽が占めており、残りの質量も大部分は木星が占めている。内側を公転している小型な水星、金星、地球、火星は、主に岩石から成る地球型惑星(岩石惑星)で、木星と土星は、主に水素とヘリウムから成る木星型惑星(巨大ガス惑星)で、天王星と海王星は、メタンやアンモニア、氷などの揮発性物質といった、水素やヘリウムよりも融点の高い物質から成る天王星型惑星(巨大氷惑星)である。8個の惑星はほぼ同一平面上にあり、この平面を黄道面と呼ぶ。 他にも、太陽系には多数の小天体を含んでいる。火星と木星の間にある小惑星帯は、地球型惑星と同様に岩石や金属などから構成されている小天体が多い。それに対して、海王星の軌道の外側に広がる、主に氷から成る太陽系外縁天体が密集している、エッジワース・カイパーベルトや散乱円盤天体がある。そして、そのさらに外側にはと呼ばれる、新たな小惑星の集団も発見されてきている。これらの小天体のうち、数十個から数千個は自身の重力で、球体の形状をしているものもある。そのような天体は準惑星に分類される事がある。現在、準惑星には小惑星帯のケレスと、太陽系外縁天体の冥王星、ハウメア、マケマケ、エリスが分類されている。これらの2つの分類以外にも、彗星、ケンタウルス族、惑星間塵など、様々な小天体が太陽系内を往来している。惑星のうち6個が、準惑星では4個が自然に形成された衛星を持っており、慣用的に「月」と表現される事がある8つの惑星と5つの準惑星の自然衛星の一覧については太陽系の衛星の一覧を参照。。木星以遠の惑星には、周囲を公転する小天体から成る環を持っている。 太陽から外部に向かって放出されている太陽風は、太陽圏(ヘリオスフィア)と呼ばれる、星間物質中に泡状の構造を形成している。境界であるヘリオポーズでは太陽風による圧力と星間物質による圧力が釣り合っている。長周期彗星の源と考えられているオールトの雲は太陽圏の1,000倍離れた位置にあるとされている。銀河系(天の川銀河)の中心から約26,000光年離れており、オリオン腕に位置している。.

新しい!!: スヴァンテ・アレニウスと太陽系 · 続きを見る »

寺田寅彦

寺田 寅彦(てらだ とらひこ、1878年(明治11年)11月28日 - 1935年(昭和10年)12月31日)は、戦前の日本の物理学者、随筆家、俳人。吉村冬彦(大正11年から使用)、寅日子、牛頓(“ニュートン”)、藪柑子(“やぶこうじ”)の筆名でも知られる。高知県出身(出生地は東京市)。.

新しい!!: スヴァンテ・アレニウスと寺田寅彦 · 続きを見る »

小川清彦 (天文学者)

小川 清彦(おがわ きよひこ、1882年10月2日 - 1950年1月10日)は、明治から昭和期にかけての天文学者・暦学者。日本における古天文学の創始者と言われている。.

新しい!!: スヴァンテ・アレニウスと小川清彦 (天文学者) · 続きを見る »

岩波文庫

岩波文庫(いわなみぶんこ)は、株式会社岩波書店が発行する文庫本レーベル。1927年(昭和2年)7月10日に、ドイツのレクラム文庫を模範とし、書物を安価に流通させ、より多くの人々が手軽に学術的な著作を読めるようになることを目的として創刊された日本初の文庫本のシリーズ。最初の刊行作品は『新訓万葉集』などであった。.

新しい!!: スヴァンテ・アレニウスと岩波文庫 · 続きを見る »

岩波書店

株式会社岩波書店(いわなみしょてん、Iwanami Shoten, Publishers. )は、日本の出版社。.

新しい!!: スヴァンテ・アレニウスと岩波書店 · 続きを見る »

一戸直蔵

一戸 直蔵(いちのへ なおぞう、1878年8月14日 - 1920年11月26日『改訂版 日本アマチュア天文史』、162頁。)は日本の天文学者、科学ジャーナリスト。日本で最初の変光星の観測者、研究者であり『改訂版 日本アマチュア天文史』、160頁。、ジャーナリストとしては反アカデミズムの立場をとったことでも知られている。.

新しい!!: スヴァンテ・アレニウスと一戸直蔵 · 続きを見る »

二酸化炭素

二酸化炭素(にさんかたんそ、carbon dioxide)は、化学式が CO2 と表される無機化合物である。化学式から「シーオーツー」と呼ばれる事もある。 地球上で最も代表的な炭素の酸化物であり、炭素単体や有機化合物の燃焼によって容易に生じる。気体は炭酸ガス、固体はドライアイス、液体は液体二酸化炭素、水溶液は炭酸・炭酸水と呼ばれる。 多方面の産業で幅広く使われる(後述)。日本では高圧ガス保安法容器保安規則第十条により、二酸化炭素(液化炭酸ガス)の容器(ボンベ)の色は緑色と定められている。 温室効果ガスの排出量を示すための換算指標でもあり、メタンや亜酸化窒素、フロンガスなどが変換される。日本では2014年度で13.6億トンが総排出量として算出された。.

新しい!!: スヴァンテ・アレニウスと二酸化炭素 · 続きを見る »

会計帳簿

会計帳簿(かいけいちょうぼ)とは、企業等が取引上その他営業上の財産に影響を及ぼすべき事項を記載した帳簿である。 貸借対照表、損益計算書を作成する基礎となる。.

新しい!!: スヴァンテ・アレニウスと会計帳簿 · 続きを見る »

彗星

アメリカ合衆国アリゾナ州のカタリナ天文台で1974年11月1日に撮影されたコホーテク彗星 クロアチアのパジンで1997年3月29日に撮影されたヘール・ボップ彗星 彗星(すいせい、comet)は、太陽系小天体のうち主に氷や塵などでできており、太陽に近づいて一時的な大気であるコマや、コマの物質が流出した尾(テイル)を生じるものを指す。.

新しい!!: スヴァンテ・アレニウスと彗星 · 続きを見る »

地球温暖化

1940年–1980年の平均値に対する1999年から2008年の地表面の平均気温の変化 1990年–2010 年9月22日年の平均値に対する2070年から2100年の地表面の平均気温変化量の予測 地球温暖化(ちきゅうおんだんか、Global warming)とは、気候変動の一部で、地球表面の大気や海洋の平均温度が長期的に上昇する現象である。最近のものは、温室効果ガスなどの人為的要因や、太陽エネルギーの変化などの環境的要因によるものであるといわれている。単に「温暖化」とも言われている。.

新しい!!: スヴァンテ・アレニウスと地球温暖化 · 続きを見る »

地質学

地球の外観 地質学時標図 地質学(ちしつがく、)とは、地面より下(生物起源の土壌を除く)の地層・岩石を研究する、地球科学の学問分野である。広義には地球化学を含める場合もある。 1603年、イタリア語でgeologiaという言葉がはじめてつかわれた。当時はまれにしか使用されていなかったが、1795年以降一般に受け入れられた。.

新しい!!: スヴァンテ・アレニウスと地質学 · 続きを見る »

化学

化学(かがく、英語:chemistry、羅語:chemia ケーミア)とは、さまざまな物質の構造・性質および物質相互の反応を研究する、自然科学の一部門である。言い換えると、物質が、何から、どのような構造で出来ているか、どんな特徴や性質を持っているか、そして相互作用や反応によってどのように別なものに変化するか、を研究する岩波理化学辞典 (1994) 、p207、【化学】。 すべての--> 日本語では同音異義の「科学」(science)との混同を避けるため、化学を湯桶読みして「ばけがく」と呼ぶこともある。.

新しい!!: スヴァンテ・アレニウスと化学 · 続きを見る »

化石燃料

化石燃料(かせきねんりょう、fossil fuel)は、地質時代にかけて堆積した動植物などの死骸が地中に堆積し、長い年月をかけて地圧・地熱などにより変成されてできた、言わば化石となった有機物のうち、人間の経済活動で燃料として用いられる(または今後用いられることが検討されている)ものの総称である。.

新しい!!: スヴァンテ・アレニウスと化石燃料 · 続きを見る »

ペール・テオドール・クレーベ

ペール・テオドール・クレーベ(Per Teodor Cleve、1840年2月10日 - 1905年6月18日)はスウェーデンの化学者、地質学者である。ホルミウム、ツリウムを発見した。 ストックホルムに生まれた。ウプサラ大学で学び、1863年に博士号を得た。ウプサラ大学で働いた後、各国に留学し、1874年にウプサラ大学の一般化学、農芸化学の教授となった。 1879年に、ホルミウムとツリウムを発見した。またカール・グスタフ・モサンデル (Carl Gustaf Mosander) が1841年に発見したヂディミウム (didymium) が、2つの希土類元素の混合物であること1874年に示した。1885年にカール・アウアー・フォン・ヴェルスバッハが、ネオジム、プラセオジムとして分離した。 1884年にイギリス王立協会から、希土類の研究の業績に対してデービーメダルを受賞した。 探検家で鉱物学者のアドルフ・エリク・ノルデンショルドによって、鉱物の希土閃ウラン鉱(クレーベ石、cleveite、閃ウラン鉱の変種)に命名された。 1970年度のノーベル生理学・医学賞を受賞したウルフ・スファンテ・フォン・オイラーは孫である。.

新しい!!: スヴァンテ・アレニウスとペール・テオドール・クレーベ · 続きを見る »

ミランコビッチ・サイクル

'''ミランコビッチ・サイクルを決定付ける変化要素とその結果'''現在から100万年前までの情報。上から3つの要素は日射量を決定づける要因である。歳差運動(Precession)の周期は3つあり、それぞれ1万9000年、2万2000年、2万4000年である。自転軸の傾斜角(Obliquity)の変化は周期4万1000年。公転軌道の離心率(Eccentricity)変化は周期9万5000年、12万5000年、40万年。この結果、北緯65度における日射量は複雑な変化を示すことが計算できる。氷床規模の変化は日射量の変化と相関が良いように見える。 '''地球の自転軸の傾きの変化'''現在の値は23.4度であるが、22.1度から24.5度の間を変化する。周期は4万1000年 コマの首振り運動と同じ挙動を示す。周期は約2万5800年 '''地球の公転軌道'''実際の離心率とは異なり、楕円であることを極端に強調している ミランコビッチ・サイクル(Milankovitch cycle)とは、地球の公転軌道の離心率の周期的変化、自転軸の傾きの周期的変化、自転軸の歳差運動という3つの要因により、日射量が変動する周期である。1920 - 1930年代に、セルビアの地球物理学者ミルティン・ミランコビッチ(Milutin Milanković)は、地球の離心率の周期的変化、地軸の傾きの周期的変化、自転軸の歳差運動の三つの要素が地球の気候に影響を与えると仮説をたて、実際に地球に入射する日射量の緯度分布と季節変化について当時得られる最高精度の公転軌道変化の理論を用いて非常に正確な日射量長周期変化を計算し、間もなくして放射性同位体を用いた海水温の調査で、その仮説を裏付けた。.

新しい!!: スヴァンテ・アレニウスとミランコビッチ・サイクル · 続きを見る »

ミルティン・ミランコビッチ

ミルティン・ミランコビッチ(Милутин Миланковић, Milutin Milanković、1879年5月28日 - 1958年12月12日)はセルビアの地球物理学者である。ミランコビッチ・サイクルと呼ばれる地球の公転軌道の離心率と自転軸の傾きと自転軸の歳差運動により、周期的に気候が変動することを研究したことで知られる。.

新しい!!: スヴァンテ・アレニウスとミルティン・ミランコビッチ · 続きを見る »

ノーベル化学賞

ノーベル化学賞(ノーベルかがくしょう、Nobelpriset i kemi)はノーベル賞の一部門。アルフレッド・ノーベルの遺言によって創設された6部門のうちの一つ。化学の分野において重要な発見あるいは改良を成し遂げた人物に授与される。 ノーベル化学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には宝箱を持ち雲の中から現れた自然の女神のベールを科学の神が持ち上げて素顔を眺めている姿(物理学賞と共通)がデザインされている。.

新しい!!: スヴァンテ・アレニウスとノーベル化学賞 · 続きを見る »

ノーベル賞

ノーベル賞(ノーベルしょう)は、ダイナマイトの発明者として知られるアルフレッド・ノーベルの遺言に従って1901年から始まった世界的な賞である。物理学、化学、生理学・医学、文学、平和および経済学の「5分野+1分野」で顕著な功績を残した人物に贈られる。 経済学賞だけはノーベルの遺言にはなく、スウェーデン国立銀行の設立300周年祝賀の一環としてノーベルの死後70年後にあたる1968年に設立されたものであり、ノーベル財団は「ノーベル賞ではない」としているが、一般にはノーベル賞の一部門として扱われることが多い。.

新しい!!: スヴァンテ・アレニウスとノーベル賞 · 続きを見る »

マイケル・ファラデー

マイケル・ファラデー(Michael Faraday, 1791年9月22日 - 1867年8月25日)は、イギリスの化学者・物理学者(あるいは当時の呼称では自然哲学者)で、電磁気学および電気化学の分野での貢献で知られている。 直流電流を流した電気伝導体の周囲の磁場を研究し、物理学における電磁場の基礎理論を確立。それを後にジェームズ・クラーク・マクスウェルが発展させた。同様に電磁誘導の法則、反磁性、電気分解の法則などを発見。磁性が光線に影響を与えること、2つの現象が根底で関連していることを明らかにした entry at the 1911 Encyclopaedia Britannica hosted by LovetoKnow Retrieved January 2007.

新しい!!: スヴァンテ・アレニウスとマイケル・ファラデー · 続きを見る »

ポジティブフィードバック

ポジティブフィードバックのブロック線図 ポジティブフィードバック(、正帰還 正のフィードバックは、出力の一部を帰還回路を通し入力に加算する制御系のことである。出力の解が拡散することから非安定平衡となる。 生体系においても同様のシステムが存在する。.

新しい!!: スヴァンテ・アレニウスとポジティブフィードバック · 続きを見る »

ヤコブス・ヘンリクス・ファント・ホッフ

ヤコブス・ヘンリクス・ファント・ホッフ(Jacobus Henricus van 't Hoff, 1852年8月30日 – 1911年3月1日)はオランダの化学者。物理化学の分野で大きな功績をあげ、特に熱力学において「ファントホッフの式」を発見したことで知られる。これによって1901年に最初のノーベル化学賞を受賞した。この他、有機化学や反応速度論、化学平衡、浸透圧、立体化学に関する研究がある。.

新しい!!: スヴァンテ・アレニウスとヤコブス・ヘンリクス・ファント・ホッフ · 続きを見る »

リガ

リガ、またはリーガ( 、、、Ryga、英語、)は、ラトビア共和国の首都で、同国最大の人口を擁する都市。人口は69万9,203人(2012年時点)。「バルト海の真珠」と讃えられる美しい港町で、その旧市街はユネスコの世界遺産(文化遺産)に登録されている。.

新しい!!: スヴァンテ・アレニウスとリガ · 続きを見る »

ルートヴィッヒ・ボルツマン

ウィーンにあるボルツマンの墓にはエントロピーの公式が刻まれている。 ルートヴィッヒ・エードゥアルト・ボルツマン(Ludwig Eduard Boltzmann, 1844年2月20日 - 1906年9月5日)は、オーストリア・ウィーン出身の物理学者、哲学者でウィーン大学教授。統計力学の端緒を開いた功績のほか、電磁気学、熱力学、数学の研究で知られる。.

新しい!!: スヴァンテ・アレニウスとルートヴィッヒ・ボルツマン · 続きを見る »

ルドルフ・クラウジウス

ルドルフ・ユリウス・エマヌエル・クラウジウス(Rudolf Julius Emmanuel Clausius, 1822年1月2日 - 1888年8月24日)は、ドイツの物理学者。熱力学第一法則・第二法則の定式化、エントロピーの概念の導入など、熱力学の重要な基礎を築いた。.

新しい!!: スヴァンテ・アレニウスとルドルフ・クラウジウス · 続きを見る »

ヴュルツブルク

ヴュルツブルクの象徴的風景、マリエンベルク要塞と旧マイン橋 世界遺産ヴュルツブルクのレジデンツ ヴュルツブルク(標準ドイツ語:Würzburg, バイエルン語:Wiazburg)は、ドイツ連邦共和国バイエルン州ウンターフランケン行政管区の郡独立都市で、ウンターフランケン行政管区、ウンターフランケン郡市連合、ヴュルツブルク郡の本部所在地である。このマイン川沿いの都市はバイエルン州の23の上級中心都市の一つであり、人口135,000強の人口はミュンヘン、ニュルンベルク、アウクスブルクに次いで同州で4番目に大きな都市である。ビュルツブルク、ウュルツブルクとも表記する。 アイルランドから渡来しフランケン地方をキリスト教化した聖キリアン (Kilian) の殉教地として中世より司教領として栄えた。現在この都市は、カトリックのヴュルツブルク司教区の司教座都市である。近隣のより大きな都市は、北西約120kmのフランクフルト・アム・マイン、南東115kmのニュルンベルク、140km南西のシュトゥットガルト、177km西のマンハイムが挙げられる。ニュルンベルク、フランクフルトへはいずれもICEでほぼ1時間ほどである。ヴュルツブルクは2004年に1300年祭を祝った。世界的に有名なヴュルツブルクのレジデンツは、その庭園群と広場を含め、1981年にユネスコ世界遺産に登録された。ドイツ観光街道の代表的存在であるロマンティック街道の起点として、またフランケン・ワインの集積地として知られている。.

新しい!!: スヴァンテ・アレニウスとヴュルツブルク · 続きを見る »

ヴァルター・ネルンスト

ヴァルター・ヘルマン・ネルンスト(、1864年6月25日 – 1941年11月18日)はドイツの化学者、物理化学者。ネルンストの式や、熱力学第三法則を発見した。.

新しい!!: スヴァンテ・アレニウスとヴァルター・ネルンスト · 続きを見る »

ヴィルヘルム・オストヴァルト

フリードリヒ・ヴィルヘルム・オストヴァルト(Friedrich Wilhelm Ostwald、Vilhelms Ostvalds、1853年9月2日 – 1932年4月4日)はドイツ(バルト・ドイツ人)の化学者。オストワルトあるいはオストワルドとも呼ばれる。1909年、触媒作用・化学平衡・反応速度に関する業績が認められ、ノーベル化学賞を受賞した。ヤコブス・ヘンリクス・ファント・ホッフやスヴァンテ・アレニウスと共に物理化学という分野を確立した1人とされている。.

新しい!!: スヴァンテ・アレニウスとヴィルヘルム・オストヴァルト · 続きを見る »

パンスペルミア説

パンスペルミア説(パンスペルミアせつ、panspermia)は、生命の起源に関する仮説のひとつである。生命は宇宙に広く多く存在し、地球の生命の起源は地球ではなく他の天体で発生した微生物の芽胞が地球に到達したもの、とする説である。「胚種広布説」とも邦訳される。またギリシャ語で「種をまく」という意味がある。.

新しい!!: スヴァンテ・アレニウスとパンスペルミア説 · 続きを見る »

パウル・エールリヒ

パウル・エールリヒ(Paul Ehrlich, 1854年3月14日 - 1915年8月20日)はドイツの細菌学者・生化学者。 「化学療法 (chemotherapy)」という用語と「特効薬 (magic bullet)」という概念をはじめて用いた。.

新しい!!: スヴァンテ・アレニウスとパウル・エールリヒ · 続きを見る »

フランクリン・メダル

フランクリン・メダル(英: Franklin Medal)は、1997年までフランクリン協会より個人に贈られていた科学技術賞。1998年以降は、ベンジャミン・フランクリン・メダルとなっている。.

新しい!!: スヴァンテ・アレニウスとフランクリン・メダル · 続きを見る »

フランク・ワシントン・ヴェリー

フランク・ワシントン・ヴェリー(Frank Washington Very 、1852年 – 1927年11月23日)はアメリカ合衆国の天文学者。 マサチューセッツ州のセイラムに生まれ、マサチューセッツ工科大学で学んだ。1878年から1895年までアレゲニー天文台で働き、1890年にウェスタン大学(現ピッツバーグ大学)の教授となり、1892年から1896年の間はブラウン大学のラッド天文台の台長を務めた。 ヴェリーの重要な業績のひとつはボロメータをつかって、赤外線を測定し、月や惑星の表面温度を計測したことである。サミュエル・ラングレーは1890年に月の観測についてまとめた論文を発表したが、その中には理由は不明であるが、ヴェリーの観測についての言及はみられない。1891年にヴェリーは自らの月の熱の分布に関する論文を発表し、その中には月食時の測定値も含まれる。1890年にサミュエル・ラングレーに出版されたピッツバーグのアレゲニィ天文台でのヴェリーとの赤外線の共同観測における著作はスヴァンテ・アレニウスによって初の温室効果の計算に使用された。 彼の功績を称えて月のヴェリー・クレータに命名された。 Category:アメリカ合衆国の天文学者 Category:ピッツバーグ大学の教員 Category:マサチューセッツ州セイラム出身の人物 Category:1852年生 Category:1927年没.

新しい!!: スヴァンテ・アレニウスとフランク・ワシントン・ヴェリー · 続きを見る »

フリードリッヒ・コールラウシュ

フリードリッヒ・コールラウシュ(Friedrich Wilhelm Georg Kohlrausch, 1840年10月14日 - 1910年1月17日)はドイツの物理学者。.

新しい!!: スヴァンテ・アレニウスとフリードリッヒ・コールラウシュ · 続きを見る »

アムステルダム

アムステルダム(オランダ語: Amsterdam )は、オランダの北ホラント州の基礎自治体(ヘメーンテ)であり、オランダ最大の都市である。人口820,654人(2012年)、都市圏人口は2,289,762人にのぼる。商業や観光が盛んなヨーロッパ屈指の世界都市である。オランダ語での発音は片仮名で表記すると「アムスタダム」に近い。地名は「アムステル川のダム(堤防)」の意(「ダム広場」の項を参照)。 憲法に規定されたオランダの首都だが、国会、中央官庁、王宮、各国の大使館など首都機能のほとんどはデン・ハーグにある。 元々は小さな漁村だったが、13世紀にアムステル川の河口にダムを築き、町が築かれた。16世紀には海運貿易の港町として、ヨーロッパ屈指の都市へと発展した。現在のアムステルダムは、アムステルダム中央駅を中心に市内に網の目状に広がる運河や、その運河に沿って並ぶ無総督時代の豪商の邸宅、自転車、飾り窓の女性たち、アンネ・フランクの家などで広く知られる。.

新しい!!: スヴァンテ・アレニウスとアムステルダム · 続きを見る »

アレニウスの式

アレニウスの式(アレニウスのしき、Arrhenius equation)は、スウェーデンの科学者スヴァンテ・アレニウスが1884年に提出した、ある温度での化学反応の速度を予測する式である。5年後の1889年、ヤコブス・ヘンリクス・ファント・ホッフによりこの式の物理学的根拠が与えられた。 反応の速度定数 k は で表される。活性化エネルギーEa の単位として、1モルあたりではなく1粒子あたりで考えると、 と表すことも出来る。 活性化エネルギーはアレニウスパラメータとも呼ばれる。また指数関数部分 exp (-Ea /RT) はボルツマン因子と呼ばれる。.

新しい!!: スヴァンテ・アレニウスとアレニウスの式 · 続きを見る »

アレゲニー天文台

アレゲニー天文台(Allegheny Observatory)はアメリカ合衆国の天文台である。ピッツバーグ大学の物理学、天文学部門の施設となっている。施設はアメリカの歴史遺産登録制度(National Register of Historical Places)に登録されている。.

新しい!!: スヴァンテ・アレニウスとアレゲニー天文台 · 続きを見る »

イオン

イオン(Ion、ion)とは、電子の過剰あるいは欠損により電荷を帯びた原子または原子団のことである。電離層などのプラズマ、電解質の水溶液、イオン結晶などのイオン結合性を持つ物質内などに存在する。 陰極や陽極に引かれて動くことから、ギリシャ語のἰόνイオン, ローマ字表記でion("going")より、 ion(移動)の名が付けられた。.

新しい!!: スヴァンテ・アレニウスとイオン · 続きを見る »

ウプサラ

ウプサラ (Uppsala ウップサーラ) は、スウェーデン中部の都市で、ウプサラ県の県都。人口は149,245人(2015年)で、スウェーデン第4位。北欧最古の大学であるウプサラ大学がある。.

新しい!!: スヴァンテ・アレニウスとウプサラ · 続きを見る »

ウプサラ大学

ウプサラ大学(Uppsala universitet、Uppsala University)は、スウェーデンのウプサラにある、1477年に創設された北欧最古の大学。ヨーロッパの最も権威ある高等教育・研究機関の一つであり、15人の大学関係者(卒業生・教員等)がノーベル賞を受賞している。 大学間及び産学協力に積極的であり、ヨーロッパやアメリカ、アジアなど、世界の1,000以上の大学と約3,000にのぼる共同研究を行なっており、毎年、約5,000の学術出版物が発行されている。 数多くの分野で世界最先端の研究を実施しており、ウプサラ生物医学センター(BMC:The Uppsala Biomedical Centre)は、生命科学に関するヨーロッパ最大の拠点の一つであり、オングストローム研究所(Ångström Laboratory)は、材料科学に関するヨーロッパ最先端研究所の一つである。また、卒業生でもある第二代国連事務総長ダグ・ハマーショルドの名を冠した図書館を設置し、平和と紛争研究において世界的拠点の一つである研究所を擁している。.

新しい!!: スヴァンテ・アレニウスとウプサラ大学 · 続きを見る »

ウィラード・ギブズ賞

ウィラード・ギブズ賞(Willard Gibbs Award)はアメリカ化学会によって1911年以来授与されている化学の賞。アメリカ合衆国の物理化学者ウィラード・ギブズの功績を讃えて創設された。.

新しい!!: スヴァンテ・アレニウスとウィラード・ギブズ賞 · 続きを見る »

オーロラ

アラスカのオーロラ 第28次長期滞在のクルーが国際宇宙ステーションから撮ったオーロラの映像。撮影時刻はグリニッジ標準時で2011年9月7日17時38分03秒から17時49分15秒。場所はインド洋南部のフランス領南方・南極地域から南オーストラリア上空にかけて。 オーロラ()は、天体の極域近辺に見られる大気の発光現象である。極光(きょっこう)ともいう神沼 (2009)、141頁。。以下本項では特に断らないかぎり、地球のオーロラについて述べる。 女神の名に由来するオーロラは古代から古文書や伝承に残されており、日本でも観測されている。近代に入ってからは両極の探検家がその存在を広く知らしめた。オーロラの研究は電磁気学の発展とともに進歩した。発生原理は、太陽風のプラズマが地球の磁力線に沿って高速で降下し大気の酸素原子や窒素原子を励起することによって発光すると考えられているが、その詳細にはいまだ不明な点が多い。光(可視光)以外にも各種電磁波や電流と磁場、熱などが出る。音(可聴音)を発しているかどうかには議論がある。両極点の近傍ではむしろ見られず、オーロラ帯という楕円上の地域で見られやすい。南極と北極で形や光が似通う性質があり、これを共役性という。地球以外の惑星でも地磁気と大気があれば出現する。さらに状況さえ再現すれば、人工的にオーロラを出すこともできる。.

新しい!!: スヴァンテ・アレニウスとオーロラ · 続きを見る »

オスカル・クライン

ル・クライン オスカル・クライン(Oskar Klein, 1894年9月15日 - 1977年2月5日)は スウェーデンの理論物理学者である。仁科芳雄と散乱に関するクライン=仁科の式を導いたことなどで知られる。 スウェーデンのストックホルム県ダンデリードに、ストックホルムのラビを務めるゴットリーブ・クラインの息子として生れた。ノーベル研究所でスヴァンテ・アレニウスに学んだ。その後ジャン・ペランに学んだが、第1次大戦の勃発により、兵役についた。 1917年から数年デンマークのコペンハーゲンにおいてニールス・ボーアのもとで研究し、1921年ストックホルム大学で博士号を取得した。1923年にアメリカミシガン州、アナーバーのミシガン大学で講師の職を得て、デンマーク人の妻ゲルダ・コッホとともに移り住んだ。1925年、クラインは再びコペンハーゲンに戻ると、オランダのライデンでポール・エーレンフェストとともに働き、1926年にルンド大学の講師になった。1930年には、かつてイヴァール・フレッドホルムが1927年に死去するまでその椅子にあったストックホルム大学の物理学教授職のオファーを受け、1961年に名誉教授として退任するまでその職を務めた。1959年、マックス・プランク・メダルを受章した。.

新しい!!: スヴァンテ・アレニウスとオスカル・クライン · 続きを見る »

カリフォルニア大学

10大学からなるカリフォルニア大学システム(UC system)はアメリカ合衆国で最大規模の州立大学群であり、カリフォルニア大学バークレー校を旗艦校としている。モットーはラテン語で「fiat lux」(「光あれ」の意味)。各キャンパスはそれぞれ独立に運営される別の大学であるため、カリフォルニア大学という大学が単体で存在する訳ではない。 在学者19万1000人以上と存命同窓生134万0000人以上を資金母体とした約49億ドルの運用可能な基金を有している(アメリカ国内で7番目の規模)。.

新しい!!: スヴァンテ・アレニウスとカリフォルニア大学 · 続きを見る »

カタル性炎症

タル性炎症(カタルせいえんしょう)は、粘膜の滲出性炎症。粘液の分泌が亢進する。 消化管、鼻腔や気管支などの粘膜の表層に炎症が起きた際、同時に粘液の分泌が亢進し、著明な粘膜上皮の剥離が起きる。 カタル性炎症には胃で起こる急性胃炎、気管支で起こる気管支カタル、大腸で起こる大腸カタルなどがある。.

新しい!!: スヴァンテ・アレニウスとカタル性炎症 · 続きを見る »

クレーター

月面のクレーター クレーター (crater) とは、天体衝突などによって作られる地形である。典型的には、円形の盆地とそれを取り囲む円環状の山脈であるリムからなるが、実際にはさまざまな形態がある。主に隕石・彗星・小惑星・微惑星などの衝突でできるが、核爆発や大量の火薬などの爆発でも同様の地形ができる。 ギリシャ語で「ボウル」「皿」を意味する語が語源で、本来は成因を問わず円形の窪地を意味し、火山の噴火口や、沈降による穴も含む。英語文献では、そのような意味での使用も少なくない。なお、コップ座の学名はCrater(クラテル)で、同じ語源である。 狭義には、天体衝突で形成された地形のことである。1609年にガリレオ・ガリレイが、月面を天体望遠鏡で観察し、多数の円形の凹地を確認したが、ガリレオは「小さな斑点」と呼んでいる。成因を明確に示したいときは衝突クレーター、インパクトクレーター (impact crater) と呼ぶ。またこの意味で使う場合は、「円形の窪地」という本来の意味ではクレーターと呼べないような形状の地形(たとえば地中構造、リムの一部のみ、など)も含めることが多い。窪地が明瞭なものは隕石孔(いんせきこう)と呼ぶこともある。.

新しい!!: スヴァンテ・アレニウスとクレーター · 続きを見る »

クヌート・オングストローム

クヌート・オングストローム(Knut Johan Ångström 、1857年1月12日-1910年3月4日)はスウェーデンの物理学者である。アンデルス・オングストロームの息子である。 ウプサラ大学、シュトラスブルク大学などで学び、1885年に新しくできたストックホルム大学の物理学の講師になった。1891年にウプサラ大学に戻り、1896年、物理学の教授になった。 太陽からの熱放射と地球大気による吸収の研究を行った。1893年に日照計の発明を行った。赤外線領域のスペクトルの研究を行った。 Category:スウェーデンの物理学者 Category:スウェーデン王立科学アカデミー会員 Category:ウプサラ大学の教員 Category:ストックホルム大学の教員 Category:1857年生 Category:1910年没.

新しい!!: スヴァンテ・アレニウスとクヌート・オングストローム · 続きを見る »

グラーツ

ラーツ(Graz)は、オーストリアの人口第2の都市で、シュタイアーマルク州の州都。人口は約25万人。郡に属さない憲章都市(Statutarstadt)であるが、グラーツ=ウムゲーブング郡の郡庁が置かれている。 1999年に街の中心部がグラーツ市歴史地区として世界遺産に登録された(2010年に拡大登録)。2003年の欧州文化首都。.

新しい!!: スヴァンテ・アレニウスとグラーツ · 続きを見る »

コロナ

1999年8月11日の皆既日食で見られたコロナ コロナ (Corona) とは、太陽の周りに見える自由電子の散乱光のこと。もしくは、太陽表面にあるもっとも外縁にある電気的に解離したガス層。「太陽コロナ」との呼び方もある。.

新しい!!: スヴァンテ・アレニウスとコロナ · 続きを見る »

シュテファン=ボルツマンの法則

ュテファン.

新しい!!: スヴァンテ・アレニウスとシュテファン=ボルツマンの法則 · 続きを見る »

ジョゼフ・フーリエ

ャン・バティスト・ジョゼフ・フーリエ男爵(Jean Baptiste Joseph Fourier, Baron de、1768年3月21日 - 1830年5月16日)は、フランスの数学者・物理学者。 固体内での熱伝導に関する研究から熱伝導方程式(フーリエの方程式)を導き、これを解くためにフーリエ解析と呼ばれる理論を展開した。フーリエ解析は複雑な周期関数をより簡単に記述することができるため、音や光といった波動の研究に広く用いられ、現在調和解析という数学の一分野を形成している。 このほか、方程式論や方程式の数値解法の研究があるほか、次元解析の創始者と見なされることもある。また統計局に勤務した経験から、確率論や誤差論の研究も行った。.

新しい!!: スヴァンテ・アレニウスとジョゼフ・フーリエ · 続きを見る »

ストックホルム

トックホルム(Stockholm )はスウェーデンの首都で、スウェーデン最大の都市である。北欧を代表する世界都市であり、2014年、アメリカのシンクタンクが公表したビジネス・人材・文化・政治などを対象とした総合的な世界都市ランキングにおいて、世界第33位の都市と評価された (2014年4月公表)。ストックホルム県(Stockholms län)に属す。人口は約75万人。「水の都」、「北欧のヴェネツィア」ともいわれ、水の上に浮いているような都市景観をもつ。北欧で最大の人口を誇り、バルト海沿岸では、サンクトペテルブルクに次いで第2位。1912年に第5回夏季オリンピックが開催された。.

新しい!!: スヴァンテ・アレニウスとストックホルム · 続きを見る »

ストックホルム大学

トックホルム大学(スウェーデン語:Stockholms universitet)は、スウェーデンの首都ストックホルムにある国立大学。1878年に設立され、現在39,000人あまりの学生が学び、4,600人の職員・博士号候補者がいる。 ノーベル賞受賞者や実業家、政治家を輩出している大学であり、スウェーデン、ヨーロッパで評判のいい大学のひとつである。 世界ランクにも登場するように、大規模な学校ながら比較的少人数のクラス編成で質の高い教育を行っている。学生・教職員ともに多様な国籍・人種で構成されており、男女比のバランスもよい。多様な分野の実業界出身、兼任の学生・教職員も多いため、講義・研究は実践的で、アカデミックと実務の両方に強い。修士課程以上では、英語で受講し学位を取得できるコースも複数あるが狭き門である。 また、ストックホルム市の郊外に植物園も所有しており、2007年5月には日本の天皇、皇后もスウェーデン国王夫妻と共に訪問した。  毎年12月にノーベル賞受賞者の記念講演もここで行われている。.

新しい!!: スヴァンテ・アレニウスとストックホルム大学 · 続きを見る »

スウェーデン

ウェーデン王国(スウェーデンおうこく、スウェーデン語: )、通称スウェーデンは、北ヨーロッパのスカンディナヴィア半島に位置する立憲君主制国家。首都はストックホルム。西にノルウェー、北東にフィンランドと国境を接し、南西にカテガット海峡を挟んでデンマークと近接する。東から南にはバルト海が存在し、対岸のロシアやドイツとの関わりが深い。法定最低賃金は存在しておらず、スウェーデン国外の大企業や機関投資家に経済を左右されている。.

新しい!!: スヴァンテ・アレニウスとスウェーデン · 続きを見る »

スウェーデン王立工科大学

王立工科大学(おうりつこうかだいがく、英語:Royal Institute of Technology, スウェーデン語:Kungliga Tekniska högskolan)は、スウェーデンの首都ストックホルムにある理工系総合大学である。大学の略称はスウェーデン語名の頭文字をとってKTH。ヨーロッパ有数の工科大学であり、特に情報理工学と自然科学の領域において世界的にも高く評価されている。.

新しい!!: スヴァンテ・アレニウスとスウェーデン王立工科大学 · 続きを見る »

スウェーデン王立科学アカデミー

ウェーデン王立科学アカデミー()は、1739年にフレドリク1世によって設立された、スウェーデン王立アカデミーの1つである。スウェーデン王立科学アカデミーは独立行政法人であり、自然科学と数学の発展を目的とした活動を行っている。.

新しい!!: スヴァンテ・アレニウスとスウェーデン王立科学アカデミー · 続きを見る »

セオドア・リチャーズ

ドア・ウィリアム・リチャーズ(Theodore William Richards, 1868年1月31日 - 1928年4月2日)は、アメリカ合衆国の物理化学者。アメリカ人初のノーベル化学賞受賞者である。原子番号の大きな原子の原子量を正確に求めたことで知られる。.

新しい!!: スヴァンテ・アレニウスとセオドア・リチャーズ · 続きを見る »

ソグン・オ・フィヨーラネ県

ン・オ・フィヨーラネ県(Sogn og Fjordane )はノルウェーの県。北から時計回りにムーレ・オ・ロムスダール県、オップラン県、ブスケルー県、ホルダラン県と接している。 ライカンゲル市ハーマンセルが県庁所在地である。.

新しい!!: スヴァンテ・アレニウスとソグン・オ・フィヨーラネ県 · 続きを見る »

タンパク質

ミオグロビンの3D構造。αヘリックスをカラー化している。このタンパク質はX線回折によって初めてその構造が解明された。 タンパク質(タンパクしつ、蛋白質、 、 )とは、20種類存在するL-アミノ酸が鎖状に多数連結(重合)してできた高分子化合物であり、生物の重要な構成成分のひとつである生化学辞典第2版、p.810 【タンパク質】。 構成するアミノ酸の数や種類、また結合の順序によって種類が異なり、分子量約4000前後のものから、数千万から億単位になるウイルスタンパク質まで多種類が存在する。連結したアミノ酸の個数が少ない場合にはペプチドと言い、これが直線状に連なったものはポリペプチドと呼ばれる武村(2011)、p.24-33、第一章 たんぱく質の性質、第二節 肉を食べることの意味ことが多いが、名称の使い分けを決める明確なアミノ酸の個数が決まっているわけではないようである。 タンパク質は、炭水化物、脂質とともに三大栄養素と呼ばれ、英語の各々の頭文字を取って「PFC」とも呼ばれる。タンパク質は身体をつくる役割も果たしている『見てわかる!栄養の図解事典』。.

新しい!!: スヴァンテ・アレニウスとタンパク質 · 続きを見る »

サミュエル・ラングレー

ミュエル・P・ラングレー カタパルトから打ち出されたエアロドローム サミュエル・ラングレー(Samuel Langley、1834年8月22日 – 1906年2月27日)は、アメリカの天文学者、発明家で航空の先駆者の一人。スミソニアン博物館の3代目の事務局長でスミソニアン天体物理観測所の設立者であった。1903年に2回の飛行試験を試みたが成功しなかった。ボロメータの発明者でもある。ボストン・ラテン・スクールを卒業後、ハーバード大学天文台で助手を務め、海軍兵学校で数学の教鞭を取った。1867年、アレゲニィ天文台の所長に就任して、西ペンシルベニア大学(現ピッツバーグ大学)の天文学教授に就任した。1891年まで勤め、その間、1887年、3代目のスミソニアン博物館の館長に就任した。ラングレーはスミソニアン天体物理観測所の開設者でもあった。 1886年、太陽物理における業績を称えてヘンリー・ドレイパー・メダルを全米科学アカデミーより授与される。同じく1886年にランフォード・メダルを受賞している。1890年に出版されたピッツバーグのアレゲニィ天文台でのフランク・ワシントン・ヴェリーとの赤外線の共同観測における著作はスヴァンテ・アレニウスによって初の温室効果の計算に使用された。 ラングレーの飛行機の実験はゴム動力の模型とグライダーから始められた。回転装置を作って翼の研究を行った。軍から5万ドルの予算を得て有人飛行機の製作を試みた。1896年試作した無人の動力付の模型は2km以上を飛行した。有人飛行実験は、危険を小さくするためにポトマック川の水上で行なうことにした。1903年10月7日と12月8日の実験はカタパルトから射出する方法で行われたが、2回とも成功しなかった。技術的にはライト兄弟のもの(12馬力)より、重量あたりの出力の大きいエンジン(52馬力)を搭載していた。このエンジンはシリンダーを放射状に5本配置したもので、航空機用星型エンジンのはじまりとなった。2枚の主翼を前後に配置したタンデム翼の機体でピッチとヨーの制御はできたがロールの制御はできなかった。2回目の飛行ではカタパルトから打ち出された機体は反転して川に墜落した。機体の名前はエアロドロームという。 ライト兄弟がライトフライヤー号で初飛行に成功したのはそれから間もない1903年12月17日のことであった。しかし、直前のラングレーのこの失敗のため、兄弟の初飛行のニュースは報道機関から疑問視されてほぼ黙殺されてしまった。 1914年にライト兄弟と飛行機の特許で争っていたグレン・カーチスによってラングレーの飛行機が復元され、飛行したが裁判所はライト兄弟の特許を認めた。なお、この復元機は大幅な改良がなされていたことが後に発覚している。 ちなみにライト兄弟は飛行機の研究を進めていたときに、何度かラングレーに手紙を書いて教えを請うてもいる。.

新しい!!: スヴァンテ・アレニウスとサミュエル・ラングレー · 続きを見る »

優生学

優生学(ゆうせいがく、eugenics)は、応用科学に分類される学問の一種で、一般に「生物の遺伝構造を改良する事で人類の進歩を促そうとする科学的社会改良運動」と定義される。1883年にフランシス・ゴルトンが定義した造語である。 優生学は20世紀初頭に大きな支持を集めた。その最たるものがナチス政権による人種政策である。しかし、多くの倫理的問題を引き起こしたことから、優生学は人権問題としてタブーとなり、第二次世界大戦後は公での支持を失っていった。.

新しい!!: スヴァンテ・アレニウスと優生学 · 続きを見る »

王立協会フェロー

王立協会フェロー(おうりつきょうかいフェロー、Fellowship of the Royal Society)は、「数学・工学・医学を含む自然知識の向上への多大な貢献」をした個人に対して、ロンドンの王立協会から付与される賞およびフェローシップ(会員資格)である。 最古の科学アカデミーである王立協会のフェローシップは、歴史上、多くの有名な科学者に与えられた重要な名誉である。フェローには、アイザック・ニュートン(1672年)、チャールズ・ダーウィン(1839年)、マイケル・ファラデー(1824年)、アーネスト・ラザフォード(1903年)、シュリニヴァーサ・ラマヌジャン(1919年)、アルベルト・アインシュタイン(1921年)、ウィンストン・チャーチル(1941年)、スブラマニアン・チャンドラセカール(1944年)、ドロシー・ホジキン(1947年)、アラン・チューリング(1951年)、フランシス・クリック(1959年)などがいる。現在では、スティーヴン・ホーキング(1974年)、ティモシー・ハント(1991年)、エリザベス・H・ブラックバーン(1992年)、ティム・バーナーズ=リー(2001年)、ヴェンカトラマン・ラマクリシュナン(2003年)、 アンドレ・ガイム(2007年)、ジェームズ・ダイソン(2015年)、(2015年)を始めとして合計8000人以上がフェローとなり、1900年以降で280人以上のノーベル賞受賞者のフェローがいる。2016年現在、約1600名の存命のフェロー(外国人会員・名誉フェローを含む)がいる。 王立協会のフェローシップはガーディアン紙によると「オスカー特別功労賞に匹敵する名誉」とされ、受賞者が所属する研究機関はその名誉を広報するのが普通である。.

新しい!!: スヴァンテ・アレニウスと王立協会フェロー · 続きを見る »

現代宇宙論

代宇宙論(げんだいうちゅうろん、)は、すなわち、現代の宇宙論である。現代の科学者が「現代宇宙論」という言葉で指しているのは、おおむね英語の (フィジカル・コスモロジー)に相当する。フィジカル・コスモロジーは、物理学と天文物理学の一部門であり、宇宙の大規模構造および宇宙の生成や宇宙の変化に関する根本的な問題を扱っている。.

新しい!!: スヴァンテ・アレニウスと現代宇宙論 · 続きを見る »

神童

童(しんどう)とは、特定分野において驚異的な能力を発揮する人物、特に少年時代に並外れて優秀であった者に対しての尊称である。音楽や数学等の分野で「神童」と呼ばれる例が多く見られる。.

新しい!!: スヴァンテ・アレニウスと神童 · 続きを見る »

科学者

科学者(かがくしゃ、scientist)とは、科学を専門とする人・学者のことである。特に自然科学を研究する人をこう呼ぶ傾向がある。.

新しい!!: スヴァンテ・アレニウスと科学者 · 続きを見る »

等差数列

数学における等差数列(とうさすうれつ、arithmetic progression, arithmetic sequence; 算術数列)とは、「隣接する項が共通の差(公差)を持つ数列」() を言う。例えば、 はの等差数列である。 算術数列の初項を とし、その公差を とすれば、-番目の項 は a_n.

新しい!!: スヴァンテ・アレニウスと等差数列 · 続きを見る »

算術

算術 (さんじゅつ、arithmetic) は、数の概念や数の演算を扱い、その性質や計算規則、あるいは計算法などの論理的手続きを明らかにしようとする学問分野である。.

新しい!!: スヴァンテ・アレニウスと算術 · 続きを見る »

生理学

生理学(せいりがく、physiology)は、生命現象を機能の側面から研究する生物学の一分野。フランスの医師、生理学者であるによりこの用語が初めて導入された。.

新しい!!: スヴァンテ・アレニウスと生理学 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: スヴァンテ・アレニウスと物理学 · 続きを見る »

物理化学

物理化学(ぶつりかがく、physical chemistry)とは、化学の対象である物質、あるいはその基本的な構成を成している化合物や分子などについて、物質の構造、物質の性質(=物性)、物質の反応を調べる知恵蔵2012 市村禎二郎 東京工業大学教授 執筆【物理化学】ために、物理学的な手法を用いて研究する領域に対する呼称。理論的な基礎として熱力学と量子力学、およびこれら2つをつなぐ統計力学を大きな柱とする。 化学は対象とする物質によって有機化学、無機化学などがあるが、物理化学でも対象によって有機物理化学、無機物理化学と呼び分けられている。 物理化学の中の分野としては以下のものがある。.

新しい!!: スヴァンテ・アレニウスと物理化学 · 続きを見る »

解離 (化学)

解離(かいり、dissociation)は、錯体や分子および塩などが分離または分裂し、より小さい分子や、イオンもしくはラジカルを生じる過程である。なお、解離反応は多くの場合において可逆反応である。 共有結合が切断される場合は同意語として 開裂(かいれつ、cleavage)とも呼ぶ。また、塩がイオンに分かれる解離のことを電離(でんり、ionization)とも呼ぶ。 解離の反意語(逆反応)は結合や再結合。小分子への分離の場合には、会合も反意語となる。.

新しい!!: スヴァンテ・アレニウスと解離 (化学) · 続きを見る »

黄道光

ハレアカラ山頂で撮影された黄道光 黄道光(こうどうこう)とは、天球上の黄道に沿って太陽を中心に帯状に見える淡い光の帯である。 また、黄道上で太陽のちょうど反対の位置付近にも少し明るい部分が存在する。これを対日照と言う。.

新しい!!: スヴァンテ・アレニウスと黄道光 · 続きを見る »

胞子

胞子(ほうし)は、シダ植物・コケ植物および藻類、菌類(キノコ・カビ・酵母など)、あるいは原生生物のうちの変形菌などが形成する生殖細胞を指す。胞子による生殖を胞子生殖と呼ぶ場合がある。 また、鞭毛を持って運動する胞子を、遊走子と呼ぶ。.

新しい!!: スヴァンテ・アレニウスと胞子 · 続きを見る »

赤外線

赤外線(せきがいせん)は、可視光線の赤色より波長が長く(周波数が低い)、電波より波長の短い電磁波のことである。ヒトの目では見ることができない光である。英語では infrared といい、「赤より下にある」「赤より低い」を意味する(infra は「下」を意味する接頭辞)。分光学などの分野ではIRとも略称される。対義語に、「紫より上にある」「紫より高い」を意味する紫外線(英:ultraviolet)がある。.

新しい!!: スヴァンテ・アレニウスと赤外線 · 続きを見る »

酸(さん、acid)は化学において、塩基と対になってはたらく物質のこと。酸の一般的な使用例としては、酢酸(酢に3〜5%程度含有)、硫酸(自動車のバッテリーの電解液に使用)、酒石酸(ベーキングに使用する)などがある。これら三つの例が示すように、酸は溶液、液体、固体であることができる。さらに塩化水素などのように、気体の状態でも酸であることができる。 一般に、プロトン (H+) を与える、または電子対を受け取る化学種。化学の歴史の中で、概念の拡大をともないながら定義が考え直されてきたことで、何種類かの酸の定義が存在する。 酸としてはたらく性質を酸性(さんせい)という。一般に酸の強さは酸性度定数 Ka またはその負の常用対数 によって定量的に表される。 酸や塩基の定義は相対的な概念であるため、ある系で酸である物質が、別の系では塩基としてはたらくことも珍しくはない。例えば水は、アンモニアに対しては、プロトンを与えるブレンステッド酸として作用するが、塩化水素に対しては、プロトンを受け取るブレンステッド塩基として振る舞う。 酸解離定数の大きい酸を強酸、小さい酸を弱酸と呼ぶ。さらに、100%硫酸より酸性の強い酸性媒体のことを、特に超酸(超強酸)と呼ぶことがある。 「—酸」と呼ばれる化合物には、酸味を呈し、その水溶液のpHは7より小さいものが多い。.

新しい!!: スヴァンテ・アレニウスと酸 · 続きを見る »

腸(ちょう、intestines)は、食物が胃で溶かされた後、その中の栄養や水分を吸収する器官。末端は肛門であり、消化された食物は便となり、排便により体外へと排出される。腸の構造は動物によって異なり、摂取する食物による違いが大きい。.

新しい!!: スヴァンテ・アレニウスと腸 · 続きを見る »

酸と塩基

酸と塩基(さんとえんき)は化学反応における性質である。化学の初期には水溶液における化学反応を水素イオンと水酸化物イオンから説明するものとして酸と塩基を定義付けていたが(アレニウスの定義)、化学の発展とともにその定義は拡張され、今日では水溶液に限定しない一般の化学反応における電子対の授受により酸と塩基は定義付けられている(ルイスの定義)。.

新しい!!: スヴァンテ・アレニウスと酸と塩基 · 続きを見る »

英語

アメリカ英語とイギリス英語は特徴がある 英語(えいご、)は、イ・ヨーロッパ語族のゲルマン語派に属し、イギリス・イングランド地方を発祥とする言語である。.

新しい!!: スヴァンテ・アレニウスと英語 · 続きを見る »

電解質

電解質(でんかいしつ、英語:electrolyte)とは溶媒中に溶解した際に、陽イオンと陰イオンに電離する物質のことである。これに対し、溶媒中に溶解しても電離しない物質を非電解質という。 一般に電解液は電気分解が起こる以上の電圧をかければ電気伝導性を示すが、電解液でないものは電気抵抗が大きい。また、ほとんど溶媒中に溶解しないものは電解質にも非電解質にも含まれない。 溶融した電解質や固体の電解質というものも存在する。 つまり、物質を水に溶かしたとき、イオンになるものとならないものがあり、電気を通す物質はイオンになるものである。これを電解質という。 電解質溶液は十分に高い電圧(一般に数ボルト程度)をかけると電気分解することが可能である。「電解質」という名称はこのことから付けられた。電気分解を起こすことのできる理論分解電圧 V ′ はギブス自由エネルギー変化と以下の関係にある。実際には過電圧のため理論分解電圧より高い電圧を必要とする。.

新しい!!: スヴァンテ・アレニウスと電解質 · 続きを見る »

電解液

電解液 (でんかいえき、Electrolyte Solution) とはイオン性物質を水などの極性溶媒に溶解させて作った、電気伝導性を有する溶液をさす。電解質溶液ともいい、英語ではIonic solutionということもあることから、イオン溶液とも呼ばれることもある。狭義には、電池や電気メッキ槽にいれる電解質水溶液を指す。 一方、溶媒を含まず、イオンのみからなる液体のことはイオン液体もしくは溶融塩と呼び、区別される。.

新しい!!: スヴァンテ・アレニウスと電解液 · 続きを見る »

電気伝導体

電気伝導体(でんきでんどうたい)は移動可能な電荷を含み電気を通しやすい材料、すなわち電気伝導率(導電率)の高い材料である。良導体、単に導体とも呼ぶ。 電気伝導率は、物質によってとる値の範囲が広い物性値で、金属からセラミックまで20桁ほど幅がある。一般には伝導率がグラファイト(電気伝導率 106S/m)と同等以上のものが導体、106S/m以下のものを不導体(絶縁体)、その中間の値をとるものを半導体と分類する。106S/mという電気伝導率は、1mm2の断面積で1mの導体の抵抗が1Ωになる電気の通りやすさである。 銅やアルミニウムといった金属導体では、電子が移動可能な荷電粒子となっている(電流を参照)。移動可能な正の電荷としては、格子内の原子で電子が抜けている部分という形態(正孔)や電池の電解液などにイオンの形で存在する場合がある。不導体が電流を通さないのは移動可能な電荷が少ないためである。.

新しい!!: スヴァンテ・アレニウスと電気伝導体 · 続きを見る »

電気分解

電気分解(でんきぶんかい)英語:Electrolysisは、化合物に電圧をかけることで、陰極で還元反応、陽極で酸化反応を起こして化合物を化学分解する方法である。略して電解ともいう。同じ原理に基づき、電気化学的な酸化還元反応によって物質を合成する方法は電解合成と呼ばれ、特に生成物が高分子となる場合は電解重合という。 塩素やアルミニウムなど様々な化学物質が電気分解によって生産されている。水の電気分解は初等教育の中でも取り上げられる典型的な化学実験であるとともに、エネルギー源として期待される水素の製造法として研究が進められている。.

新しい!!: スヴァンテ・アレニウスと電気分解 · 続きを見る »

電流

電流(でんりゅう、electric current電磁気学に議論を留める限りにおいては、単に と呼ぶことが多い。)は、電子に代表される荷電粒子他の荷電粒子にはイオンがある。また物質中の正孔は粒子的な性格を持つため、荷電粒子と見なすことができる。の移動に伴う電荷の移動(電気伝導)のこと、およびその物理量として、ある面を単位時間に通過する電荷の量のことである。 電線などの金属導体内を流れる電流のように、多くの場合で電流を構成している荷電粒子は電子であるが、電子の流れは電流と逆向きであり、直感に反するものとなっている。電流の向きは正の電荷が流れる向きとして定義されており、負の電荷を帯びる電子の流れる向きは電流の向きと逆になる。これは電子の詳細が知られるようになったのが19世紀の末から20世紀初頭にかけての出来事であり、導電現象の研究は18世紀の末から進んでいたためで、電流の向きの定義を逆転させることに伴う混乱を避けるために現在でも直感に反する定義が使われ続けている。 電流における電荷を担っているのは電子と陽子である。電線などの電気伝導体では電子であり、電解液ではイオン(電子が過不足した粒子)であり、プラズマでは両方である。 国際単位系 (SI) において、電流の大きさを表す単位はアンペアであり、単位記号は A であるアンペアはSI基本単位の1つである。。また、1アンペアの電流で1秒間に運ばれる電荷が1クーロンとなる。SI において電荷の単位を電流と時間の単位によって構成しているのは、電荷より電流の測定の方が容易なためである。電流は電流計を使って測定する。数式中で電流量を表すときは または で表現される。.

新しい!!: スヴァンテ・アレニウスと電流 · 続きを見る »

抗毒素

抗毒素(こうどくそ、)とは特定の毒素を中和する能力を持つ抗体の総称。抗毒素はある種の動物、植物、真正細菌によって産生される。抗毒素は毒素を効果的に中和することができるが、真正細菌や他の微生物を殺滅することもある。抗毒素は生物内で産生されるが、ヒトを含む他の生物に投与することができる。.

新しい!!: スヴァンテ・アレニウスと抗毒素 · 続きを見る »

恒星

恒星 恒星(こうせい)は、自ら光を発し、その質量がもたらす重力による収縮に反する圧力を内部に持ち支える、ガス体の天体の総称である。人類が住む地球から一番近い恒星は、太陽系唯一の恒星である太陽である。.

新しい!!: スヴァンテ・アレニウスと恒星 · 続きを見る »

毒素

有毒な物質あるいは環境を示すハザードシンボル。 毒素(どくそ、toxin)は、生細胞あるいは生体内で産生される有毒物質である。したがって、人為的過程によって作り出された人工物質は除外される。Toxinは古代ギリシャ語のτοξικόν (toxikon) に由来する。この用語 (toxin) は有機化学者ルートヴィヒ・ブリーガー(1849年-1919年)によって初めて使用された。 生体内で産生されたものではない有毒物質には、英語では「toxicant」および「toxics」が使われることがある。 毒素には低分子、ペプチド、タンパク質があり、生体組織と接触あるいは吸収され、酵素あるいは受容体といった生体高分子と相互作用することにより病気を引き起こすことができる。 毒素によってその重症度には、軽度のもの(例えばハナバチの針に含まれる毒素)から致死のもの(ボツリヌストキシンなど)まで大きく差異がある。.

新しい!!: スヴァンテ・アレニウスと毒素 · 続きを見る »

水面から跳ね返っていく水滴 海水 水(みず)とは、化学式 HO で表される、水素と酸素の化合物である広辞苑 第五版 p. 2551 【水】。特に湯と対比して用いられ、温度が低く、かつ凝固して氷にはなっていないものをいう。また、液状のもの全般を指すエンジンの「冷却水」など水以外の物質が多く含まれているものも水と呼ばれる場合がある。日本語以外でも、しばしば液体全般を指している。例えば、フランス語ではeau de vie(オー・ドゥ・ヴィ=命の水)がブランデー類を指すなど、eau(水)はしばしば液体全般を指している。そうした用法は、様々な言語でかなり一般的である。。 この項目では、HO の意味での水を中心としながら、幅広い意味の水について解説する。.

新しい!!: スヴァンテ・アレニウスと水 · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

新しい!!: スヴァンテ・アレニウスと水素 · 続きを見る »

水蒸気

水蒸気(すいじょうき、稀にスチームともいう)は、水が気化した蒸気。空気中の水蒸気量、特に飽和水蒸気量に対する水蒸気量の割合を湿度という。.

新しい!!: スヴァンテ・アレニウスと水蒸気 · 続きを見る »

水酸化物イオン

水酸化物イオン(すいさんかぶつイオン、hydroxide ion)とは、化学式が OH− と表される陰イオンのこと。水の共役塩基にあたり、水 (H2O) や水酸化物が電離すると生じる。かつては水酸イオンと呼ばれた。 金属イオンなどのさまざまな陽イオンと塩をつくり、水酸化物を与える。水酸化物には、水酸化ナトリウム (NaOH) など塩基性(アルカリ性)を示すものが多い。水酸化物イオンの中で、水素と酸素は共有結合でつながっている。一方、アルコールやフェノールなどの有機化合物が持つ OH 構造はヒドロキシ基と呼ばれ、通常、陰イオンとしては遊離しない。.

新しい!!: スヴァンテ・アレニウスと水酸化物イオン · 続きを見る »

氷河時代

氷河時代(ひょうがじだい、ice age)は、地球の気候が寒冷化し、地表と大気の温度が長期にわたって低下する期間で、極地の大陸氷床や高山域の氷河群が存在し、または拡大する時代である。長期に及ぶ氷河時代のうち、律動する個々の寒冷な気候の期間は氷期と呼ばれ、氷期と氷期の間の断続的な温暖期は間氷期と呼ばれる。氷河学の専門用語では、「氷河時代」 (ice age) は北半球と南半球の両方において広大な氷床が存在することを示唆する。この定義によれば、我々は氷河時代の間氷期―完新世―の只中にいることになる。最後の氷河時代(第四紀氷河時代)は更新世が開始した約260万年前に始まり、それは今も、北極、そして南極大陸に氷床が存在していることからいえる。 なお、当項目の記述内容は、まだ立証が十分でない仮説であったり、論争が続いていたりするような内容を含む。.

新しい!!: スヴァンテ・アレニウスと氷河時代 · 続きを見る »

気候変動に関する政府間パネル

気候変動に関する政府間パネル(きこうへんどうにかんするせいふかんパネル、英語:Intergovernmental Panel on Climate Change、略称:IPCC)は、国際的な専門家でつくる、地球温暖化についての科学的な研究の収集、整理のための政府間機構である。学術的な機関であり、地球温暖化に関する最新の知見の評価を行い、対策技術や政策の実現性やその効果、それが無い場合の被害想定結果などに関する科学的知見の評価を提供している。数年おきに発行される「評価報告書」(Assessment Report)は地球温暖化に関する世界中の数千人の専門家の科学的知見を集約した報告書であり、国際政治および各国の政策に強い影響を与えつつある。 国際連合環境計画(United Nations Environment Programme: UNEP)と国際連合の専門機関にあたる世界気象機関(World Meteorological Organization: WMO)が1988年に共同で設立した。 気候変化に関する科学的な判断基準の提供を目的としており、地球温暖化に関する科学的知見の集約と評価が主要な業務である(IPCC)。数年おきに地球温暖化に関する「評価報告書」(Assessment Report)を発行するほか、特定のテーマについて特別報告(Special Report)、技術報告書(Technical Paper)、方法論報告書(Methodology Report)などを発行している((財)地球・人間環境フォーラム)。 本来は、世界気象機関(WMO)の一機関であり、国際連合の気候変動枠組条約とは直接関係のない組織であったが、条約の交渉に同組織がまとめた報告書が活用されたこと、また、条約の実施にあたり科学的調査を行う専門機関の設立が遅れたことから、IPCCが当面の作業を代行することとなり現在に至っている。IPCC自体が各国への政策提言等を行うことはないが、国際的な地球温暖化問題への対応策を科学的に裏付ける組織として、間接的に大きな影響力を持つ。アル・ゴアとともに2007年ノーベル平和賞を受賞。.

新しい!!: スヴァンテ・アレニウスと気候変動に関する政府間パネル · 続きを見る »

気候感度

気候感度(きこうかんど、英語:climate sensitivity、sensitivity of climate)とは、ある外部的な要因に対して、気候がどれくらいの影響を受けるかという度合いを表す気候学の用語。.

新しい!!: スヴァンテ・アレニウスと気候感度 · 続きを見る »

活性化エネルギー

活性化エネルギー(かっせいかエネルギー)とは、反応の出発物質の基底状態から遷移状態に励起するのに必要なエネルギーである。アレニウスパラメータとも呼ばれる。活性化エネルギーが高いことを活性化障壁と表現することもある。 吸熱反応においては、反応物と生成物の内部エネルギー(またはエンタルピー)に差がある場合には、最低限その差に相当するエネルギーを外部から受け取らなければならない。しかし、実際の反応においてはそれだけでは十分でなく、その差以上のエネルギーを必要とする場合がほとんどである。大きなエネルギーを受け取ることで、出発物質は生成物のエネルギーよりも大きなエネルギーを持った遷移状態となり、遷移状態となった出発物質はエネルギーを放出しながら生成物へと変換する。これは発熱反応の場合にも当てはまり、たとえ出発物質よりも生成物のエネルギーの方が低いとしても、活性化エネルギーの壁を越えられなければ反応は進行しない。例えば炭素と酸素を常温・常圧で混ぜても反応しないが、熱などにより活性化エネルギー分を供給してやることによって燃焼反応が進行する。 触媒作用とは、遷移状態を安定化することにより反応に必要な活性化エネルギーを下げ、反応を進みやすくすることである。.

新しい!!: スヴァンテ・アレニウスと活性化エネルギー · 続きを見る »

温室効果

温室効果」の名の由来となった温室の例 温室効果(おんしつこうか)(英:Greenhouse effect)とは、大気圏を有する惑星の表面から発せられる放射(電磁波により伝達されるエネルギー)が、大気圏外に届く前にその一部が大気中の物質に吸収されることで、そのエネルギーが大気圏より内側に滞留し結果として大気圏内部の気温が上昇する現象。 気温がビニールハウス(温室)の内部のように上昇するため、この名がある。ただし、ビニールハウスでは地表面が太陽放射を吸収して温度が上昇し、そこからの熱伝導により暖められた空気の対流・拡散がビニールの覆いにより妨げられ気温が上昇するため、大気圏による温室効果とは原理が異なる。温室効果とは、温室同様に熱エネルギーが外部に拡散しづらく(内部に蓄積されやすく)なることにより、原理は異なるものの結果として温室に似た効果を及ぼすことから付けられた名である。 温室効果ガスである二酸化炭素やメタンなどが増加していることが、現在の地球温暖化の主な原因とされている。また、金星の地表温度が470℃に達しているのも、90気圧とも言われる金星大気のそのほとんどが温室効果ガスの二酸化炭素なので、その分、光学的厚さが大きいためとされている。しかし、依然として金星大気の地表温度にはなぞが残っており、他にも少量の水蒸気や硫黄酸化物による光学的厚さの寄与や硫酸の雲の効果が影響しているのではとの説もある。一般に、金星の初期形成過程において、大量の水蒸気が大気中に存在し、いわゆる暴走温室効果が発生したのではないかとの説もあるが異論も存在する。.

新しい!!: スヴァンテ・アレニウスと温室効果 · 続きを見る »

測量

1728年刊 "Cyclopaedia" より、測量機器と測量手法の図 測量(そくりょう)は、地球表面上の点の関係位置を決めるための技術・作業の総称。地図の作成、土地の位置・状態調査などを行う。 日本では高度の精度を必要としない測量は基本的に誰でも行うことができるが、国または地方公共団体の実施する基本測量、公共測量等は測量法に従って登録された測量士又は測量士補でなければ技術者として従事することはできず、またこうした測量は測量法に従って登録された、営業所ごとに測量士が一人以上置かれた測量業者でなければ請け負うことはできない。一方、登記を目的とした測量は土地家屋調査士でなければ行うことはできない。 測量の歴史は古く、古代エジプトの時代から行われてきた。日本では1800年に伊能忠敬が日本地図作成のため、蝦夷地(現在の北海道)で本格的な測量を行ったのが始まりとされる。.

新しい!!: スヴァンテ・アレニウスと測量 · 続きを見る »

溶液

溶液(ようえき、solution)とは、2つ以上の物質から構成される液体状態の混合物である。一般的には主要な液体成分の溶媒(ようばい、solvent)と、その他の気体、液体、固体の成分である溶質(ようしつ、solute)とから構成される。 溶液は巨視状態においては安定な単一、且つ均一な液相を呈するが、溶質成分と溶媒成分とは単分子が無秩序に互いに分散、混合しているとは限らない。すなわち溶質物質が分子間の相互作用により引き合った次に示す集合体.

新しい!!: スヴァンテ・アレニウスと溶液 · 続きを見る »

月(つき、Mond、Lune、Moon、Luna ルーナ)は、地球の唯一の衛星(惑星の周りを回る天体)である。太陽系の衛星中で5番目に大きい。地球から見て太陽に次いで明るい。 古くは太陽に対して太陰とも、また日輪(.

新しい!!: スヴァンテ・アレニウスと月 · 続きを見る »

放射圧

放射圧(ほうしゃあつ、radiation pressure)とは電磁放射を受ける物体の表面に働く圧力である。日本語では輻射圧・光圧とも呼ばれる。放射圧の大きさは、放射が物体に吸収される場合には入射するエネルギー流束密度(単位時間に単位面積を通過するエネルギー)を光速で割った値となり、放射が完全反射される場合にはその2倍の値になる。例えば、地球の位置での太陽光のエネルギー流束密度(太陽定数)は なので、その放射圧は(太陽光が吸収される場合) となる。.

新しい!!: スヴァンテ・アレニウスと放射圧 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: スヴァンテ・アレニウスと数学 · 続きを見る »

10月2日

10月2日(じゅうがつふつか)はグレゴリオ暦で年始から275日目(閏年では276日目)にあたり年末まであと90日ある。.

新しい!!: スヴァンテ・アレニウスと10月2日 · 続きを見る »

1859年

記載なし。

新しい!!: スヴァンテ・アレニウスと1859年 · 続きを見る »

1903年

記載なし。

新しい!!: スヴァンテ・アレニウスと1903年 · 続きを見る »

1927年

記載なし。

新しい!!: スヴァンテ・アレニウスと1927年 · 続きを見る »

2月19日

2月19日(にがつじゅうくにち)はグレゴリオ暦で年始から50日目にあたり、年末まであと315日(閏年では316日)ある。.

新しい!!: スヴァンテ・アレニウスと2月19日 · 続きを見る »

ここにリダイレクトされます:

アレーニウスアレニウススワンテ・アーレニウス

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »