ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

アルドール反応

索引 アルドール反応

アルドール反応一般式 アルドール反応(アルドールはんのう、aldol reaction)はα位に水素を持つカルボニル化合物が、アルデヒドまたはケトンと反応してβ-ヒドロキシカルボニル化合物が生成する反応で、求核付加反応のひとつ。 アルデヒド同士がこの反応を起こすとアルドールを生成することから、この名で呼ばれる。 『韃靼人の踊り』で有名な歌劇『イーゴリ公』を作曲したアレクサンドル・ボロディンが最初に発見したと考えられている。.

32 関係: だったん人の踊り向山光昭塩基不飽和結合幾何異性体マイケル付加リチウムジイソプロピルアミドプロリンヒドロキシ基デヴィッド・エヴァンスアミンアルデヒドアルドールアルガー・フリン・大山田反応アレクサンドル・ボロディンイワノフ反応イーゴリ公ウィッティヒ反応エノラートエノンクライゼン縮合ケト-エノール互変異性ケトンシクロヘキサンの立体配座ジアステレオマー立体選択性眞鍋敬遷移状態触媒水素イオン求核付加反応

だったん人の踊り

『だったん人の踊り』または『ポロヴェツ人の踊り』は、ロシアの作曲家アレクサンドル・ボロディンが作曲したオペラ『イーゴリ公』の第2幕の曲で、ボロディンの最も有名な曲のひとつであり、またクラシック音楽でも有数の人気曲である。日本語の題名は『ダッタン人の踊り』『韃靼人の踊り』『ポロヴェッツ人の踊り』などとも記される。しばしばオーケストラのコンサートなどで、オペラとは独立に演奏される。ただし、オペラでは合唱を伴うが、演奏会では合唱のパートを省略することが多い。序曲や「ポロヴェツ人の行進」などと併せて『イーゴリ公組曲』とすることもある。.

新しい!!: アルドール反応とだったん人の踊り · 続きを見る »

向山光昭

向山 光昭(むかいやま てるあき、1927年1月5日 - )は日本の有機化学者。長野県伊那市出身。 東京大学名誉教授。東京工業大学名誉教授。東京理科大学名誉教授。前社団法人北里研究所基礎研究所有機合成化学研究室 名誉所員兼室長。現在、東京化成工業株式会社基礎研究所技術顧問。.

新しい!!: アルドール反応と向山光昭 · 続きを見る »

塩基

塩基(えんき、base)は化学において、酸と対になってはたらく物質のこと。一般に、プロトン (H+) を受け取る、または電子対を与える化学種。歴史の中で、概念の拡大をともないながら定義が考え直されてきたことで、何種類かの塩基の定義が存在する。 塩基としてはたらく性質を塩基性(えんきせい)、またそのような水溶液を特にアルカリ性という。酸や塩基の定義は相対的な概念であるため、ある系で塩基である物質が、別の系では酸としてはたらくことも珍しくはない。例えば水は、塩化水素に対しては、プロトンを受け取るブレンステッド塩基として振る舞うが、アンモニアに対しては、プロトンを与えるブレンステッド酸として作用する。塩基性の強い塩基を強塩基(強アルカリ)、弱い塩基を弱塩基(弱アルカリ)と呼ぶ。また、核酸が持つ核酸塩基のことを、単に塩基と呼ぶことがある。.

新しい!!: アルドール反応と塩基 · 続きを見る »

不飽和結合

不飽和結合(ふほうわけつごう、unsaturated bond)とは、隣接する原子間で2価以上で結合している化学結合であり、ほとんどの場合は1つのσ結合と1つないしは2つのπ結合から形成されている。不飽和結合を持つ化合物を不飽和(化合物)と呼ぶ、ただし、錯体においては18電子則を満たさないものを不飽和(化合物)であると言う。 通常の有機化合物においては、二重結合あるいは三重結合を有することであり、炭素原子間に不飽和結合を持つものとしては、アルケン、アルキン、芳香族化合物などがある。また、不飽和結合は炭素原子間である必要はなく、ケトン、アルデヒド、イミンも不飽和化合物である。 遷移金属化合物の場合、δ結合 の関与により四重結合以上の結合次数を示すものも知られる。項目: 四重結合、五重結合、六重結合 を参照。.

新しい!!: アルドール反応と不飽和結合 · 続きを見る »

幾何異性体

幾何異性体(きかいせいたい、geometrical isomer)は有機化合物や錯体の立体異性体の一種である。有機化合物の場合 正式にはシス-トランス異性体 (cis-trans isomer) と呼び、幾何異性体という言葉はIUPACでは推奨されていない。しかし日本の高校の化学ではまだ使われている。幾何異性体と呼ばれるものは次の3種類である。.

新しい!!: アルドール反応と幾何異性体 · 続きを見る »

マイケル付加

マイケル付加反応(Michael addition)は、α,β-不飽和カルボニル化合物に対してカルバニオンまたはその他の求核剤 を1,4-付加させる反応である。共役付加反応に属する。アメリカの化学者、アーサー・マイケル(Arthur Michael)によって報告された。現在では、カルボニル以外の電子求引性基が置換した電子不足不飽和結合をアクセプターに、アルキルリチウムやグリニャール試薬、アルコキシドをドナーとした反応にも拡張されている。.

新しい!!: アルドール反応とマイケル付加 · 続きを見る »

リチウムジイソプロピルアミド

リチウムジイソプロピルアミド(lithium diisopropylamide, LDA)は強力な塩基であり、プロトンの引き抜きに用いられる。化学式 LiN(CH(CH3)2)2 で表される構造を持つ。イソプロピル基のかさ高さのため求核性が低いことを特徴とする。.

新しい!!: アルドール反応とリチウムジイソプロピルアミド · 続きを見る »

プロリン

プロリン (proline) はアミノ酸の一つ。ピロリジン-2-カルボン酸のこと。略号はProまたはP。環状アミノ酸で、タンパク質を構成する。糖原性を持つ。タンパク質を構成するアミノ酸は通常一級アミンであるが、唯一環状の二級アミンである。表皮細胞増殖促進活性、コラーゲン合成促進活性、角質層保湿作用などの生理活性を示す。一度破壊されたコラーゲンを修復する力をもつアミノ酸。体の結合組織、心筋の合成時の主な材料でもある。最近では、アルドール反応の安全かつ効果的な触媒として注目されつつある。.

新しい!!: アルドール反応とプロリン · 続きを見る »

ヒドロキシ基

ヒドロキシ基(ヒドロキシき、hydroxy group)は、有機化学において構造式が −OH と表される1価の官能基。旧IUPAC命名則ではヒドロキシル基 (hydroxyl group) と呼称していた。 無機化合物における陰イオン OH− は「水酸化物イオン」を参照のこと。.

新しい!!: アルドール反応とヒドロキシ基 · 続きを見る »

デヴィッド・エヴァンス

デヴィッド・エヴァンス(David A. Evans、1941年1月11日 - )は、アメリカ合衆国の化学者である。ハーバード大学、Department of Chemistry and Chemical Biologyの名誉教授 (Abbott and James Lawrence Professor of Chemistry)。米国科学アカデミー会員。エヴァンスは有機化学分野における業績で知られ、特にアルドール反応の手法の開発で著名である(エヴァンスアシルオキサゾリジノン法)。 ワシントンD.C.生まれ。エヴァンスは1963年にオベリン大学を卒業(A.B.)、1967年にカリフォルニア工科大学で学位(Ph.D.)を取得した。.

新しい!!: アルドール反応とデヴィッド・エヴァンス · 続きを見る »

アミン

アミン(amine)とは、アンモニアの水素原子を炭化水素基または芳香族原子団で置換した化合物の総称である。 置換した数が1つであれば第一級アミン、2つであれば第二級アミン、3つであれば第三級アミンという。また、アルキル基が第三級アミンに結合して第四級アンモニウムカチオンとなる。一方アンモニアもアミンに属する。 塩基、配位子として広く利用される。.

新しい!!: アルドール反応とアミン · 続きを見る »

アルデヒド

最も単純なアルデヒド:ホルムアルデヒド アルデヒド (aldehyde) とは、分子内に、カルボニル炭素に水素原子が一つ置換した構造を有する有機化合物の総称である。カルボニル基とその炭素原子に結合した水素原子および任意の基(-R)から構成されるため、一般式は R-CHO で表される。任意の基(-R)を取り除いた部分をホルミル基(formyl group)、またはアルデヒド基という。アルデヒドとケトンとでは、前者は炭素骨格の終端となるが、ケトンは炭素骨格の中間点となる点で異なる。多くのアルデヒドは特有の臭気を持つ。.

新しい!!: アルドール反応とアルデヒド · 続きを見る »

アルドール

アルドール (aldol) とは、広義にはアルデヒド基とヒドロキシ基の両方の官能基を持つ有機化合物のことで、アルデヒド (aldehyde) とアルコール (alcohol) を合成した語である。アルドール縮合によって生成する。 狭義にはアセトアルデヒド(エタナール)のアルドール縮合によって生成する3-ヒドロキシブタナールのことを指し、これは分子式 C4H8O2、示性式 CH3CH(OH)CH2CHO、分子量が88.11の化合物である。.

新しい!!: アルドール反応とアルドール · 続きを見る »

アルガー・フリン・大山田反応

アルガー・フリン・小山田反応(アルガー・フリン・おやまだはんのう、Algar-Flynn-Oyamada reaction)は、酸化的環化によってカルコンからフラボノールを形成する化学反応である。.

新しい!!: アルドール反応とアルガー・フリン・大山田反応 · 続きを見る »

アレクサンドル・ボロディン

アレクサンドル・ポルフィーリエヴィチ・ボロディン(Alexander Porfiryevich Borodin, Алекса́ндр Порфи́рьевич Бороди́н, 1833年10月31日(ユリウス暦)/11月12日(グレゴリオ暦) - 1887年2月15日/2月27日)は、帝政ロシアの作曲家、化学者、医師。ロシア音楽の作曲に打込んだロシア5人組の一人である。.

新しい!!: アルドール反応とアレクサンドル・ボロディン · 続きを見る »

イワノフ反応

イワノフ反応(イワノフはんのう、Ivanov reaction)は、アリール酢酸のエンジオラート(イワノフ試薬)が、カルボニル化合物やイソシアネートなどの求電子反応剤と求電子付加反応する有機化学反応のことである。発見者のブルガリアの有機化学者であるディミタール・イワノフ(英語版)の名前に因んで、当反応は名付けられた。 イワノフ試薬は、アルデヒド、ケトン、イソシアネート、ハロゲン化アルキル等、多くの求電子反応剤と反応する。生成物は自発的に脱炭酸を起こすことはないが、いくつかの試薬では起こすことも可能となる。 イワノフ反応は、Zimmerman-Traxler六員環遷移状態を経由して進行することが明らかとなっている。.

新しい!!: アルドール反応とイワノフ反応 · 続きを見る »

イーゴリ公

『イーゴリ公』(イーゴリこう、原題:Князь Игорь)は、アレクサンドル・ボロディンによって書かれたオペラである。中世ロシアの叙事詩『イーゴリ遠征物語』を題材に、1185年、キエフ大公国の公(クニャージ)イーゴリ・スヴャトスラヴィチによる、遊牧民族ポロヴェツ人(韃靼人)に対する遠征を描く。序幕付き4幕からなる。 ボロディンはこの作品を完成させないまま1887年に死去したため、リムスキー=コルサコフとグラズノフの手により完成された。総譜には「このオペラはリムスキー=コルサコフが序幕と第1・2・4幕、第3幕の「ポロヴェツ人(韃靼人)の行進」の編曲されていなかったところを編曲し、グラズノフはボロディンに残された断片を使い、第3幕を構成し作曲し、ボロディンが何度かピアノで弾いた序曲を思い出しながら再構成と作曲をした。」と書かれている。 初演は1890年11月4日、サンクトペテルブルクのマリンスキー劇場にて行われた。アメリカでの初演は1915年12月30日、ニューヨークのメトロポリタン歌劇場にて行われた。日本での初演は1965年のスラブ歌劇(当時ユーゴスラヴィア(現クロアチア)ザグレブ国立劇場合唱団、管弦楽はNHK交響楽団)によるもの。 このオペラの中の序曲、「ポロヴェツ人(韃靼人)の踊り」(第2幕)は有名で、広くオーケストラ・コンサートなどでも演奏されている。また、この2曲に「ポロヴェツ人(韃靼人)の娘たちの踊り」「ポロヴェツ人(韃靼人)の行進」を加えて組曲のようにも扱われる。.

新しい!!: アルドール反応とイーゴリ公 · 続きを見る »

ウィッティヒ反応

ウィッティヒ反応(ウィッティヒはんのう、Wittig Reaction)とは有機合成化学において、ウィッティヒ試薬を呼ばれるリンイリドとカルボニル化合物からアルケンを生成する化学反応のことである。 本反応は1954年にゲオルク・ウィッティヒらにより報告された。この反応の発見によりゲオルク・ウィッティヒは1979年のノーベル化学賞を受賞した。.

新しい!!: アルドール反応とウィッティヒ反応 · 続きを見る »

エノラート

ノラート (enolate) は、炭素-炭素二重結合上の炭素に直接ヒドロキシ基が結合した化合物であるエノールのヒドロキシ基の水素原子がプロトンとして解離することによって生成する陰イオンのことである。.

新しい!!: アルドール反応とエノラート · 続きを見る »

エノン

ノン (enone) は、アルケンとケトンの共役系を構成する不飽和化合物または官能基のことである。最も単純なエノンは、メチルビニルケトン (MVK) である。 例えば、カルコンのようなエノンはクネーフェナーゲル縮合で合成することができる。メイヤー・シュッター転位では、反応の出発物質はプロパルギルアルコールである。 エノンは、ナザロフ環化とRauhut-Currier反応(二量化)の反応基質として使われる。 エノンはケテン (R2C.

新しい!!: アルドール反応とエノン · 続きを見る »

クライゼン縮合

ライゼン縮合(クライゼンしゅくごう、Claisen condensation)は2分子のエステルが塩基の存在下に縮合反応してβ-ケトエステルを生成する反応である。本反応を1881年に初めて報告したライナー・ルートヴィッヒ・クライゼンに因んで命名された。 最近、ルイス酸(TiCl4 - Bu3N or -Et3N )を用いる初めての方法が報告されている。これは従来の塩基法に比べ強力であり、低温・高速・高収率で、交差型反応も可能である。 .

新しい!!: アルドール反応とクライゼン縮合 · 続きを見る »

ケト-エノール互変異性

ト-エノール互変異性。左,ケト型、右,エノール型 ケト-エノール互変異性(ケト-エノールごへんいせい、Keto-enol tautomerism)は、ケト(ケトン、アルデヒド)とエノールの間の互変異性である。この互変異性は反応性に富むため様々な反応に使われる。.

新しい!!: アルドール反応とケト-エノール互変異性 · 続きを見る »

ケトン

アセトン ケトン (ketone) は R−C(.

新しい!!: アルドール反応とケトン · 続きを見る »

シクロヘキサンの立体配座

ヘキサンの立体配座(シクロヘキサンのりったいはいざ、cyclohexane conformation)は、シクロヘキサン分子がその化学結合の完全性を保ちながら取ることができる複数の三次元形状のいずれかである。 平らな正六角形の内角は120º であるが、炭素鎖における連続する結合間の望ましい角度は約109.5º (正四面体の中心と頂点を結ぶ直線のなす角)である。したがって、シクロヘキサン環は、全ての角度が109.5º に近づき、平らな六角形形状よりも低いひずみエネルギーを持つ特定の非平面立体配座を取る傾向にある。最も重要な形状はいす形、半いす形、舟形、ねじれ舟形である。シクロヘキサン分子はこれらの立体配座間を容易に移ることができ、「いす形」と「ねじれ舟形」のみが純粋な形で単離することができる。 シクロヘキサンの立体配座は配座異性の古典的な例であるため有機化学において広く研究されてきており、シクロヘキサンの物理的および化学的性質に顕著な影響を与えている。.

新しい!!: アルドール反応とシクロヘキサンの立体配座 · 続きを見る »

ジアステレオマー

酒石酸には 3 つの立体異性体があり、このうち D 体とメソ体、L 体とメソ体がそれぞれジアステレオマーの関係にある。 ジアステレオマー (Diastereomer) は化学物質の異性体のひとつ。立体異性体のうち、鏡像異性体(エナンチオマー)でないものをいう。幾何異性体(シス-トランス異性体)もジアステレオマーに含まれる。偏左右異性体という訳語が稀に用いられる。 化合物 A が化合物 B のジアステレオマーである場合、A と B の分子式や化学結合の様式は等しいが、平行移動や回転操作を施してもぴったりと重ね合わせることはできない。また、A の鏡像も B とは重ならない。.

新しい!!: アルドール反応とジアステレオマー · 続きを見る »

立体選択性

立体選択性(りったいせんたくせい)とは、ある化学反応の生成物として複数の立体異性体が考えられる場合に、ある特定の立体異性体が優先的に得られる反応の性質についていう。 考えられる生成物の立体異性体がジアステレオマーの関係にある場合にはジアステレオ選択性、エナンチオマーの関係にある場合にはエナンチオ選択性という。 立体選択性を定量的に表すためには、生成物の異性体比やジアステレオマー過剰率、鏡像体過剰率が使用される。 また、その反応の機構上ある特定の立体異性体のみしか得られないような反応の性質を立体特異性という。 例えばSN2反応は脱離基の背面側から求核剤が反応するというその機構上必ずワルデン反転を伴う。 そのため立体特異性のある反応である。 しかしある反応である特定の立体異性体のみしか得られなかったからといってその反応が立体特異性を持つとは限らない。.

新しい!!: アルドール反応と立体選択性 · 続きを見る »

眞鍋敬

鍋 敬(まなべ けい、1965年4月 - )は、日本の化学者・薬学者(有機化学)。学位は博士(薬学)(東京大学・1993年)。静岡県立大学学生部部長・薬学部教授・大学院薬学研究科教授。新字体で真鍋 敬(まなべ けい)と表記されることもある。 東京大学大学院薬学系研究科助教授、独立行政法人理化学研究所独立主幹研究員などを歴任した。.

新しい!!: アルドール反応と眞鍋敬 · 続きを見る »

遷移状態

遷移状態(せんいじょうたい、英語:transition state)とは、化学反応の過程で原系から生成系に変換するときに通る最もエネルギーの高い状態のことである。 例えば、2つの分子の衝突によって反応が開始するとき、衝突によって力学的エネルギーが分子内部のエネルギーに変換され、2つの分子の構造は元の構造とは異ったゆがんだ構造となり、元の構造のときよりもエネルギーが高い。このような構造の内、最もエネルギーの高い状態を遷移状態と呼び、その周辺の状態を活性錯体(または活性複合体、活性錯合体)と呼ぶ。 遷移状態は、一般の反応中間体のように直接観測することはできない。しかしフェムト秒単位での赤外分光法により、遷移状態にごく近い反応中間体を捉えることが可能になっており、遷移状態は一般には元の結合が残る一方で新たな結合が形成されつつある状態であると考えられている。 遷移状態の概念は反応速度論において非常に重要である。原系と遷移状態とのエネルギー差が反応の活性化エネルギーに相当し、遷移状態のエネルギーが低い方が活性化エネルギーを獲得する分子の数が増して反応が進みやすくなる。遷移状態の概念は1935年頃ヘンリー・アイリングやマイケル・ポランニーらによって「遷移状態理論」として導入され、アイリングの「絶対反応速度論」などとして発展した。(記事 反応速度論に詳しい) 酵素による触媒作用の1つの要因として、遷移状態が安定化される(すなわち遷移状態のエネルギーが低下する)ことにより活性化エネルギーが減少する効果がある。これを応用して、目的とする反応の遷移状態に類似した化合物を用いて抗体酵素を得る研究がされている。.

新しい!!: アルドール反応と遷移状態 · 続きを見る »

触媒

触媒(しょくばい)とは、特定の化学反応の反応速度を速める物質で、自身は反応の前後で変化しないものをいう。また、反応によって消費されても、反応の完了と同時に再生し、変化していないように見えるものも触媒とされる。「触媒」という用語は明治の化学者が英語の catalyser、ドイツ語の Katalysator を翻訳したものである。今日では、触媒は英語では catalyst、触媒の作用を catalysis という。 今日では反応の種類に応じて多くの種類の触媒が開発されている。特に化学工業や有機化学では欠くことができない。また、生物にとっては酵素が重要な触媒としてはたらいている。.

新しい!!: アルドール反応と触媒 · 続きを見る »

酸(さん、acid)は化学において、塩基と対になってはたらく物質のこと。酸の一般的な使用例としては、酢酸(酢に3〜5%程度含有)、硫酸(自動車のバッテリーの電解液に使用)、酒石酸(ベーキングに使用する)などがある。これら三つの例が示すように、酸は溶液、液体、固体であることができる。さらに塩化水素などのように、気体の状態でも酸であることができる。 一般に、プロトン (H+) を与える、または電子対を受け取る化学種。化学の歴史の中で、概念の拡大をともないながら定義が考え直されてきたことで、何種類かの酸の定義が存在する。 酸としてはたらく性質を酸性(さんせい)という。一般に酸の強さは酸性度定数 Ka またはその負の常用対数 によって定量的に表される。 酸や塩基の定義は相対的な概念であるため、ある系で酸である物質が、別の系では塩基としてはたらくことも珍しくはない。例えば水は、アンモニアに対しては、プロトンを与えるブレンステッド酸として作用するが、塩化水素に対しては、プロトンを受け取るブレンステッド塩基として振る舞う。 酸解離定数の大きい酸を強酸、小さい酸を弱酸と呼ぶ。さらに、100%硫酸より酸性の強い酸性媒体のことを、特に超酸(超強酸)と呼ぶことがある。 「—酸」と呼ばれる化合物には、酸味を呈し、その水溶液のpHは7より小さいものが多い。.

新しい!!: アルドール反応と酸 · 続きを見る »

水素イオン

水素イオン (hydrogen ion) という用語は、国際純正・応用化学連合によって、水素及びその同位体の全てのイオンを表す一般名として勧告されている。イオンの電荷に依って、陽イオンと陰イオンの2つの異なる分類に分けることができる。.

新しい!!: アルドール反応と水素イオン · 続きを見る »

求核付加反応

有機化学において 求核付加反応(きゅうかくふかはんのう、Nucleophilic addition)とは、付加反応の一つで、化合物に求核剤が付加することによってπ結合が解裂し、新たに2つの共有結合が生成する反応である。 求核付加反応を行う化合物は以下のような多重結合を持つものに限定される。.

新しい!!: アルドール反応と求核付加反応 · 続きを見る »

ここにリダイレクトされます:

アルドール縮合向山反応

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »