ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

アトキンソンサイクル

索引 アトキンソンサイクル

アトキンソンサイクル(Atkinson cycle)は容積型内燃機関(オットーサイクル)を基礎として、圧縮比よりも膨張比を大きくして熱効率を改善した内燃機関の一種またはその理論サイクルである。ジェームズ・アトキンソン(en)により1882年に開発された。.

31 関係: 吸気圧力圧縮比ミラーサイクルバルブタイミングポペットバルブリンク機構レシプロエンジンエネルギーオットーサイクルカムガス燃料クランク (機械要素)コジェネレーションストローク内燃機関出力熱効率熱機関の理論サイクル過給機部品自然吸気排気量死点気体混合気温度本田技研工業1882年2013年

吸気

吸気(きゅうき)とは、気体を吸い込むこと。 多くのガソリンエンジンにおいては、空気と燃料とが予め混合された混合気をシリンダーに吸い込むこと。対となる語は「排気」である。ディーゼルエンジンやガソリン直噴エンジンでは空気のみを吸い込み、燃料は圧縮行程以降の燃焼室内へ高圧で噴射される。 エアクリーナーケース(エアフィルター)からキャブレター(またはインジェクション)、バルブまでの一連のラインを吸気系統(吸気系)と表現することがある。.

新しい!!: アトキンソンサイクルと吸気 · 続きを見る »

圧力

圧力(あつりょく、pressure)とは、.

新しい!!: アトキンソンサイクルと圧力 · 続きを見る »

圧縮比

圧縮比(あっしゅくひ、Compression Ratio/CR)とは、内燃機関及び外燃機関の内燃室(ないねんしつ)において、最も容積が大きくなる時の容量と、最も容積が小さくなる時の容量の比率を表す値であり、一般的な熱機関の基本的な仕様となる値でもある。.

新しい!!: アトキンソンサイクルと圧縮比 · 続きを見る »

ミラーサイクル

ミラーサイクル(Miller cycle)とは、容積型内燃機関においてアトキンソンサイクル機構を疑似的に吸気バルブの早閉じ、遅閉じによって実現したサイクルである。また、吸気通路にロータリーバルブを設けて同様の効果を持つものも研究された。.

新しい!!: アトキンソンサイクルとミラーサイクル · 続きを見る »

バルブタイミング

バルブタイミング(valve timing)とは、レシプロエンジンの吸入、排気を行うためのバルブの開閉時期を表す言葉である。ほとんどのエンジンではバルブタイミングはクランクシャフトの角度及びピストンのシリンダー内での位置に関連付けられて決定されている。そのため、ピストンの上死点及び下死点が開閉タイミングの一つの基準となる。 この項目では4ストロークエンジンにおけるバルブタイミングのほか、2ストロークエンジンにおけるポートタイミング(port timing)も併せて記述する。.

新しい!!: アトキンソンサイクルとバルブタイミング · 続きを見る »

ポペットバルブ

ポペットバルブ(Poppet Valve)は、JISにおいて「弁体が弁座シート面から直角方向に移動する形式のバルブ」と定義されている。レシプロエンジンの吸気、掃気、排気を制御するために多く用いられる弁機構であり、特に自動車用エンジンなどでは単にバルブと呼ばれることも多い。.

新しい!!: アトキンソンサイクルとポペットバルブ · 続きを見る »

リンク機構

4つの節と1つの自由度を持つプライヤの例。調整用のねじを考慮すれば5つの節と2つの自由度を持つ。 リンク機構(リンクきこう)とは複数のリンクを組み合わせて構成した機械機構のことである。.

新しい!!: アトキンソンサイクルとリンク機構 · 続きを見る »

レシプロエンジン

レシプロエンジン(英語:reciprocating engine)は、往復動機関あるいはピストンエンジン・ピストン機関とも呼ばれる熱機関の一形式である。 燃料の燃焼による熱エネルギーを作動流体の圧力(膨張力)としてまず往復運動に変換し、ついで回転運動の力学的エネルギーとして取り出す原動機である。燃焼エネルギーをそのまま回転運動として取り出すタービンエンジンやロータリーエンジンと対置される概念でもある。 レシプロエンジンは、自動車や船舶、20世紀前半までの航空機、非電化の鉄道で用いられる鉄道車両、といった乗り物の動力源としては最も一般的なもので、他に発電機やポンプなどの定置動力にも用いられる。.

新しい!!: アトキンソンサイクルとレシプロエンジン · 続きを見る »

エネルギー

ネルギー(、)とは、.

新しい!!: アトキンソンサイクルとエネルギー · 続きを見る »

オットーサイクル

ットーサイクル (Otto cycle) は火花点火機関(ガソリンエンジン・ガスエンジン)の理論サイクル(空気標準サイクル)であり、 等容サイクルとよばれることもある 柘植盛男、『機械熱力学』、朝倉書店(1967) 谷下市松、『工学基礎熱力学』、裳華房(1971)、ISBN 4-7853-6008-9.

新しい!!: アトキンソンサイクルとオットーサイクル · 続きを見る »

カム

ム.

新しい!!: アトキンソンサイクルとカム · 続きを見る »

ガス燃料

LPGのボンベ ガス燃料(ガスねんりょう)は、気体(ガス)状の燃料。燃料ガス、気体燃料。 本来、燃料としては使用されないが、可燃性をもつ気体については可燃性ガスを参照。.

新しい!!: アトキンソンサイクルとガス燃料 · 続きを見る »

クランク (機械要素)

ランク(crank)とは、機械の要素において、回転する軸と、それとは芯のずれた軸を結ぶ柄からなる機構である。リンク機構の一種でもある。.

新しい!!: アトキンソンサイクルとクランク (機械要素) · 続きを見る »

コジェネレーション

ージェネレーション、またはコジェネレーション (cogeneration)、英語では“combined heat and power”ともいわれる。これは、内燃機関、外燃機関等の排熱を利用して動力・温熱・冷熱を取り出し、総合エネルギー効率を高める、新しいエネルギー供給システムのひとつである。 略してコージェネ、コジェネとも呼ばれる。一般的には熱併給発電(ねつへいきゅうはつでん)または熱電併給(ねつでんへいきゅう)と訳されている。訳語から廃熱発電を用いるものと考えられがちだが、給湯など発電以外のものもある。 日本においては、京都議定書の発効に伴い、製造サイドとして電機メーカーやガス会社が、需要者サイドとしてイメージ向上の効果も狙うスーパーマーケットや大エネルギー消費者である大規模工場などで関心が高まっている。 コジェネレーションを発展させて二酸化炭素(CO2)も利用するようにしたトリジェネレーションがある。.

新しい!!: アトキンソンサイクルとコジェネレーション · 続きを見る »

ストローク

記載なし。

新しい!!: アトキンソンサイクルとストローク · 続きを見る »

内燃機関

4ストロークエンジン) (1)吸入 (2)圧縮 (3)燃焼・膨張 (4)排気 内燃機関(ないねんきかん)とは、燃料をシリンダー内で燃焼させ、燃焼ガスを直接作動流体として用いて、その熱エネルギーによって仕事をする原動機 特許庁。これに対して、燃焼ガスと作動流体が異なる原動機を外燃機関という。 インターナル・コンバッション・エンジン() の訳語であり、内部(インターナル)で燃料を燃焼(コンバッション)させて動力を取り出す機関(エンジン)である。「機関」も「エンジン」も、複雑な機構を持つ装置という意味を持つが、ここでは発動機という意味である。.

新しい!!: アトキンソンサイクルと内燃機関 · 続きを見る »

出力

出力(しゅつりょく)は、何らかの対象から出る信号や力、またその種類や大きさのことである。入力の対義語。アウトプット(output)ともいう。 主に以下のような分野の用語として使われる。.

新しい!!: アトキンソンサイクルと出力 · 続きを見る »

熱の流れは様々な方法で作ることができる。 熱(ねつ、heat)とは、慣用的には、肌で触れてわかる熱さや冷たさといった感覚である温度の元となるエネルギーという概念を指していると考えられているが、物理学では熱と温度は明確に区別される概念である。本項目においては主に物理学的な「熱」の概念について述べる。 熱力学における熱とは、1つの物体や系から別の物体や系への温度接触によるエネルギー伝達の過程であり、ある物体に熱力学的な仕事以外でその物体に伝達されたエネルギーと定義される。 関連する内部エネルギーという用語は、物体の温度を上げることで増加するエネルギーにほぼ相当する。熱は正確には高温物体から低温物体へエネルギーが伝達する過程が「熱」として認識される。 物体間のエネルギー伝達は、放射、熱伝導、対流に分類される。温度は熱平衡状態にある原子や分子などの乱雑な並進運動の運動エネルギーの平均値であり、熱伝達を生じさせる性質をもつ。物体(あるいは物体のある部分)から他に熱によってエネルギーが伝達されるのは、それらの間に温度差がある場合だけである(熱力学第二法則)。同じまたは高い温度の物体へ熱によってエネルギーを伝達するには、ヒートポンプのような機械力を使うか、鏡やレンズで放射を集中させてエネルギー密度を高めなければならない(熱力学第二法則)。.

新しい!!: アトキンソンサイクルと熱 · 続きを見る »

熱効率

熱効率(ねつこうりつ、thermal efficiency)とは、熱機関の性能を表現する物理量であり、熱として投入されるエネルギーのうち、機械的な仕事(動力)や電気的なエネルギー(電力)などに変換される割合である。 ある熱機関に投入される熱が であるときに取り出される仕事を と表した時の係数 がこの熱機関の熱効率である。 例として、熱機関であるエンジンの目的は、動力の供給である。1000ジュールの熱エネルギーが与えられたエンジンが300ジュール分の動力を出力した場合、このエンジンの熱効率は30%である。残りの700ジュールは発熱や摩擦抗力や震動など、目的ではない形の物理現象に消費され、目的外に費消されたのであり、損失と呼ばれる。熱効率は熱力学第一法則により1(100%)を越えることはなく、熱力学第二法則により1になることも決してない。 ニコラ・カルノーは思考実験で最も熱効率の良い仮想熱機関としてカルノーサイクルを提案した。カルノーサイクルの理論熱効率 は、吸熱源の温度を 、排熱源の温度を としたとき で与えられる。吸熱源の温度が高く、排熱源の温度が低いほど熱効率は大きいが、熱力学温度が必ず正であるため理論熱効率は必ず1より小さく、実際の熱効率はさらに小さくなる。また、吸熱源の温度が排熱源の温度より低い場合は熱効率が負になるため仕事を取り出すことはできない。逆に言えば、外部から仕事としてエネルギーを投入すれば、低温源から熱を吸収して高温源に熱を移動させることができる。このような機関はヒートポンプと呼ばれる。ヒートポンプの性能は熱効率に替えて成績係数という量で表現される。.

新しい!!: アトキンソンサイクルと熱効率 · 続きを見る »

熱機関の理論サイクル

熱機関の理論サイクル(ねつきかんのりろんサイクル)は、 熱機関の作業物質が行うサイクル(一巡して元に戻る状態変化)を 単純化・理想化したサイクルのことであり、 一部を除いて可逆サイクルである。 実際の熱機関のサイクルは多少なりとも不可逆変化を伴っており、 ここで扱う理論サイクルとは異なっているが、 理論サイクルは熱機関の原理的理解や基本設計には必要なものである。熱サイクルともいう。 熱機関と逆の動作をする冷凍機のサイクルは、 熱機関のサイクルを逆に動作させたものと考えることができ、 ここでは、冷凍機の理論サイクルも含めて扱う。.

新しい!!: アトキンソンサイクルと熱機関の理論サイクル · 続きを見る »

過給機

過給機(かきゅうき)とは、内燃機関が吸入する空気の圧力を吸気口の圧力以上に高める補機の総称である。英語では"Supercharger"(スーパーチャージャー)。なお、「スーパーチャージャー」を特に機械式過給機のみを指すものとし、排気タービンを駆動源としたもの(いわゆるターボチャージャー)とは別と扱う場合も多い。圧縮機(コンプレッサー(compressor, kompressor))の一種、ないし、吸気を圧縮して給気することに特化した圧縮機といえる。.

新しい!!: アトキンソンサイクルと過給機 · 続きを見る »

部品

部品(ぶひん)とは、機構、器具の一部分を成している品を指す。部分品の略称であり、パーツとも呼ばれる。コンポーネント(component)とも呼ばれる。.

新しい!!: アトキンソンサイクルと部品 · 続きを見る »

自然吸気

自然吸気(しぜんきゅうき)とは、ターボチャージャーやスーパーチャージャーなどの過給機を使わず大気圧でシリンダー内に吸気する、エンジンの区別方法のひとつ。NA(エヌエー:Natural Aspiration〈ナチュラル アスピレーション〉、またはNormal Aspiration〈ノーマル アスピレーション〉の略)や無過給と呼ばれることもある。とくに自動車において、このようなエンジンを自然吸気エンジンと呼ぶ。本項ではこの自動車エンジンにおける自然吸気について述べる。.

新しい!!: アトキンソンサイクルと自然吸気 · 続きを見る »

排気量

排気量 (はいきりょう)とは、内燃機関の燃焼行程に関わる容積の大きさを示す数値で、エンジンの性能指標のひとつである。単位は立方センチメートル(cm³)であるが、慣習的にリットルを用いたり、日本国外では立方インチを使用するケースもある。 一般には排気量が大きくなるにしたがって、単位時間あたりの燃焼する燃料が多くなるため、エンジンのトルクおよび出力は増加する傾向にある。反対に燃費は悪化する傾向があるが、機械損失(主に摩擦)やパワーバンド、エンジン設計の関係上、小排気量エンジンが必ずしも低燃費であるわけではない。 エンジンのシリンダー内でピストンが上下する範囲の体積を行程容積といい、この値とシリンダー(気筒)数との積が総排気量となる。内径(ボア)をd(mm)、行程(ストローク→ピストンが動く距離)をS(mm)、気筒数をNとした場合、エンジンの総排気量Dは次式で表される。 例:ホンダ・CB1300スーパーフォア (SC54)、内径78.0mm、行程67.2mm、4気筒、の場合(πを3.14として計算) もしくは D.

新しい!!: アトキンソンサイクルと排気量 · 続きを見る »

死点

死点(してん、dead center)とは、クランク機構で回転力が発生しない地点を示し、最も高い位置を上死点(じょうしてん、top dead center/TDC)、最も低い位置を下死点(かしてん、bottom dead center/BDC)と呼ぶ。 死点という用語は様々なクランクを用いる機器、例えば人力で動く一輪車、自転車、三輪車、蒸気機関を用いる機関車でも、「回転力が発生しない点」を示す意味で用いられる。クランクを持つ機器はこの回転力が発生しなくなる死点に打ち勝つために、フライホイールの慣性力を用いるか、マルチシリンダーエンジンのようにクランクに上下運動を伝える動力を複数設けて各動力の死点の位相を相互にずらす設計を用いて、死点によって回転力が停止する事態が起こらないようにしている。 足踏みミシンや自転車のクランクには、12時方向と6時方向の2カ所の死点が存在する。足踏みミシンの場合は、手でフライホイールを回して死点から動作を始めることができる。自転車の乗り手は両足を用いて交互に12時方向の死点に達したペダルを踏み続けることで、クランクの回転力を維持する必要がある。フリーホイールのない自転車の場合には、自転車に勢いさえ付いていれば乗り手がペダルを踏まなくてもクランクは回転し続けるが、死点で止まった状態からは、正しい回転方向へ力を掛ける必要がある。.

新しい!!: アトキンソンサイクルと死点 · 続きを見る »

気体

気体(きたい、gas)とは、物質の状態のひとつであり岩波書店『広辞苑』 第6版 「気体」、一定の形と体積を持たず、自由に流動し圧力の増減で体積が容易に変化する状態のこと。 「ガス体」とも。.

新しい!!: アトキンソンサイクルと気体 · 続きを見る »

混合気

混合気(こんごうき)とは、ガス燃料(気体)もしくは霧状の液体燃料が混ざり合った状態の空気を示す。主に自動車エンジンなどの内燃機関を論じる場合に多用される用語である。 なお、予混合圧縮自然着火燃焼方式を除いた通常のディーゼルエンジンでは、圧縮行程の終盤以降に燃料の噴射が開始されるため、吸気から圧縮までを空気のみで行い、混合気の生成や気化器を必要としない。.

新しい!!: アトキンソンサイクルと混合気 · 続きを見る »

温度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。.

新しい!!: アトキンソンサイクルと温度 · 続きを見る »

本田技研工業

本田技研工業株式会社(ほんだぎけんこうぎょう、英称: Honda Motor Co., Ltd.)は、東京都港区に本社を置く日本の輸送機器及び機械工業メーカーであり、四輪車では、2015年度販売台数世界第7位、二輪車では、販売台数、売上規模とも世界首位で、船外機は販売台数世界第4位である。.

新しい!!: アトキンソンサイクルと本田技研工業 · 続きを見る »

1882年

記載なし。

新しい!!: アトキンソンサイクルと1882年 · 続きを見る »

2013年

この項目では、国際的な視点に基づいた2013年について記載する。.

新しい!!: アトキンソンサイクルと2013年 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »