ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

アインシュタイン多様体

索引 アインシュタイン多様体

微分幾何と数理物理において、アインシュタイン多様体(Einstein manifold)は、リッチテンソルが計量テンソルに比例するリーマン多様体もしくは、擬リーマン多様体である。通常、一般相対論で研究する 4次元のローレンツ多様体とは違い、この条件は、符合と同様に計量の次元も任意であることが可能であるにもかかわらず、この条件と計量が(宇宙定数を持つ)真空のアインシュタイン方程式の解であることとが同値であるとの理由から、アインシュタイン多様体はアルベルト・アインシュタイン(Albert Einstein)の名前に由来している。 M が基礎となる n-次元多様体で、g がその計量テンソルであれば、アインシュタインの条件は、ある定数 k が存在し、 であることを意味する。ここに、Ric は g のリッチテンソルを表わす。k.

34 関係: 向き宇宙定数射影空間一般相対性理論幾何学単位系弦理論微分幾何学バキュームユークリッド空間リーマン多様体リッチ平坦多様体リッチテンソルフビニ・スタディ計量アルベルト・アインシュタインアインシュタイン方程式エネルギー・運動量テンソルカラビ・ヤウ多様体ケーラー多様体コンパクト空間スカラー曲率真空非線型シグマモデル計量テンソル超対称性超ケーラー多様体超球面超重力理論重力インスタントン量子重力理論K3曲面M理論擬リーマン多様体数理物理学4次元多様体

向き

数学における実ベクトル空間の向き(むき、orientation) または向き付けとは、基底の順序付き組に対し「正」の向きまたは「負」の向きを指定する規約のことである。3次元ユークリッド空間における2種類の向きはそれぞれ右手系や左手系(あるいは右キラル・左キラル)と呼ばれる。しばしば右手系が正の向きにとられるものの、右手系を負の向きとするような向き付けももちろんありうる。 実ベクトル空間における向きの概念を基礎として、実多様体などの様々な幾何学的対象にも向きを考えることができる。.

新しい!!: アインシュタイン多様体と向き · 続きを見る »

宇宙定数

宇宙定数(うちゅうていすう、)は、アインシュタインの重力場方程式の中に現れる宇宙項(うちゅうこう)の係数。宇宙定数はスカラー量で、通常Λ(ラムダ)と書き表される。.

新しい!!: アインシュタイン多様体と宇宙定数 · 続きを見る »

射影空間

射影空間(しゃえいくうかん、projective space) とは、その次元が n であるとき、(n + 1)個の「数」の比全体からなる空間の事をさす。比を構成する「数」をどんな体(あるいは環)にとるかによって様々な空間が得られる。非ユークリッド幾何学のひとつである射影幾何学がその概念の端緒であるが、射影空間は位相幾何学、微分幾何学、代数幾何学など幾何学のあらゆる分野にわたって非常に重要な概念である。.

新しい!!: アインシュタイン多様体と射影空間 · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

新しい!!: アインシュタイン多様体と一般相対性理論 · 続きを見る »

幾何学単位系

幾何学単位系(きかがくたんいけい)とは、物理学、特に一般相対性理論において用いられる単位系である。.

新しい!!: アインシュタイン多様体と幾何学単位系 · 続きを見る »

弦理論

弦理論(げんりろん、string theory)は、粒子を0次元の点ではなく1次元の弦として扱う理論、仮説のこと。ひも理論、ストリング理論とも呼ばれる。.

新しい!!: アインシュタイン多様体と弦理論 · 続きを見る »

微分幾何学

数学における微分幾何学(びぶんきかがく、ドイツ語: Differentialgeometrie、英語:differential geometry)とは微分を用いた幾何学の研究である。また、可微分多様体上の微分可能な関数を取り扱う数学の分野は微分位相幾何学(びぶんいそうきかがく、ドイツ語: Differentialtopologie、英語: differential topology)とよばれることがある。微分方程式の研究から自然に発生したこれらの分野は互いに密接に関連しており、特に一般相対性理論をはじめとして物理学に多くの応用がある。これらは可微分多様体についての幾何学を構成しているが、力学系の視点からも直接に研究される。.

新しい!!: アインシュタイン多様体と微分幾何学 · 続きを見る »

バキューム

バキューム(vacuum )は、英語で真空の意味。.

新しい!!: アインシュタイン多様体とバキューム · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: アインシュタイン多様体とユークリッド空間 · 続きを見る »

リーマン多様体

微分幾何学におけるリーマン多様体(リーマンたようたい、Riemannian manifold)とは、可微分多様体 で 上の各点に基本計量テンソル が与えられているものを言う。ベルンハルト・リーマンによって導入された。.

新しい!!: アインシュタイン多様体とリーマン多様体 · 続きを見る »

リッチ平坦多様体

数学では、リッチ平坦多様体(Ricci-flat manifolds)は、リッチ曲率が 0 であるリーマン多様体である。物理学では、リッチ平坦多様体は、任意の次元で宇宙定数が 0 であるリーマン多様体に対して、アインシュタイン方程式の類似である(vacuum solution)を表わす。リッチ平坦多様体は、通常は宇宙定数が 0 である必要はないアインシュタイン多様体の特別な場合である。 リッチ曲率が、小さな測地用の球の体積がユークリッド空間の中の球の体積から逸脱する量を測る。小さな測地用の球は、体積の変えはしないが、ユークリッド空間の中の標準的な球とは「形」を変えることもありうる。 たとえば、リッチ平坦な多様体の中では、ユークリッド空間の中の円は、変形されて同じ面積を持つ楕円となっていることもありうる。これは(Weyl curvature)のおかげである。 リッチ平坦多様体は、(holonomy group)を制限される場合が多い。重要なケースとして、カラビ・ヤウ多様体や超ケーラー多様体がある。.

新しい!!: アインシュタイン多様体とリッチ平坦多様体 · 続きを見る »

リッチテンソル

微分幾何学において、リッチ曲率テンソル とは、歪んだリーマン多様体上の測地球の体積がユークリッド空間上の球体からどれだけずれるかを表す量である。に因んでその名がある。あるリーマン計量が与えられたとき、その記述する幾何が通常の 次元ユークリッド空間からどれだけ違うか表わす尺度として使うことができる。リッチテンソルはどんな擬リーマン多様体に対しても、リーマン曲率テンソルのトレースとして定義される。計量それ自体と同様、リッチテンソルは多様体の接空間上の対称双線型形式である。 相対性理論では、リッチテンソルは時空の曲率(Rμvと表す)の一部であり、レイチャウデューリ方程式を通じて物質が時間とともにどれだけ収縮もしくは拡散するかの程度に関連する。アインシュタイン方程式を通じて、宇宙に含まれる物質の量にも関連する。微分幾何学では、あるリーマン多様体上のリッチテンソルの下界により、一様な曲率をもつと比較した場合の(も参照)大域的幾何学および位相幾何学的な情報を得ることができる。リッチテンソルが真空のアインシュタイン方程式を満たすとき、その多様体はアインシュタイン多様体であるといい、特に研究されている (cf.)。これと関係して、リッチフロー方程式はある計量がアインシュタイン計量へ発展するさまを記述する。この方法により、ポアンカレ予想が最終的に解決することとなった。.

新しい!!: アインシュタイン多様体とリッチテンソル · 続きを見る »

フビニ・スタディ計量

フビニ・スタディ計量(Fubini–Study metric)は、射影ヒルベルト空間上のケーラー計量である。つまり、複素射影空間 CPn がエルミート形式を持つことを言う。この計量は、もともとは1904年と1905年に(Guido Fubini)と(Eduard Study)が記述したものであった。 ベクトル空間 Cn+1 のエルミート形式は、GL(n+1,C) の中のユニタリ部分群 U(n+1) を定義する。フビニ・スタディ計量は、U(n+1) 作用の下での不変性(スケーリングに対して)により差異を同一視すると決定し、等質性を持つ。フビニ・スタディ計量を持つ CPn は、(スケーリングを渡る)(symmetric space)である。特に、計量の正規化は、スケーリングの適用に依存する。リーマン幾何学においては、正規化された計量を使うことができるので、(2''n'' + 1) 次元球面上のフビニ・スタディ計量は、単純に標準の計量と関連付けられる。代数幾何学では、正規化を使い、CPn をホッジ多様体とすることができる。 n endowed with a Hermitian form.

新しい!!: アインシュタイン多様体とフビニ・スタディ計量 · 続きを見る »

アルベルト・アインシュタイン

アルベルト・アインシュタイン日本語における表記には、他に「アルト・アインシュタイン」(現代ドイツ語の発音由来)、「アルト・アインタイン」(英語の発音由来)がある。(Albert Einstein アルベルト・アインシュタイン、アルバート・アインシュタイン アルバ(ー)ト・アインスタイン、アルバ(ー)タインスタイン、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。 特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績などにより、世界的に知られている偉人である。 「20世紀最高の物理学者」や「現代物理学の父」等と評され、それまでの物理学の認識を根本から変えるという偉業を成し遂げた。(光量子仮説に基づく光電効果の理論的解明によって)1921年のノーベル物理学賞を受賞。.

新しい!!: アインシュタイン多様体とアルベルト・アインシュタイン · 続きを見る »

アインシュタイン方程式

一般相対性理論におけるアインシュタイン方程式(アインシュタインほうていしき、)アインシュタインの重力場方程式(じゅうりょくばのほうていしき、Einstein's field equations;EFE)とも呼ばれる。は、万有引力・重力場を記述する場の方程式である。アルベルト・アインシュタインによって導入された。 アイザック・ニュートンが導いた万有引力の法則を、強い重力場に対して適用できるように拡張した方程式であり、中性子星やブラックホールなどの高密度・大質量天体や、宇宙全体の幾何学などを扱える。.

新しい!!: アインシュタイン多様体とアインシュタイン方程式 · 続きを見る »

エネルギー・運動量テンソル

ネルギー・運動量テンソル(エネルギー・うんどうりょうテンソル、、、)とは、質量密度、エネルギー密度、エネルギー流、運動量密度、応力を相対性理論に基づいた形式で記述した物理量である。 一般相対性理論において、アインシュタイン方程式の物質分布を示す項として登場し、重力を生じさせる源()としての意味を持つ。 エネルギー・運動量テンソルは二階のテンソルであり、記号は T^ で表されることが多い。アインシュタイン方程式で、真空の状況を考える時は、T^.

新しい!!: アインシュタイン多様体とエネルギー・運動量テンソル · 続きを見る »

カラビ・ヤウ多様体

ラビ・ヤウ多様体は、代数幾何などの数学の諸分野や数理物理で注目を浴びている特別なタイプの多様体。特に超弦理論では、時空の余剰次元が6次元(実次元)のカラビ・ヤウ多様体の形をしていると予想されている。この余剰次元の考え方が、ミラー対称性の考えを導くことになった。 カラビ・ヤウ多様体は、1次元の楕円曲線や2次元のK3曲面の高次元版の複素多様体であり、コンパクトケーラー多様体で標準バンドルが自明なものとして定義されることが多い。ただし、他にも類似の(しかし互いに同値ではない)いくつかの定義がある。では、"カラビ・ヤウ空間"と呼ばれた。最初は微分幾何学の立場から、エウゲニオ・カラビで研究され、シン=トゥン・ヤウが、これらがリッチ平坦な計量を持つであろうというカラビ予想を証明したことから、カラビ・ヤウ多様体と命名された。.

新しい!!: アインシュタイン多様体とカラビ・ヤウ多様体 · 続きを見る »

ケーラー多様体

数学、特に微分幾何学において、ケーラー多様体(Kähler manifold)とは、複素構造、リーマン構造、シンプレクティック構造という3つが互いに整合性を持つ多様体である。ケーラー多様体 X 上には、ケーラーポテンシャルが存在し、X の計量に対応するレヴィ・チヴィタ接続が、標準直線束上の接続を引き起こす。 滑らかな射影代数多様体はケーラー多様体の重要な例である。小平埋め込み定理により、正の直線束を持つケーラー多様体は、常に射影空間の中へ双正則に埋め込むことができる。 ケーラー多様体の名前はドイツ人数学者エーリッヒ・ケーラー (Erich Kähler) にちなんでいる。.

新しい!!: アインシュタイン多様体とケーラー多様体 · 続きを見る »

コンパクト空間

数学において、コンパクト(compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。.

新しい!!: アインシュタイン多様体とコンパクト空間 · 続きを見る »

スカラー曲率

リーマン幾何学におけるスカラー曲率(すからーきょくりつ、Scalar curvature)またはリッチスカラー(Ricci scalar)は、リーマン多様体の最も単純な曲率不変量である。リーマン多様体の各点に、その近傍における多様体の内在的な形状から定まる単一の実数を対応させる。 2次元においては、スカラー曲率はリーマン多様体の曲率を完全に特徴付ける。しかし、次元が3以上の場合は、曲率の決定にはさらに情報が必要である。詳しい議論はリーマン多様体の曲率(en) を参照。 スカラー曲率はしばしば S (その他の表記としてSc, R)と表され、計量テンソル g に関するリッチ曲率 Ric のトレース として定義される。リッチテンソルは (0,2)-型テンソルであり、トレースをとるためには最初の添字を上げて (1,1)-型テンソルとしなければならないから、このトレースは計量の取り方に依存する。局所座標系を用いて と書き表すことができる。ただし である。座標系と計量テンソルが与えられたとき、スカラー曲率は のように表示できる。ここで Γabc は計量のクリストッフェル記号である。 任意のアフィン接続に対して自然に定義されるリーマン曲率テンソルやリッチテンソルとは異なり、スカラー曲率は(その定義がまさに計量と不可分な方法で与えられたことを思えば)完全にリーマン幾何学の領域に特有の概念であることが分かる。.

新しい!!: アインシュタイン多様体とスカラー曲率 · 続きを見る »

真空

真空(しんくう、英語:vacuum)は、物理学の概念で、圧力が大気圧より低い空間状態のこと。意味的には、古典論と量子論で大きく異なる。.

新しい!!: アインシュタイン多様体と真空 · 続きを見る »

非線型シグマモデル

場の量子論において、非線型シグマモデル (nonlinear σ model) は、対象多様体と呼ばれる非線型多様体 T 上に値をとるスカラー場 である。非線型シグマモデルは により導入され、彼らのモデルの中の σ と呼ばれるスピンを持たないメソンに対応する場に因んで命名された。.

新しい!!: アインシュタイン多様体と非線型シグマモデル · 続きを見る »

計量テンソル

計量テンソル(けいりょうテンソル、metric tensor)は、リーマン幾何学において、空間内の距離と角度を定義する、階数()が2のテンソルである。多様体が与えられたとき、多様体の接空間で、滑らかに変化する非負の2次関数を選ぶことができる場合、その多様体をリーマン多様体と呼ぶ。そのため、計量テンソルは、リーマン計量()と呼ばれることもある。 ひとたび、ある座標系 が選ばれると、計量テンソルは行列形式で定義される。通常、 として表記され、各成分は と表される。以下では、添え字の和に関してアインシュタインの縮約記法を用いる。 点 から までの曲線の長さは、 をパラメータとして、 と定義される。2つの接ベクトル()U.

新しい!!: アインシュタイン多様体と計量テンソル · 続きを見る »

超対称性

超対称性(ちょうたいしょうせい,supersymmetry,SUSY)はボソンとフェルミオンの入れ替えに対応する対称性である。この対称性を取り入れた理論は超対称性理論などのように呼ばれる。また、超対称性粒子の一部はダークマターの候補の一つである。2013年1月現在、超対称性粒子は未発見である。.

新しい!!: アインシュタイン多様体と超対称性 · 続きを見る »

超ケーラー多様体

微分幾何学において、超ケーラー多様体(hyperkähler manifold)は、次元 4k次元のリーマン多様体で、(holonomy group)がSp(''k'')を含んでいる場合を言う(ここに、Sp(k) はシンプレクティック群のコンパクトな形を表していて、k-次元の四元数エルミート空間の四元数線型ユニタリ自己準同型の群と同一視される)。超ケーラー多様体は、ケーラー多様体の特別なクラスで、ケーラー多様体の四元数と考えることができる。超ケーラー多様体はみな、リッチ平坦であり、従って、Sp(k) はSU(2''k'')の部分群であることから容易に分かるように、カラビ・ヤウ多様体である。 超ケーラー多様体は、エウジェニオ・カラビにより 1978年に定義された。.

新しい!!: アインシュタイン多様体と超ケーラー多様体 · 続きを見る »

超球面

数学において、 次元球面(-じげんきゅうめん、n-sphere, n 球面)は普通の球面の ''n'' 次元空間への一般化である。任意の自然数 n に対して、半径 r の n 次元球面は中心点から距離 r にある (n + 1) 次元ユークリッド空間における点の集合として定義される。ここで半径 r は任意の正の実数でよい。したがって、原点を中心とする n 次元球面は によって定義される。これは (n + 1) 次元ユークリッド空間内に存在する n 次元多様体である。 特に:.

新しい!!: アインシュタイン多様体と超球面 · 続きを見る »

超重力理論

超重力理論(ちょうじゅうりょくりろん)とは、一般相対論を超対称化した理論、言い方を変えれば局所超対称性の理論である。量子化した際は、単なる一般相対論より紫外発散が弱くなるため、量子重力理論の文脈において1980年代初頭に精力的に研究された。超対称性のゲージ理論と考えることもできる。対応するゲージ場がグラヴィティーノである。.

新しい!!: アインシュタイン多様体と超重力理論 · 続きを見る »

重力インスタントン

重力インスタントン(じゅうりょく - )とは、以下の3つの性質を持つ4次元リーマン多様体のことである。.

新しい!!: アインシュタイン多様体と重力インスタントン · 続きを見る »

量子重力理論

量子重力理論(りょうしじゅうりょくりろん、)は、重力相互作用(重力)を量子化した理論である。単に量子重力(りょうしじゅうりょく:Quantum Gravity(QG), Quantum Gravitation)または重力の量子論(Quantum Theory of Gravity)などとも呼ばれる。 ユダヤ系ロシア人のマトベイ・ブロンスタインがパイオニアとされる。一般相対性理論と量子力学の双方を統一する理論と期待されている。物理学の基礎概念である時間、空間、物質、力を統一的に理解するための鍵であり、物理学における最重要課題の一つと言われている。 量子重力理論は現時点ではまったく未完成の未知の理論である。量子重力を考える上で最大の問題点はその指針とすべき基本的な原理がよく分かっていないということである。そもそも重力は自然界に存在する四つの力(基本相互作用)の中で最も弱い。従って、量子化された重力が関係していると考えられる現象が現在到達できる技術レベルでは観測できないためである。.

新しい!!: アインシュタイン多様体と量子重力理論 · 続きを見る »

K3曲面

数学において、K3曲面 (K3 surface) とは、不正則数が で、自明な標準バンドルを持っているという複素解析的、もしくは代数的な滑らかな最小完備曲面をいう。 エンリケス・小平の曲面の分類では、それらは小平次元がゼロの曲面の 4つのクラスのうちの一つである。 K3曲面は、複素トーラスとともに 2次元のカラビ・ヤウ多様体である。ほとんどの複素K3曲面は代数的ではない。このことは、K3曲面を多項式により定義される曲面として射影空間へ埋め込むことができないことを意味する。K3曲面はラマヌジャンが1910年代に発見したが未発表に終わり、後に が再発見して、3人の代数幾何学者(クンマー、ケーラー、小平邦彦)と当時未踏峰だったK2に因みK3曲面と名付けた。.

新しい!!: アインシュタイン多様体とK3曲面 · 続きを見る »

M理論

M理論(Mりろん)とは、現在知られている5つの超弦理論を統合するとされる、11次元(空間次元が10個、時間次元が1個)の仮説理論である。尚、この理論には弦は存在せず、2次元の膜(メンブレーン)や5次元の膜が構成要素であると考えられている。.

新しい!!: アインシュタイン多様体とM理論 · 続きを見る »

擬リーマン多様体

微分幾何学において、擬リーマン多様体 (pseudo-Riemannian manifold)(また、半リーマン多様体 (semi-Riemannian manifold) ともいう)は、リーマン多様体の一般化であり、そこでは計量テンソルが必ずしもでないこともある。代わって、非退化というより弱い条件が、計量テンソルへ導入される。 一般相対論で極めて重要な多様体として、ローレンツ多様体 (Lorentzian manifold) があり、そこでは、一つの次元が他の次元とは反対の符号を持っている。このことは、接ベクトルが時間的、光的、空間的へと分類される。時空は 4次元ローレンツ多様体としてモデル化される。.

新しい!!: アインシュタイン多様体と擬リーマン多様体 · 続きを見る »

数理物理学

数理物理学(すうりぶつりがく、Mathematical physics)は、数学と物理学の境界を成す科学の一分野である。数理物理学が何から構成されるかについては、いろいろな考え方がある。典型的な定義は、Journal of Mathematical Physicsで与えているように、「物理学における問題への数学の応用と、そのような応用と物理学の定式化に適した数学的手法の構築」である。 しかしながら、この定義は、それ自体は特に関連のない抽象的な数学的事実の証明にも物理学の成果が用いられている現状を反映していない。このような現象は、弦理論の研究が数学の新地平を切り拓きつつある現在、ますます重要になっている。 数理物理には、関数解析学/量子力学、幾何学/一般相対性理論、組み合わせ論/確率論/統計力学などが含まれる。最近では弦理論が、代数幾何学、トポロジー、複素幾何学などの数学の重要分野と交流を持つようになってきている。.

新しい!!: アインシュタイン多様体と数理物理学 · 続きを見る »

4次元多様体

数学において、4次元多様体 (4-manifold) は 4次元の位相多様体である。滑らかな4次元多様体 (smooth 4-manifold) は、をもつ 4次元多様体である。4次元では、低次元では注目すべき対比があり、位相多様体と滑らかな多様体の間で大きな差異がある。滑らかな構造を持たない 4次元多様体が存在し、たとえ、滑らかな構造が存在したとしても、一意であるとは限らない(すなわち、同相であるが微分同相ではない滑らかな多様体が存在する。.

新しい!!: アインシュタイン多様体と4次元多様体 · 続きを見る »

ここにリダイレクトされます:

アインシュタイン計量

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »