ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

アポロニウスのギャスケット

索引 アポロニウスのギャスケット

アポロニウスのギャスケット(Apollonian gasket)は、互いに接する3つの円から生成されるフラクタル図形の一種である。アポロニウスの網(Apollonian net)とも呼ばれる。紀元前のギリシャ人数学者であるペルガのアポロニウスにちなむ。.

7 関係: ペルガのアポロニウスハウスドルフ次元デカルトの円定理フラクタルアポロニウスの円シェルピンスキーのギャスケット曲率

ペルガのアポロニウス

ペルガのアポロニウス(Ἀπολλώνιος, Apollonius Pergaeus, Apollonius of Perga、紀元前262年頃 - 紀元前190年頃)はギリシャの数学者・天文学者である。小アジアの町ペルガに生まれた。アレキサンドリアでプトレマイオス3世およびプトレマイオス4世の時代に活躍した。現トルコのペルガモンでしばらく暮らしたとされる。アレキサンドリアで没した。.

新しい!!: アポロニウスのギャスケットとペルガのアポロニウス · 続きを見る »

ハウスドルフ次元

点のハウスドルフ次元は0であり、直線のハウスドルフ次元は1、正方形のハウスドルフ次元は2、そして立方体のハウスドルフ次元は3である。コッホ曲線のようなフラクタル図形のハウスドルフ次元は、非整数になりうる。 フラクタル幾何学におけるハウスドルフ次元(ハウスドルフじげん、Hausdroff dimension)は、1918年に数学者フェリックス・ハウスドルフが導入した、が有限な値をとり消えていないという条件に適合する次元の概念の非整数値をとる一般化である。すなわち、きちんとした数学的定式化のもと、点のハウスドルフ次元は 、線分のハウスドルフ次元は 、正方形のハウスドルフ次元は 、立方体のハウスドルフ次元は である。つまり、旧来の幾何学で扱われるような、滑らかあるいは有限個の頂点を持つ点集合として定義される図形のハウスドルフ次元は、その位相的な次元に一致する整数である。しかし同じ定式化のもとで、フラクタルを含めたやや単純さの少ない図形に対してもハウスドルフ次元を計算することが許されるが、その次元は非整数値を取りうる。大幅な技術的進展がによりもたらされて高度に不規則な集合に対する次元の計算が可能となったことから、この次元の概念はハウスドルフ–ベシコヴィッチ次元としても広く知られている。 初等幾何学で用いられる通常のジョルダン測度(あるいはルベーグ測度)に関して、例えば正方形が二次元であるということは、その三次元より高次のジョルダン測度(つまり、体積および高次元体積)が であり、二次元ジョルダン測度(面積)が正の値を持つ(さらに一次元および零次元のジョルダン測度は形式的に となる)ということを本質的に表している。-次元実内積空間 の -次元ジョルダン測度は、部分集合 に対して、 の球体による充填近似が定める内測度と、球体被覆による近似の定める外測度の一致するとき、その一致する値として定義されるのであった(あるいはルベーグ測度は外測度のみを利用して構成される)が、(定数因子の違いを除けば)-次元ジョルダン測度は一次元ジョルダン測度(長さ)の 個の直積と本質的に同じであり、-次元球(あるいは立方体)の -次元体積は本質的に半径の -乗である。ハウスドルフ次元は、これらの事実を抽象化して、台となる空間を一般の距離空間とし、部分集合の一次元ハウスドルフ測度を距離球体被覆による近似の下限として定まる外測度、また非整数値の に対する -次元距離球体のハウスドルフ測度を一次元測度の -乗(の適当な定数倍)となるように定める。ジョルダン測度の場合と同じく、部分集合 の -次元ハウスドルフ測度は次元 が大きければほとんどすべてに対して零であり、零でなくなるようなギリギリ小さい値として のハウスドルフ次元を定めるのである。 ハウスドルフ次元は、ボックスカウンティング次元()のより単純だがふつうは同値な後継である。.

新しい!!: アポロニウスのギャスケットとハウスドルフ次元 · 続きを見る »

デカルトの円定理

幾何学におけるデカルトの定理とは、互いに接する4つの円の半径がある二次方程式を満たす、という主張である。1642年にこれを発表したルネ・デカルトにちなむ。.

新しい!!: アポロニウスのギャスケットとデカルトの円定理 · 続きを見る »

フラクタル

フラクタル(, fractal)は、フランスの数学者ブノワ・マンデルブロが導入した幾何学の概念である。ラテン語 fractus から。 図形の部分と全体が自己相似になっているものなどをいう。.

新しい!!: アポロニウスのギャスケットとフラクタル · 続きを見る »

アポロニウスの円

アポロニウスの円(アポロニウスのえん)は、2定点A・Bをとり、点PをAP:BPが一定となるように(但しAP≠BP)したときの点Pの軌跡である。ペルガのアポロニウスの名前を残す。.

新しい!!: アポロニウスのギャスケットとアポロニウスの円 · 続きを見る »

シェルピンスキーのギャスケット

ェルピンスキーのギャスケット 作図例 シェルピンスキーのギャスケット(Sierpinski gasket、uszczelka Sierpińskiego)はフラクタル図形の1種であり、自己相似的な無数の三角形からなる図形である。ポーランドの数学者ヴァツワフ・シェルピンスキにちなんで名づけられた。シェルピンスキーのガスケット、シェルピンスキーの三角形(trójkąt Sierpińskiego、Sierpinski triangle)、シェルピンスキーのざる(Sierpinski sieve)とも呼ばれる。 シェルピンスキーのギャスケットはフラクタル図形であるため、正確に作図することは不可能だが、以下の手順を繰り返すことで、近似的な図形を作図できる。なお、繰り返し回数を増やすことにより、望む処まで近似のレベルを高められる。.

新しい!!: アポロニウスのギャスケットとシェルピンスキーのギャスケット · 続きを見る »

曲率

曲率(きょくりつ、)とは曲線や曲面の曲がり具合を表す量である。 例えば、半径 r の円周の曲率は 1/r であり、曲がり具合がきついほど曲率は大きくなる。この概念はより抽象的な図形である多様体においても用いられる。曲面上の曲線の曲率を最初に研究したのは、ホイヘンスとされ、ニュートンの貢献もさることながら、オイラーは曲率の研究に本格的に取り組んだ。その他モンジュ、ベルヌーイ、ムーニエなども研究した。.

新しい!!: アポロニウスのギャスケットと曲率 · 続きを見る »

ここにリダイレクトされます:

アポロニアスのギャスケット

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »