ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

アインシュタイン・ヒルベルト作用

索引 アインシュタイン・ヒルベルト作用

アインシュタイン・ヒルベルト作用()、あるいはヒルベルト作用は、一般相対性理論において、最小作用の原理を通してアインシュタイン方程式を導く作用である。 この作用は、1915年にダフィット・ヒルベルトにより最初に提案された。 (- + + +) 計量符号を用いると、作用の重力場の部分は で与えられる。 ここに g.

28 関係: 場の古典論宇宙定数万有引力万有引力定数一般相対性理論作用 (物理学)マクスウェルの方程式ネーターの定理ラグランジアン (場の理論)リーマン曲率テンソルレヴィ・チヴィタ接続ダフィット・ヒルベルトアインシュタインの定数アインシュタイン方程式エネルギー・運動量テンソルオイラー=ラグランジュ方程式ストークスの定理スカラー曲率共変微分光速運動方程式計量テンソルF(R)重力Well-defined接続 (幾何学)汎函数最小作用の原理時空

場の古典論

場の古典論、もしくは古典場の理論(classical field theory)は、(物理的な)場がどのように物質と相互作用するかについて研究する理論物理学の領域である。古典的という単語は、量子力学と協調する場の量子論(単に、場の理論とも言われる)と対比して使われる。 物理的な場は各々の空間と時間の点に物理量を対応させたとして考えることができる。例えば、天気図を考えると、ある国の一日を通じての風速は、空間の各々の点にベクトルを対応させることにより記述できる。各々のベクトルは、その点での大気の運動の方向を表現する。日が進むにつれて、ベクトルの指す方向はこの方向に応じて変化する。数学的な観点からは、古典場はファイバーバンドル((covariant classical field theory))の切断として記述される。古典場理論という用語は、電磁気と重力という自然界の基本的力のうちの 2つを記述する物理理論に共通に使われる。 物理的な場の記述は、相対論の発見の前に行われており、相対論に照らして修正された。従って、古典場の理論は通常、非相対論的と相対論的なカテゴリ分けがなされる。.

新しい!!: アインシュタイン・ヒルベルト作用と場の古典論 · 続きを見る »

宇宙定数

宇宙定数(うちゅうていすう、)は、アインシュタインの重力場方程式の中に現れる宇宙項(うちゅうこう)の係数。宇宙定数はスカラー量で、通常Λ(ラムダ)と書き表される。.

新しい!!: アインシュタイン・ヒルベルト作用と宇宙定数 · 続きを見る »

万有引力

万有引力(ばんゆういんりょく、universal gravitation)または万有引力の法則(ばんゆういんりょくのほうそく、law of universal gravitation)とは、「地上において質点(物体)が地球に引き寄せられるだけではなく、この宇宙においてはどこでも全ての質点(物体)は互いに gravitation(.

新しい!!: アインシュタイン・ヒルベルト作用と万有引力 · 続きを見る »

万有引力定数

万有引力定数(ばんゆういんりょくていすう)あるいは(ニュートンの)重力定数(じゅうりょくていすう、(Newtonian) constant of gravitation)とは、重力相互作用の大きさを表す物理定数である。アイザック・ニュートンの万有引力の法則において導入された。記号は一般に で表される。 ニュートンの万有引力理論において、それぞれ 、 の質量を持つ2つの物体が、距離 だけ離れて存在しているとき、これらの間に働く万有引力 は となる。このときの比例係数 が万有引力定数である。SIに基づいて、質量 、 にキログラム(kg)、長さ にメートル(m)、力 にニュートン(N、これは に等しい)を用いれば、万有引力定数 の単位は となる。 アインシュタインの一般相対性理論においては、ニュートンの重力理論に対する修正と拡張が為され、一般相対性理論の基礎方程式であるアインシュタイン方程式においても比例係数としてこの重力定数が現れる。.

新しい!!: アインシュタイン・ヒルベルト作用と万有引力定数 · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

新しい!!: アインシュタイン・ヒルベルト作用と一般相対性理論 · 続きを見る »

作用 (物理学)

物理学における作用(さよう、action)は、の動力学的な性質を示すもので、数学的には経路トラジェクトリとか軌道とも呼ばれる。を引数にとる実数値の汎関数として表現される。一般には、異なる経路に対する作用は異なる値を持つ。古典力学においては、作用の停留点における経路が実現される。この法則を最小作用の原理と呼ぶ。 作用は、エネルギーと時間の積の次元を持つ。従って、国際単位系 (SI) では、作用の単位はジュール秒 (J⋅s) となる。作用の次元を持つ物理定数としてプランク定数がある。そのため、プランク定数は作用の物理的に普遍な単位としてしばしば用いられる。なお、作用と同じ次元の物理量として角運動量がある。 物理学において「作用」という言葉は様々な意味で用いられる。たとえば作用・反作用の法則や近接作用論・遠隔作用論の中で論じられる「作用」とは物体に及ぼされる力を指す。本項では力の意味での作用ではなく、解析力学におけるラグランジアンの積分としての作用についてを述べる。.

新しい!!: アインシュタイン・ヒルベルト作用と作用 (物理学) · 続きを見る »

マクスウェルの方程式

マクスウェルの方程式(マクスウェルのほうていしき、Maxwell's equations)は、電磁場のふるまいを記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理された。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれ、マクスウェルはマックスウェルとも表記される。 真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。 なお、電磁気学の単位系は、国際単位系に発展したMKSA単位系のほか、ガウス単位系などがあるが、以下では原則として、国際単位系を用いることとする。.

新しい!!: アインシュタイン・ヒルベルト作用とマクスウェルの方程式 · 続きを見る »

ネーターの定理

物理学において、ネーターの定理(ネーターのていり、Noether's theorem)は、系に連続的な対称性がある場合はそれに対応する保存則が存在する、と述べる定理である。 ドイツの数学者エミー・ネーターによって1915年に証明され、1918年に公表された。.

新しい!!: アインシュタイン・ヒルベルト作用とネーターの定理 · 続きを見る »

ラグランジアン (場の理論)

ラグランジアン場の理論 は、古典場理論のひとつの定式化であり、ラグランジュ力学の場の理論における類似物である。ラグランジュ力学は、それぞれが有限の自由度を持つ離散的な粒子を扱う。ラグランジアン場の理論は、自由度が無限である連続体や場に適用される。 本記事は、ラグランジアン密度を \scriptstyle \mathcal と記し、ラグランジアンは L と記すこととする. ラグランジュ力学の定式化は、より拡張され場の理論を扱うようになった。場の理論において、独立変数は時空 (x, y, z, t) の中の事象、あるいはさらに一般的に、多様体上の点 s へと置き換わった。独立変数 (q) は時空での点での場の値 φ(x, y, z, t) へ置き換わるので、運動方程式は作用原理があるおかげで得ることができ、 と書くことができる。ここに「作用」 \scriptstyle\mathcal は微分可能な独立変数 φi(s) と s 自身の汎函数 であり、s.

新しい!!: アインシュタイン・ヒルベルト作用とラグランジアン (場の理論) · 続きを見る »

リーマン曲率テンソル

リーマン幾何学においてリーマン曲率テンソル(リーマンきょくりつテンソル、Riemann curvature tensor)あるいはリーマン-クリストッフェルのテンソル(Riemann–Christoffel tensor)とは、リーマン多様体の曲率を表す4階のテンソルを言う。名称は、ベルンハルト・リーマンおよびエルウィン・ブルーノ・クリストッフェルに因む。 リーマン-クリストッフェルのテンソル(リーマン曲率テンソル)は重力の現代的理論である一般相対性理論における数学的な道具の中心となるものである。.

新しい!!: アインシュタイン・ヒルベルト作用とリーマン曲率テンソル · 続きを見る »

レヴィ・チヴィタ接続

リーマン幾何学では、レヴィ・チヴィタ接続 (Levi-Civita connection) は多様体の接バンドル上の特別な接続であり、特別とは捩れをもたない(metric connection)、つまり、捩れを持たない与えられた(擬)リーマン計量を保存する接バンドル上の接続(アフィン接続)である。 リーマン幾何学の基本定理は、これらの性質を満たす接続が一意的に決まることを言っている。 リーマン多様体や擬リーマン多様体の理論では、共変微分はレヴィ・チヴィタ接続のために使われる。局所座標系の観点からは、この接続の成分はクリストッフェル記号と呼ばれる。.

新しい!!: アインシュタイン・ヒルベルト作用とレヴィ・チヴィタ接続 · 続きを見る »

ダフィット・ヒルベルト

ーニヒスベルクにて私講師を務めていた頃(1886年) ヒルベルトの墓碑。「我々は知らねばならない、我々は知るだろう」と記されている。 ダフィット・ヒルベルト(David Hilbert,, 1862年1月23日 - 1943年2月14日)は、ドイツの数学者。「現代数学の父」と呼ばれる。名はダヴィット,ダヴィド、ダーフィットなどとも表記される。.

新しい!!: アインシュタイン・ヒルベルト作用とダフィット・ヒルベルト · 続きを見る »

アインシュタインの定数

アルベルト・アインシュタインが考え出した一般相対性理論の重力場方程式 における定数・係数。.

新しい!!: アインシュタイン・ヒルベルト作用とアインシュタインの定数 · 続きを見る »

アインシュタイン方程式

一般相対性理論におけるアインシュタイン方程式(アインシュタインほうていしき、)アインシュタインの重力場方程式(じゅうりょくばのほうていしき、Einstein's field equations;EFE)とも呼ばれる。は、万有引力・重力場を記述する場の方程式である。アルベルト・アインシュタインによって導入された。 アイザック・ニュートンが導いた万有引力の法則を、強い重力場に対して適用できるように拡張した方程式であり、中性子星やブラックホールなどの高密度・大質量天体や、宇宙全体の幾何学などを扱える。.

新しい!!: アインシュタイン・ヒルベルト作用とアインシュタイン方程式 · 続きを見る »

エネルギー・運動量テンソル

ネルギー・運動量テンソル(エネルギー・うんどうりょうテンソル、、、)とは、質量密度、エネルギー密度、エネルギー流、運動量密度、応力を相対性理論に基づいた形式で記述した物理量である。 一般相対性理論において、アインシュタイン方程式の物質分布を示す項として登場し、重力を生じさせる源()としての意味を持つ。 エネルギー・運動量テンソルは二階のテンソルであり、記号は T^ で表されることが多い。アインシュタイン方程式で、真空の状況を考える時は、T^.

新しい!!: アインシュタイン・ヒルベルト作用とエネルギー・運動量テンソル · 続きを見る »

オイラー=ラグランジュ方程式

イラー=ラグランジュ方程式(オイラー=ラグランジュほうていしき、Euler–Lagrange equation)は汎関数の停留値を与える関数を求める微分方程式である。 オイラーとラグランジュらの仕事により1750年代に発展した。 単に、オイラー方程式、ラグランジュ方程式とも呼ばれる。 ニュートン力学における運動方程式をより数学的に洗練された方法で定式化しなおしたもので、物理学上重要な微分方程式である。 オイラー=ラグランジュ方程式を基礎方程式としたニュートン力学の定式化をラグランジュ形式の解析力学と呼ぶ。.

新しい!!: アインシュタイン・ヒルベルト作用とオイラー=ラグランジュ方程式 · 続きを見る »

ストークスの定理

トークスの定理(ストークスのていり、Stokes' theorem)は、ベクトル解析の定理のひとつである。3次元ベクトル場の回転を閉曲線を境界とする曲面上で面積分したものが、元のベクトル場を曲面の境界である閉曲線上で線積分したものと一致することを述べるGeorge B. Arfken and Hans J. Weber (2005), chapter.1。定理の名はイギリスの物理学者ジョージ・ガブリエル・ストークスに因むVictor J. Katz (1979)Victor J. Katz (2008), chapter.16。ベクトル解析におけるグリーン・ガウス・ストークスの定理を、より一般的な向きづけられた多様体上に拡張したものも、同様にストークスの定理と呼ばれる。微分積分学の基本定理の、多様体への拡張であるともいえる。.

新しい!!: アインシュタイン・ヒルベルト作用とストークスの定理 · 続きを見る »

スカラー曲率

リーマン幾何学におけるスカラー曲率(すからーきょくりつ、Scalar curvature)またはリッチスカラー(Ricci scalar)は、リーマン多様体の最も単純な曲率不変量である。リーマン多様体の各点に、その近傍における多様体の内在的な形状から定まる単一の実数を対応させる。 2次元においては、スカラー曲率はリーマン多様体の曲率を完全に特徴付ける。しかし、次元が3以上の場合は、曲率の決定にはさらに情報が必要である。詳しい議論はリーマン多様体の曲率(en) を参照。 スカラー曲率はしばしば S (その他の表記としてSc, R)と表され、計量テンソル g に関するリッチ曲率 Ric のトレース として定義される。リッチテンソルは (0,2)-型テンソルであり、トレースをとるためには最初の添字を上げて (1,1)-型テンソルとしなければならないから、このトレースは計量の取り方に依存する。局所座標系を用いて と書き表すことができる。ただし である。座標系と計量テンソルが与えられたとき、スカラー曲率は のように表示できる。ここで Γabc は計量のクリストッフェル記号である。 任意のアフィン接続に対して自然に定義されるリーマン曲率テンソルやリッチテンソルとは異なり、スカラー曲率は(その定義がまさに計量と不可分な方法で与えられたことを思えば)完全にリーマン幾何学の領域に特有の概念であることが分かる。.

新しい!!: アインシュタイン・ヒルベルト作用とスカラー曲率 · 続きを見る »

共変微分

微分幾何学における共変微分(きょうへんびぶん、covariant derivative)とは、可微分多様体上の微分演算を言う。クリストッフェル並びにレヴィ=チヴィタ、リッチによって導入された。局所表示をとった場合その変換規則は共変(covariant)となる。.

新しい!!: アインシュタイン・ヒルベルト作用と共変微分 · 続きを見る »

光速

光速(こうそく、speed of light)、あるいは光速度(こうそくど)とは、光が伝播する速さのことであるニュートン (2011-12)、pp. 24–25.。真空中における光速の値は (≒30万キロメートル毎秒)と定義されている。つまり、太陽から地球まで約8分20秒(8分19秒とする場合もある)、月から地球は、2秒もかからない。俗に「1秒間に地球を7回半回ることができる速さ」とも表現される。 光速は宇宙における最大速度であり、物理学において時間と空間の基準となる特別な意味を持つ値でもある。 現代の国際単位系では長さの単位メートルは光速と秒により定義されている。光速度は電磁波の伝播速度でもあり、マクスウェルの方程式で媒質を真空にすると光速が一定となるということが相対性理論の根本原理になっている。 重力作用も光速で伝播することが相対性理論で予言され、2002年に観測により確認された。.

新しい!!: アインシュタイン・ヒルベルト作用と光速 · 続きを見る »

運動方程式

運動方程式(うんどうほうていしき)とは、物理学において運動の従う法則を数式に表したもの。英語の equation of motion から EOM と表記されることもある。 以下のようなものがある。.

新しい!!: アインシュタイン・ヒルベルト作用と運動方程式 · 続きを見る »

計量テンソル

計量テンソル(けいりょうテンソル、metric tensor)は、リーマン幾何学において、空間内の距離と角度を定義する、階数()が2のテンソルである。多様体が与えられたとき、多様体の接空間で、滑らかに変化する非負の2次関数を選ぶことができる場合、その多様体をリーマン多様体と呼ぶ。そのため、計量テンソルは、リーマン計量()と呼ばれることもある。 ひとたび、ある座標系 が選ばれると、計量テンソルは行列形式で定義される。通常、 として表記され、各成分は と表される。以下では、添え字の和に関してアインシュタインの縮約記法を用いる。 点 から までの曲線の長さは、 をパラメータとして、 と定義される。2つの接ベクトル()U.

新しい!!: アインシュタイン・ヒルベルト作用と計量テンソル · 続きを見る »

F(R)重力

f(R)重力(f(R)じゅうりょく)とはアインシュタインの一般相対性理論に補正を加えた重力理論の中の一つである。f(R)重力は、リッチスカラーの函数により定義される一連の理論である。最も単純な場合が、この函数がスカラーに等しいときで、これが一般相対論である。任意の函数を導入するために、暗黒物質やダークエネルギーの存在を加えることなく宇宙の(structure formation)や(accelerated expansion)を説明出来る可能性を持っている。重力の量子論に起源をもつ汎函数形式も考えられている。f(R)重力は1970年に(Hans Adolph Buchdahl)により導入された。 (このときは、φ が任意函数の名前で f の代わりで使われていた。) A wide range of phenomena can be produced from this theory by adopting different functions; however, many functional forms can now be ruled out on observational grounds, or because of pathological theoretical problems.--> (although φ was used rather than f for the name of the arbitrary function).

新しい!!: アインシュタイン・ヒルベルト作用とF(R)重力 · 続きを見る »

Well-defined

数学における は、ある概念が数学的あるいは論理学的に特定の条件を公理に用いて定義・導入されるとき、その定義(における公理の組)が自己矛盾をその中に含み持たぬ状態にあることを言い表す修飾語句である。また、ある概念の定義をする場合、そう決めることによって、何も論理的な矛盾なく上手くいくということ(定義の整合性)が確認されているということを言い表す言葉である。文脈により、「うまく定義されている」「矛盾なく定まった」「定義可能である」などと表現されることもある。 でないことは、 であることとは異なる。 は「状態」を表す形容詞であるが、日本語の定訳はなく慣例的に形容詞と動詞の複合語に訳されるか、そのまま形容動詞的に「 である」といった形で用いる。名詞形 などもあり、これを 性と記すことはできるが日本語訳としてこなれたものは特には存在しない(文脈によっては「定義可能性」などで代用可能である)。.

新しい!!: アインシュタイン・ヒルベルト作用とWell-defined · 続きを見る »

接続 (幾何学)

微分幾何学において、接続(せつぞく、connection)の考え方により、曲線や曲線の族にそって平行で整合性を持つデータの移動の考え方を詳しく示すことができる。 現代の幾何学には多くの種類の接続の考え方があり、移動したいデータが何であるかに依存する。例えば、アフィン接続は接続の最も基本的なタイプであるが、この接続はある曲線に沿ってある点から別な点へ多様体の接ベクトルを移動することを意味する。アフィン接続は、典型的には共変な微分形式として与えられ、ベクトル場の方向微分、つまり与えられた方向へのベクトル場の無限小移動をとることを意味する。 現代の幾何学では接続は非常に重要である。大きな理由は、接続によりある点での局所幾何学と別な点での局所幾何学を比較することが可能となるからである。微分幾何学は、接続の考え方のいくつかの変形を持っている。大きなグループ分けをすると 2つのグループがあり、局所の理論と無限小の理論である。局所理論は、やの考え方に最初から関係する。無限小の理論は、幾何学的なデータの微分と関係する。このように、共変微分は多様体上のベクトル場を他のベクトル場に沿った微分として特定することである。は、微分形式やリー群を使い接続の理論をある側面から定式化する方法である。は、許される場の運動方向を特定することによるファイバーバンドル、あるいは主バンドルでの接続のことを言う。は、ベクトルバンドルへ一般化したときの接続である。(本記事では、ベクトルバンドルについて接続を考えるとき、「Koszul接続」という単語を用いることとする.) さらに接続は、曲率や捩れテンソルような、幾何学的不変量をうまく定式化することにも使われる(曲率テンソルや曲率形式も参照)。.

新しい!!: アインシュタイン・ヒルベルト作用と接続 (幾何学) · 続きを見る »

汎函数

数学の特に函数解析や変分法における汎函数(はんかんすう、functional)は、ベクトル空間からその係数体あるいは実数値函数の空間への写像のことを指して言う。言い換えると、ベクトルを入力引数とし、スカラーを返す函数である。よくある状況として、考えるベクトル空間が函数の空間のときには函数を入力の引数としてとるので、汎函数のことを「函数の函数」と考えることもある。変分法において汎函数の使用は、ある種の汎函数を最小化する函数を求めることから始まった。物理学への特別に重要な応用として、を最小とする系の状態を探すことがある。.

新しい!!: アインシュタイン・ヒルベルト作用と汎函数 · 続きを見る »

最小作用の原理

最小作用の原理(さいしょうさようのげんり、principle of least action)は、物理学における基礎原理の一つ。特に解析力学の形成において、その基礎付けを与えた力学の原理を指す。最小作用の原理に従って、物体の運動(時間発展)は、作用積分と呼ばれる量を最小にするような軌道に沿って実現される。 物理学における最大の指導原理の一つであり、電磁気学におけるマクスウェルの方程式や相対性理論におけるアインシュタイン方程式ですら、対応するラグランジアンとこの法則を用いて導出される。また、量子力学においても、この法則そのものは、ファインマンの経路積分の考え方によって理解できる。物体は運動において様々な運動経路(軌道)をとる事が可能であるが、作用積分が極値(鞍点値)をとる(すなわち最小作用の原理を満たす)経路が最も量子力学的な確率密度が高くなる事が知られている。.

新しい!!: アインシュタイン・ヒルベルト作用と最小作用の原理 · 続きを見る »

時空

時空(じくう、spacetime)は、時間と空間を合わせて表現する物理学の用語、または、時間と空間を同時に、場合によっては相互に関連したものとして扱う概念である。時空間()とも。.

新しい!!: アインシュタイン・ヒルベルト作用と時空 · 続きを見る »

ここにリダイレクトされます:

アインシュタイン・ヒルベルトの作用アインシュタイン・ヒルベルト汎関数

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »