ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

アポプラスト

索引 アポプラスト

アポプラスト経路(橙線)とシンプラスト経路(青線) アポプラスト(apoplast)とは、植物体内において細胞膜より内側を除いた、水溶液(アポプラスト液)で満たされた空間の総体である。細胞壁空間、細胞間アポプラスト液空間(中葉)、木部で構成される。ただし、根のカスパリー線、細胞間の気相(細胞間隙)、およびクチクラ層は含めない。あまり一般的ではないが、アポプラストと同じ意味でアポプラズム(apoplasm)という用語が使われることがある。 シンプラストとは対となる概念であり、シンプラストとともに植物体内の体積の大部分を占める。アポプラストは水とその溶質の植物体内での移動と拡散において不可欠な空間である。アポプラストを植物物質の輸送経路と見たとき、この経路をアポプラスト経路(apoplastic pathway)と呼ぶ。.

40 関係: ATPアーゼ多糖師部中心柱二酸化炭素代替酸化酵素フェロモンフクジュソウエルンスト・ミュンヒ (林学者)オーキシンオジギソウカルボン酸カスパリー線キレートクチクラグルカングルタチオングアイアコールシンプラストサリチル酸ササゲ全身獲得抵抗性細胞壁細胞小器官過酸化水素遠心分離超酸化物葉緑体還元剤酸化ストレス蛍光色素電子顕微鏡X線顕微鏡植物ホルモン水ポテンシャル気孔活性酸素液胞溶液木部

ATPアーゼ

ATPアーゼ(ATPエース、ATPase、ATPases (ion transport))とは、アデノシン三リン酸 (ATP) の末端高エネルギーリン酸結合を加水分解する酵素群の総称である(EC番号 3.6.1.3、3.6.3、3.6.4)。ATP は生体内のエネルギー通貨であるから、エネルギーを要する生物活動に関連したタンパク質であれば、この酵素の活性を持っていることが多い。 日本語ではATPアーゼを「アデノシン三リン酸分解酵素」などと表現できる。なお、「ホスファターゼ」は「リン酸分解酵素」のことであるから、「アデノシン三リン酸ホスファターゼ」という呼び方は「リン酸」の重言となり、正しくない。.

新しい!!: アポプラストとATPアーゼ · 続きを見る »

多糖

多糖(たとう、, ポリサッカロイド、ポリサッカライド)は、グリコシド結合によって単糖分子が多数重合した物質の総称である。デンプンなどのように構成単位となる単糖とは異なる性質を示すようになる。広義としては、単糖に対し、複数個(2分子以上)の単糖が結合した糖も含むこともある。 一般に固体で親水性(水を吸着しやすい)であるが、物性は様々であり、水に不溶性のもの(セルロース、キチンなど)、加熱すれば溶けたりゲルを作るもの(デンプン、グリコーゲン、アガロース、ペクチンなど)がある。ゲル状の多糖は、食品または食品添加物(増粘安定剤)として用いられることがある。 いずれも生物による生合成産物として得られ、構造多糖(植物細胞壁にあるセルロースやペクチン、節足動物・菌類の外骨格にあるキチン、藻類の細胞にあるアガロース(寒天)やカラギーナン)、エネルギー貯蔵物質(デンプン、グリコーゲン)、あるいは微生物が分泌するゲル状物質(キサンタンガム)などとして存在する。 動物はデンプンを消化し(一部はセルロースなども消化する)エネルギー源とする。しかし消化されない多糖も多く、これらは食物繊維として扱われる。 工業的には食品のほか、繊維、製紙、化粧品や歯磨剤等の日用品、接着剤(糊)、医療など広い範囲に利用される重要な物質群である。これらを人工的に化学改変した物質、例えばセルロースから合成するニトロセルロースやアセチルセルロースなども利用される。.

新しい!!: アポプラストと多糖 · 続きを見る »

師部

師部(しぶ(代用字)。本来の用字は「篩部」。本文中の「師管」・「師壁」も同様。phloem)は、維管束植物において、特にスクロースを含む有機性栄養素を、植物全体の需要のある部分に輸送する生体組織である。英語名の"phloem"は樹皮を意味するギリシア語"phloios"に由来する。木において、師部は樹皮のすぐ内側に位置し、樹皮と区別しにくいことによる。師部の役割は、主として光合成産物の植物体内における輸送である。.

新しい!!: アポプラストと師部 · 続きを見る »

中心柱

中心柱(ちゅうしんちゅう)とは、維管束植物において、その茎の内部の維管束を含む部分を指す。植物体の基本的な構成要素と考える立場もあるが、単に維管束の配置の意味で使われる場合も多い。維管束植物の進化を考える上で重要と考えられる。.

新しい!!: アポプラストと中心柱 · 続きを見る »

二酸化炭素

二酸化炭素(にさんかたんそ、carbon dioxide)は、化学式が CO2 と表される無機化合物である。化学式から「シーオーツー」と呼ばれる事もある。 地球上で最も代表的な炭素の酸化物であり、炭素単体や有機化合物の燃焼によって容易に生じる。気体は炭酸ガス、固体はドライアイス、液体は液体二酸化炭素、水溶液は炭酸・炭酸水と呼ばれる。 多方面の産業で幅広く使われる(後述)。日本では高圧ガス保安法容器保安規則第十条により、二酸化炭素(液化炭酸ガス)の容器(ボンベ)の色は緑色と定められている。 温室効果ガスの排出量を示すための換算指標でもあり、メタンや亜酸化窒素、フロンガスなどが変換される。日本では2014年度で13.6億トンが総排出量として算出された。.

新しい!!: アポプラストと二酸化炭素 · 続きを見る »

代替酸化酵素

代替酸化酵素(だいたいさんかこうそ、alternative oxidase (AOX)、オルタナティブオキシダーゼ)は、様々な真核生物においてミトコンドリア電子伝達系を構成する酵素の1つである。そのホモログは原核生物のゲノム中にも見出されている。 代替酸化酵素は呼吸毒であるシアン化物に対して耐性であることから見出された。.

新しい!!: アポプラストと代替酸化酵素 · 続きを見る »

フェロモン

フェロモン(pheromone)は、動物または微生物が体内で生成して体外に分泌後、同種の他の個体に一定の行動や発育の変化を促す生理活性物質のことである。.

新しい!!: アポプラストとフェロモン · 続きを見る »

フクジュソウ

フクジュソウ(福寿草、学名:Adonis ramosa)は、キンポウゲ科の多年草。別名、ガンジツソウ(元日草)。毒草である。1月1日の誕生花。.

新しい!!: アポプラストとフクジュソウ · 続きを見る »

エルンスト・ミュンヒ (林学者)

ルンスト・ミュンヒ(Ernst Münch、1876年11月26日 - 1946年10月9日)はドイツの植物生理学者である。植物の中での樹液の移動に冠する仮説(圧流説: Druckstromtheorie:Pressure Flow Hypothesis)などで知られる。.

新しい!!: アポプラストとエルンスト・ミュンヒ (林学者) · 続きを見る »

オーキシン

ーキシンの1種である3-インドール酢酸の構造式 オーキシン(英語 auxin)とは、主に植物の成長(伸長成長)を促す作用を持つ植物ホルモンの一群。天然に存在するオーキシンとしてはインドール-3-酢酸(IAA)が最も豊富に存在しており、他にもインドール-3-酪酸(IBA)(en)はトウモロコシなどに含まれている。合成オーキシンとして、ナフタレン酢酸、ナフトキシ酢酸、フェニル酢酸、2,4-ジクロロフェノキシ酢酸(2,4-D)、2,4,5-トリクロロフェノキシ酢酸(2,4,5-T)などがある. 同じく植物の成長を促進する植物ホルモンにジベレリンがあるが、オーキシンとは働き方が異なるため、ジベレリンに分類される物質はオーキシンに含まれない。 屈光性の研究の際、茎の成長を促進する物質の存在がウェント (Frits Warmolt Went) によって示唆され、ケーグルらによって構造がインドール-3-酢酸であると決定された。最初に発見された植物ホルモンである。.

新しい!!: アポプラストとオーキシン · 続きを見る »

オジギソウ

ウ(お辞儀草、含羞草、学名:Mimosa pudica)とはマメ科ネムノキ亜科の植物の一種。別名ネムリグサ(眠り草)、ミモザ。 なお、ミモザは本来オジギソウの学名に由来する植物名であるが、現在の日本語ではほぼアカシア類の花を呼ぶ名としてのみ使われていて、これは本来は誤用である。種小名のpudicaはラテン語で「内気な」の意味。.

新しい!!: アポプラストとオジギソウ · 続きを見る »

カルボン酸

ルボン酸(カルボンさん、carboxylic acid)とは、少なくとも一つのカルボキシ基(−COOH)を有する有機酸である。カルボン酸の一般式はR−COOHと表すことができ、Rは一価の官能基である。カルボキシ基(carboxy group)は、カルボニル基(RR'C.

新しい!!: アポプラストとカルボン酸 · 続きを見る »

カスパリー線

パリー線(カスパリーせん)とは、植物の内皮の放射方向と横断方向の細胞壁に存在する、脂質からなる帯状の構造である。水や水に溶けた物質の受動的な流動を制限し、中心柱への流入を防ぐ。ロバート・カスパリーによって発見された。.

新しい!!: アポプラストとカスパリー線 · 続きを見る »

キレート

EDTAの金属キレート複合体。赤の点線が配位結合を表す。金属に電子対を供給する酸素、窒素が八面体状に取りまいている。 エチレンジアミンのキレート 化学においてキレート とは、複数の配位座を持つ配位子(多座配位子)による金属イオンへの結合(配位)をいう。このようにしてできている錯体をキレート錯体と呼ぶ。キレート錯体は配位子が複数の配位座を持っているために、配位している物質から分離しにくい。これをキレート効果という。分子の立体構造によって生じた隙間に金属を挟む姿から、「蟹のハサミ」を意味する chela (ラテン語 chēla、ギリシャ語 chēlē)に由来する。.

新しい!!: アポプラストとキレート · 続きを見る »

クチクラ

チクラ(ラテン語:Cuticula)は、表皮を構成する細胞がその外側に分泌することで生じる、丈夫な膜である。さまざまな生物において、体表を保護する役割を果たしている。人間を含む哺乳類の毛の表面にも存在する。英語でキューティクル、日本語で角皮ともいう。 昆虫(特に甲虫)をはじめとする節足動物の場合、クチクラは外骨格を構成するうえ、軟体動物の殻や卵の表面を覆う生体物質である。甲殻類ではキチン質という多糖類が主成分で蝋なども含有されている。 植物においては、表皮の外側を覆う透明な膜で、蝋を主成分とする。特に乾燥地や海岸の植物の葉ではよく発達する。また、いわゆる照葉樹林というのは、それを構成する樹木の葉でクチクラ層が発達し、表面が照って見えることに由来する。.

新しい!!: アポプラストとクチクラ · 続きを見る »

グルカン

ルカン (glucan) は、D-グルコースがグリコシド結合で繋がったポリマーである。一つのグルカンの中に二つの結合様式が混在することはあるが、α型とβ型が混在することはなく、それぞれαグルカン、βグルカンと言われる。天然に最も多く存在する多糖である。.

新しい!!: アポプラストとグルカン · 続きを見る »

グルタチオン

ルタチオン(Glutathione, GSH, Glutathione-SH)は、3つのアミノ酸(グルタミン酸、システイン、グリシン)から成るトリペプチドである。通常はあまり見られないシステインのアミノ基とグルタミン酸の側鎖側のカルボキシ基との間にアミド結合を有する。抗酸化物質の1つであるグルタチオンは、フリーラジカルや過酸化物といった活性酸素種から細胞を保護する補助的役割を有する。また、グルタチオンは硫黄部位が求核性を有し、有毒な共役受容体にアタックする。 チオール基は、動物細胞では約5 mM以下の濃度において還元状態が維持されている。実際には、グルタチオンは電子供与体として作用することによって、細胞質性タンパク質中に形成されているあらゆるジスルフィド結合をシステインに還元する。このプロセスにおいて、グルタチオンは酸化型グルタチオン(GSSG, Glutathione-S-S-Glutathione)に変換される。グルタチオンは専ら還元型として存在することが知られているが、これは、酸化ストレスに曝されると、酸化型を還元型に変換する酵素(グルタチオンレダクターゼ)が構造的に活性化され、また誘導されるからである。事実上、細胞中の還元型グルタチオンと酸化型グルタチオンの比率は、しばしば細胞毒性の評価指標として科学的に用いられる。 また、グルタチオンは日本薬局方に収載された医薬品であり、また健康や美容の維持に有用であるとして、サプリメントとして販売されている。しかし、消費者として注意すべきことは、日本では医薬品扱いであるため、日本の事業者がサプリメントとして販売できないことと、その販売行為は薬機法(旧称、薬事法)違反になることである。 グルタチオンは、細胞内に 0.5〜10 mMという比較的高濃度で存在する。一方細胞外の濃度はその1/100から1/1000程度である。グルタチオンには還元型 (GSH) と酸化型 (glutathione disulfide, GSSG)(右図)があり、酸化型は、2分子の還元型グルタチオンがジスルフィド結合によってつながった分子である。細胞内のグルタチオンは、通常、ほとんど(98%以上)が還元型として存在する。本稿では、特に注記しない限り、「グルタチオン」は還元型(GSH)を指すこととする。.

新しい!!: アポプラストとグルタチオン · 続きを見る »

グアイアコール

アイアコール (guaiacol) とは、有機化合物の一種で、示性式は 2-CH3OC6H4OH と表されるフェノール類。グアヤコールとも呼ばれる。 バニリン(香料)、グアヤコールスルホン酸カリウム(医薬)などを人工合成する際の原料とされ、虫歯の治療時には歯髄神経の麻痺・消毒に用いられる。正露丸の主剤である日局クレオソートに多く含まれる『化学物質の環境リスク評価 第7巻』環境省環境保健部環境リスク評価室、2009年3月。 ユソウボク(Guaiacum sp.)から発見されたことにより命名された。ユソウボク及び日局クレオソートから製造されるが、後者の場合はリグニンの熱分解により生じる。 誤って口内粘膜にふれた場合は即時に洗浄する。現在はあまり使われなくなり、他の薬が使われることが多くなっている。刺激性・毒性があり、成人致死量は3-10グラム。.

新しい!!: アポプラストとグアイアコール · 続きを見る »

シンプラスト

アポプラスト経路とシンプラスト経路 シンプラスト(Symplast)は、水や小分子の溶質が自由に拡散できる植物細胞の細胞膜の内側部分のことである。 原形質連絡は、糖やアミノ酸等の小分子やイオンが細胞間で直接流れることを可能とする。転写因子や植物ウイルス等のより大きな分子もアクチンの助けを借りて輸送することができる。これにより、濃度勾配に沿って、細胞質-細胞質間の水とその他の栄養素の流れができる。特に、根で土壌中から栄養素を吸い上げるために用いられている。表皮から外皮を通って内皮、内鞘に至り、そこで木部に入って、長距離の輸送がなされる。対義語はアポプラストで、これは細胞壁を用いた輸送である。.

新しい!!: アポプラストとシンプラスト · 続きを見る »

サリチル酸

リチル酸(サリチルさん、salicylic acid)は、ベンゼン環上のオルト位にカルボキシル基とヒドロキシル基を併せ持つ物質で、示性式は C6H4(OH)COOH、CAS登録番号は 69-72-7。無色の針状結晶である。隣接するヒドロキシル基の影響でカルボン酸としては比較的強い酸 (pKa.

新しい!!: アポプラストとサリチル酸 · 続きを見る »

ササゲ

(大角豆、学名:、Black-eyed pea)はササゲ属の一年草。つる性の種類とつるなしの種類とがある。アフリカ原産。主に旧世界の温暖な地方で栽培される。樹木の形状は低木であり、直立ないし匍匐する。枝を張ったり、からみついたりと、成育の特性は多彩。.

新しい!!: アポプラストとササゲ · 続きを見る »

全身獲得抵抗性

全身獲得抵抗性(ぜんしんかくとくていこうせい、systemic acquired resistance:SAR)とは、植物が局所的に病原体に曝された後に起こる、植物体全体の抵抗性反応である。SARは動物に見られる自然免疫に似ており、植物のSARと動物の自然免疫は進化的に保存されているとの証拠もある。植物はパターン認識受容体(広範囲の微生物のもつ分子構造パターンを認識する)を用いて微生物の保存されたサインを認識しており、この認識が免疫反応の引き金となる。保存された微生物のサインに対する受容体の最初のものは、イネ(XA21, 1995)とシロイヌナズナ(FLS2, 2000)で見出された。植物はまた、高度に異なる病原体のエフェクターに対する免疫受容体も持っている。この中にはNBS-LRRクラスのタンパク質がある。SARは植物が病害に抵抗するのにも重要だが、一度罹患した病害から回復するのにも重要である。SARは広い範囲の病原体により、特に(それだけではないが)組織の壊死を起こすものにより誘導される。そしてSARの誘導後に見られる抵抗性は広い範囲の病原体に有効であり、ゆえにSARは「広スペクトラム抵抗性」とも呼ばれる。SARに伴って広い範囲の遺伝子(いわゆる病原性関連(PR)遺伝子)の誘導が起き、SARの活性化は内因性のサリチル酸(SA)の蓄積を要する。病原体により誘導されたSAシグナルは分子シグナル伝達経路を活性化する。この経路は、シロイヌナズナのモデル遺伝系でNIM1、NPR1またはSAI1と呼ばれる遺伝子(いずれも同じ遺伝子である)により同定されている。SARは双子葉類、単子葉類を含め広い範囲の被子植物に見られる。SARはトウモロコシでも活性化されるが、抵抗性誘導剤として広く使用されているベンゾチアジアゾールなどは、さび病を引き起こすP.

新しい!!: アポプラストと全身獲得抵抗性 · 続きを見る »

細胞壁

細胞壁(さいぼうへき)は、植物や菌類、細菌類の細胞にみられる構造。動物細胞には存在しない。細胞膜の外側に位置するために細胞外マトリクスの1つである。 細胞壁を形成する物質は、植物ではセルロースで、これはグルコース(ブドウ糖)がいくつもつながって出来ている糖鎖である。他にも、リグニンやペクチンのようなものもある。細胞壁は、二重構造(一次壁・二次壁)になっていて、たえず成長を繰り返している。細胞壁の主な役割は、防御(細胞膜から内側を守る)、改築・補強、物質補給、細胞間連絡、影響感知細胞である。また、細胞壁の分子間は微細ではない為、水・ナトリウムイオン・カリウムイオンなどを容易に通す。通常、植物細胞は緑色をしているが、木などは茶色をしている。これは、細胞壁がリグニンによって木化したためで、通常の細胞壁よりも硬い。.

新しい!!: アポプラストと細胞壁 · 続きを見る »

細胞小器官

細胞小器官(さいぼうしょうきかん、)とは、細胞の内部で特に分化した形態や機能を持つ構造の総称である。細胞内器官、あるいはラテン語名であるオルガネラとも呼ばれる。細胞小器官が高度に発達していることが、真核細胞を原核細胞から区別している特徴の一つである。 細胞小器官の呼称は、顕微鏡技術の発達に従い、それぞれの器官の同定が進むとともに産まれた概念である。したがってどこまでを細胞小器官に含めるかについては同定した経過によって下記のように混乱が見られる。細胞小器官を除いた細胞質基質についても、新たな構造や機能が認められ、細胞小器官を分類して論じることは今日ではあまり重要な意味をなさなくなってきつつある。 第一には、最も早い時期に同定された核、小胞体、ゴルジ体、エンドソーム、リソソーム、ミトコンドリア、葉緑体、ペルオキシソーム等の生体膜で囲まれた構造体だけを細胞小器官と呼ぶ立場があり、またこれらはどの場合でも細胞小器官に含められている。これらを膜系細胞小器官と呼ぶ場合もある。膜系細胞小器官が内を区画することにより、色々な化学環境下での生反応を並行することを可能にしている。また膜の内外で様々な物資の濃度差を作ることができ、このことを利用してエネルギー生産(電子伝達系)や、物質の貯蔵などを行っている。さらに小胞体、ゴルジ体、エンドソーム、リソソームは、小胞を介して細胞膜と連絡しあっており、このEndomembrane systemと呼ばれるネットワークを通じて物質の取込み(エンドサイトーシス)や放出(分泌)を行うことで、他の細胞や細胞外とのコミュニケーションを達成している。 なおこれらのうちミトコンドリアは、独自の遺伝構造を持つことから、生物進化の過程や種の拡散において注目される場合があり、例えばヒトではミトコンドリア・イブのような共通祖先も想定される。ミトコンドリアに関しては、元来別の細胞が細胞内共生したものに由来するとの説(細胞内共生説)が有力視されている。葉緑体に関しても共生に由来するのではないかという見方もあるが、その起源は依然不明である。 第二には、細胞骨格や、中心小体、鞭毛、繊毛といった非膜系のタンパク質の超複合体からなる構造体までを細胞小器官に含める場合もある。 さらには、核小体、リボソームまで細胞小器官と呼んでいる例も見いだされる。.

新しい!!: アポプラストと細胞小器官 · 続きを見る »

過酸化水素

過酸化水素(かさんかすいそ、Hydrogen peroxide)は、化学式 HO で表される化合物。しばしば過水(かすい)と略称される。主に水溶液で扱われる。対象により強力な酸化剤にも還元剤にもなり、殺菌剤、漂白剤として利用される。発見者はフランスのルイ・テナール。.

新しい!!: アポプラストと過酸化水素 · 続きを見る »

遠心分離

卓上型の遠心機。円周上に並んでいる穴に沈殿管をセットする。 遠心分離(えんしんぶんり、)とは、ある試料に対して強大な遠心力をかけることにより、その試料を構成する成分(分散質)を分離または分画する方法である。 懸濁液や乳液などは、ろ過や抽出操作では分離することが困難であるが、遠心分離では通常なら分離困難な試料に対しても有効にはたらく場合が多い。その原理は、高速回転により試料に強大な加速度を加えると、密度差がわずかであっても遠心力が各分散質を異なる相に分離するように働くためである。遠心分離に使用する機械を遠心機という。 19世紀から開発され、現代的なものはテオドール・スヴェドベリにより1920-1930年にかけて開発された。.

新しい!!: アポプラストと遠心分離 · 続きを見る »

超酸化物

超酸化物(ちょうさんかぶつ、superoxide)とは、スーパーオキシドアニオン(化学式: )を含む化学物質の総称である。自然界では酸素分子()の一電子還元により広範囲に生成している点が重要であり、1つの不対電子を持つ。スーパーオキシドアニオンは、二酸素と同様にフリーラジカルであり、常磁性を有する。一般に活性酸素と呼ばれる化学種の一種である。 ルイス式で表したスーパーオキシドアニオン。それぞれの酸素原子に存在する、6つの外殻電子を黒点で表している。周りにある電子対は2つの酸素原子に共有され、左上には不対電子があり、(イオン化の時に)付加した電子による負電荷は赤点で表す。.

新しい!!: アポプラストと超酸化物 · 続きを見る »

葉緑体

ATPを合成する。 Plagiomnium affineの細胞内に見える葉緑体 葉緑体の模型の一例 透過型電子顕微鏡による葉緑体の画像 葉緑体(ようりょくたい、Chloroplast)とは、光合成をおこなう、半自律性の細胞小器官のこと。カタカナでクロロプラストとも表記する。.

新しい!!: アポプラストと葉緑体 · 続きを見る »

還元剤

還元剤(かんげんざい、reducing agent、reductant、reducer)とは、酸化還元反応において他の化学種を還元させる元素または分子のことである。この際、還元剤は酸化される。したがって、還元剤は電子供与体である。 例えば、以下の反応では還元剤はヘキサシアノ鉄(II)酸(ferrocyanide)であり、これが電子供与体となってヘキサシアノ鉄(III)酸(ferricyanide)に酸化され、塩素は塩化物イオンに還元している。 有機化学においても先述の定義が当てはまるが、特に分子への水素の付加を還元と呼んでいる。例えばベンゼンは白金触媒によってシクロヘキサンに還元される。 無機化学では、最も優れた還元剤は水素(H2)である。.

新しい!!: アポプラストと還元剤 · 続きを見る »

酸化ストレス

酸化ストレス(さんかストレス、Oxidative stress)とは活性酸素が産生され障害作用を発現する生体作用と、生体システムが直接活性酸素を解毒したり、生じた障害を修復する生体作用との間で均衡が崩れた状態のことである。生体組織の通常の酸化還元状態が乱されると、過酸化物やフリーラジカルが産生され、タンパク質、脂質そしてDNAが障害されることで、さまざまな細胞内器官が障害を受ける。 ヒトの場合、酸化ストレスは様々な疾患を引き起こす。たとえば、アテローム動脈硬化症、パーキンソン病、狭心症、心筋梗塞、アルツハイマー病、統合失調症、双極性障害、脆弱X症候群、慢性疲労症候群などに酸化ストレスが関与している。.

新しい!!: アポプラストと酸化ストレス · 続きを見る »

蛍光色素

蛍光色素とは蛍光を発光する色素。.

新しい!!: アポプラストと蛍光色素 · 続きを見る »

電子顕微鏡

電子顕微鏡(でんしけんびきょう)とは、通常の顕微鏡(光学顕微鏡)では、観察したい対象に光(可視光線)をあてて拡大するのに対し、光の代わりに電子(電子線)をあてて拡大する顕微鏡のこと。電子顕微鏡は、物理学、化学、工学、生物学、医学(診断を含む)などの各分野で広く利用されている。.

新しい!!: アポプラストと電子顕微鏡 · 続きを見る »

X線顕微鏡

走査型X線顕微鏡の回折パターン 菜種のX線顕微鏡画像 X線顕微鏡(—せんけんびきょう)とは、X線をプローブとして観察する顕微法の総称である。.

新しい!!: アポプラストとX線顕微鏡 · 続きを見る »

植物ホルモン

植物ホルモン(しょくぶつホルモン)とは、植物自身が作り出し、低濃度で自身の生理活性・情報伝達を調節する機能を有する物質で、植物に普遍的に存在し、その化学的本体と生理作用とが明らかにされた物質のことである 。シロイヌナズナなどのモデル生物での実験により研究が進んだこともあり、高等植物(裸子植物と被子植物)に特有のものと思われがちであるが、シダ植物に普遍的に存在する造精器誘導物質であるアンセリディオゲン (antheridiogen) や、シダ植物・コケ植物における既知のホルモンの生理活性も知られている。動物におけるホルモンとは異なり、分泌器官や標的器官が明確ではなく、また輸送のメカニズムも共通していない。 かつては、動物のホルモンと定義を同じくしていたが、多数の植物でホルモンが発見され、上記のような特徴に加え、作用する場所や濃度に応じて、同一の物質であってもその生理活性が著しく異なるなど、動物ホルモンとの差異が明らかになるにつれ、植物ホルモンとして区別されるようになった。 合成された化学物質や、微生物などが生産する物質の中には、植物の成長や生理活性に影響を与えるものとして、植物成長物質、植物成長調節物質、成長阻害物質などが存在する。しかし、上記の定義に照らし、植物ホルモンとは区別される。 。;P — parallel variation(平行的変化);E — excision(切除);S — substitution(置換);I — isolation(分離);G — generality(一般性);S — specificity(特異性) ただし、植物ホルモンの定義・概念については、現在までに様々なものが提唱されている。 -->.

新しい!!: アポプラストと植物ホルモン · 続きを見る »

水ポテンシャル

水ポテンシャル(みずぽてんしゃる)は水の標準状態に対する単位体積あたりのポテンシャルエネルギーであり、浸透圧、重力、圧力、毛細管現象によるマトリック効果によって、水が移動するための駆動力を示す。水ポテンシャルの概念は、植物、動物や土壌の中の水の動きを理解して計算するために重要な概念である。水ポテンシャルは、通常は水の単位体積あたりのポテンシャルエネルギーとして定量化され、SI単位系における単位はPa(パスカル)である。 土壌中の水ポテンシャルが小さいと、土壌に水が強い力で保持されているため、植物にとってはその土壌から水を吸水しにくくなる。そのため、水ポテンシャルは水分ストレスを示す指針として用いられる。.

新しい!!: アポプラストと水ポテンシャル · 続きを見る »

気孔

植物における気孔(きこう、Stoma、pl Stomata)とは、葉の表皮に存在する小さな穴(開口部)のこと。2つの細胞(孔辺細胞)が唇型に向かい合った構造になっており、2つの孔辺細胞の形が変化することによって、孔の大きさが調節される。主に光合成、呼吸および蒸散のために、外部と気体の交換を行う目的で使用される。.

新しい!!: アポプラストと気孔 · 続きを見る »

活性酸素

活性酸素(かっせいさんそ、Reactive Oxygen Species、ROS)は、大気中に含まれる酸素分子がより反応性の高い化合物に変化したものの総称である吉川敏一,河野雅弘,野原一子『活性酸素・フリーラジカルのすべて』(丸善 2000年)p.13。一般的にスーパーオキシドアニオンラジカル(通称スーパーオキシド)、ヒドロキシルラジカル、過酸化水素、一重項酸素の4種類とされる。活性酸素は、酸素分子が不対電子を捕獲することによってスーパーオキシド、ヒドロキシルラジカル、過酸化水素、という順に生成する。スーパーオキシドは酸素分子から生成される最初の還元体であり、他の活性酸素の前駆体であり、生体にとって重要な役割を持つ一酸化窒素と反応してその作用を消滅させる。活性酸素の中でもヒドロキシルラジカルはきわめて反応性が高いラジカルであり、活性酸素による多くの生体損傷はヒドロキシルラジカルによるものとされている吉川 1997 p.10。過酸化水素の反応性はそれほど高くなく、生体温度では安定しているが金属イオンや光により容易に分解してヒドロキシルラジカルを生成する吉川 1997 p.9。活性酸素は1 日に細胞あたり約10 億個発生し、これに対して生体の活性酸素消去能力(抗酸化機能)が働くものの活性酸素は細胞内のDNAを損傷し,平常の生活でもDNA 損傷の数は細胞あたり一日数万から数10 万個になるがこのDNA 損傷はすぐに修復される(DNA修復)。.

新しい!!: アポプラストと活性酸素 · 続きを見る »

液胞

典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) ミトコンドリア、(10) '''液胞'''、(11) 細胞質基質、(12) リソソーム、(13) 中心体 液胞(えきほう、vacuole)は、生物の細胞中にある構造のひとつである。 電子顕微鏡で観察したときのみ、動物細胞内にもみられる。主な役割として、ブドウ糖のような代謝産物の貯蔵、無機塩類のようなイオンを用いた浸透圧の調節・リゾチームを初めとした分解酵素が入っており不用物の細胞内消化、不用物の貯蔵がある。ちなみに、不用物の貯蔵についてであるが、秋頃の紅葉が赤や黄色をしているのは、液胞内に色素が不用物として詰め込まれているからである。 液胞は、細胞内にある液胞膜と呼ばれる膜につつまれた構造であり、その内容物を細胞液と呼ぶ。若い細胞では小さいが、細胞の成長につれて次第に大きくなる。これは、成長する過程で排出された老廃物をため込むためである。良く育った細胞では、多くの場合、細胞の中央の大きな部分を液胞が占める。植物細胞を見ると、往々にして葉緑体が細胞の表面に張り付いたように並んでいるのは、内部を液胞が占めているためでもある。 蜜柑などの酸味や花の色は、この液胞中にある色素(アントシアンなど)に由来している。 Category:植物解剖学 Category:細胞解剖学 Category:細胞小器官.

新しい!!: アポプラストと液胞 · 続きを見る »

溶液

溶液(ようえき、solution)とは、2つ以上の物質から構成される液体状態の混合物である。一般的には主要な液体成分の溶媒(ようばい、solvent)と、その他の気体、液体、固体の成分である溶質(ようしつ、solute)とから構成される。 溶液は巨視状態においては安定な単一、且つ均一な液相を呈するが、溶質成分と溶媒成分とは単分子が無秩序に互いに分散、混合しているとは限らない。すなわち溶質物質が分子間の相互作用により引き合った次に示す集合体.

新しい!!: アポプラストと溶液 · 続きを見る »

木部

木部(もくぶ、xylem)とは、維管束の一部であり、いわゆる木材をなす部分である。.

新しい!!: アポプラストと木部 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »