ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

Tor関手

索引 Tor関手

ホモロジー代数において、Tor 関手 (Tor functor, torsion functor) はテンソル積の関手の導来関手である。それらは最初一般に代数トポロジーにおいてと普遍係数定理を表現するために定義された。 特に R を環とし、R-Mod で左 R-加群の圏を、Mod-R で右 R-加群の圏を表す。R-Mod の加群 B をひとつ選んで固定する。Mod-R の対象 A に対し、T(A).

25 関係: 加群の直和可換環完全系列完全関手導来函手平坦加群代数的位相幾何学弱次元圏論テンソル積ホモロジー (数学)ホモロジー代数学分解 (ホモロジー代数)アーベル群アーベル群の圏前加法圏環 (数学)環上の加群Ext函手鎖複体自由アーベル群零因子捩れ部分群有限生成アーベル群普遍係数定理

加群の直和

抽象代数学における直和(ちょくわ、direct sum)は、いくつかの加群を一つにまとめて新しい大きな加群にする構成である。加群の直和は、与えられた加群を「不必要な」制約なしに部分加群として含む最小の加群であり、余積の例である。双対概念であると対照をなす。 この構成の最もよく知られた例はベクトル空間(体上の加群)やアーベル群(整数環 Z 上の加群)を考えるときに起こる。構成はバナッハ空間やヒルベルト空間をカバーするように拡張することもできる。.

新しい!!: Tor関手と加群の直和 · 続きを見る »

可換環

数学、特に抽象代数学の一分野である環論における可換環(かかんかん、commutative ring)は、その乗法が可換であるような環をいう。可換環の研究は可換環論あるいは可換代数学と呼ばれる。 いくつか特定の種類の可換環は以下のようなクラスの包含関係にある。.

新しい!!: Tor関手と可換環 · 続きを見る »

完全系列

ホモロジー代数における完全系列(かんぜんけいれつ、exact sequence)あるいは完全列(かんぜんれつ)とは、環上の加群や群などの系列で各射の像空間が次の射の核空間と正確に合致するという意味で完全であるものをいう。.

新しい!!: Tor関手と完全系列 · 続きを見る »

完全関手

ホモロジー代数において、完全関手とは完全列を保存する関手のことをいう。完全関手は対象の表現にそのまま適用できるため便利である。ホモロジー代数の多くの研究は、完全関手にはならないがその不完全さを制御できる関手を扱うためのものである。.

新しい!!: Tor関手と完全関手 · 続きを見る »

導来函手

数学では、一部の函手から導来(derived)することにより、元の函手と密接に関連した新しい函手を得ることができる。導来という操作は、抽象的ではあるが、数学全体を通して多くの構成を統一する。.

新しい!!: Tor関手と導来函手 · 続きを見る »

平坦加群

数学において、平坦加群(へいたんかぐん、flat module)とは、テンソル積をとる関手 が完全となる加群 のことである。 ホモロジー代数学および代数幾何学における基本的な概念のひとつ。ジャン=ピエール・セールによって導入された。.

新しい!!: Tor関手と平坦加群 · 続きを見る »

代数的位相幾何学

代数的位相幾何学(だいすうてきいそうきかがく、英語:algebraic topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。 古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポワンカレの一連の研究を契機として20世紀に発展した。 ポワンカレは 1895年に出版した "Analysis Situs" の中で、ホモトピーおよびホモロジーの概念を導入した。これらはいまや代数的位相幾何学の大きな柱であると考えられている。 多様体、基本群、ホモトピー、ホモロジー、コホモロジー、ファイバー束などの、位相空間の不変量として代数系を対応させ、位相的性質を代数的性質に移して研究する..

新しい!!: Tor関手と代数的位相幾何学 · 続きを見る »

弱次元

抽象代数学において、環 上の でない右加群 の弱次元(weak dimension)は、Tor群 が でない左 加群 が存在するような最大の数 (そのような が存在しなければ無限大)である。左 加群の弱次元も同様に定義される。弱次元は によって導入された。弱次元は平坦加群による加群の分解の最短の長さであるので平坦次元 (flat dimension) と呼ばれることもある。加群の弱次元は射影次元を超えない。 環の弱大局次元 (weak global dimension) は が でないような右 加群 と左 加群 が存在するような最大の数 である。そのような が存在しなければ、弱大局次元は無限大と定義される。それは環 の左右の大局次元を超えない。.

新しい!!: Tor関手と弱次元 · 続きを見る »

圏論

圏論(けんろん、category theory)は、数学的構造とその間の関係を抽象的に扱う数学理論の 1 つである。 考えている種類の「構造」を持った対象とその構造を反映するような対象間の射の集まりからなる圏が基本的な考察の対象になる。 数学の多くの分野、また計算機科学や数理物理学のいくつかの分野で導入される一連の対象は、しばしば適当な圏の対象たちだと考えることができる。圏論的な定式化によって同種のほかの対象たちとの、内部の構造に言及しないような形式的な関係性や、別の種類の数学的な対象への関連づけなどが統一的に記述される。.

新しい!!: Tor関手と圏論 · 続きを見る »

テンソル積

数学におけるテンソル積(テンソルせき、tensor product)は、線型代数学で多重線型性を扱うための線型化を担う概念で、既知のベクトル空間・加群など様々な対象から新たな対象を作り出す操作の一つである。そのようないずれの対象に関しても、テンソル積は最もな双線型乗法である。 共通の体 上の二つの ベクトル空間 のテンソル積 (基礎の体 が明らかな時には とも書く)はふたたびベクトル空間を成す。ベクトル空間のテンソル積を繰り返して得られるテンソル空間は物理的なテンソルを数学的に定式化する。テンソル空間に種々の積を入れてさまざまな多重線型代数・クリフォード代数が定式化されるが、その基本となる演算がテンソル積である。.

新しい!!: Tor関手とテンソル積 · 続きを見る »

ホモロジー (数学)

数学、とくに代数的位相幾何学や抽象代数学において、ホモロジー (homology) (「同一である」ことを意味するギリシャ語のホモス (ὁμός) に由来)は与えられた数学的対象、例えば位相空間や群に、アーベル群や加群の列を対応させる一つの一般的な手続きをいう。より詳しい背景については ホモロジー論 を見られたい。また、ホモロジーの手法の位相空間に対する具体的な適用については特異ホモロジーを、群についてのそれは群コホモロジーを、それぞれ参照されたい。 位相空間に対しては、ホモロジー群は一般にホモトピー群よりもずっと計算しやすく、したがって、空間を分類する道具としてはより手軽に扱えるものといえるだろう。.

新しい!!: Tor関手とホモロジー (数学) · 続きを見る »

ホモロジー代数学

ホモロジー代数学(homological algebra)は、一般の代数的な設定のもとでホモロジーを研究する数学の分野である。それは比較的新しい分野であり、その起源は19世紀の終わりの、(代数トポロジーの前身)と抽象代数学(加群や の理論)の、主にアンリ・ポワンカレとダフィット・ヒルベルトによる研究にまでさかのぼる。 ホモロジー代数学の発展は圏論の出現と密接に結びついている。概して、ホモロジー代数はホモロジー的関手とそれから必然的に生じる複雑な代数的構造の研究である。数学においてきわめて有用で遍在する概念の1つはチェイン複体 (chain complex) の概念であり、これはそのホモロジーとコホモロジーの両方を通じて研究できる。ホモロジー代数は、これらの複体に含まれる情報を得、それを環、加群、位相空間や、他の 'tangible' な数学的対象のホモロジー的不変量の形で描写する手段を提供してくれる。これをするための強力な手法はによって与えられる。 まさにその起源から、ホモロジー代数学は代数トポロジーにおいて非常に多くの役割を果たしている。その影響の範囲は徐々に拡大しており現在では可換環論、代数幾何学、代数的整数論、表現論、数理物理学、作用素環論、複素解析、そして偏微分方程式論を含む。K-理論はホモロジー代数学の手法を利用する独立した分野であり、アラン・コンヌの非可換幾何もそうである。.

新しい!!: Tor関手とホモロジー代数学 · 続きを見る »

分解 (ホモロジー代数)

数学のホモロジー代数において,分解(ぶんかい,resolution)(あるいは左分解 (left resolution); 双対の余分解 (coresolution) あるいは右分解 (right resolution))は加群(あるいはより一般に,アーベル圏の対象)の完全列であり,加群あるいはこの圏の対象の構造を特徴づける不変量を定義するために用いられる.通常通り射が右向きのときは,列は(左)分解については左側に無限で,右分解については右側に無限であるとされる.しかしながら,有限分解 (finite resolution) は列の対象の有限個だけが零でない分解である.そのようなものは通常,(左分解について)左端の対象あるいは(右分解について)右端の対象が零対象である有限完全列によって表される. 一般に,列の対象はなんらかの性質 P(例えば自由である)を持つよう制限される.したがって P 分解が語られる.とくに,任意の加群は自由分解,射影分解,平坦分解をもつ.それらはそれぞれ自由加群,射影加群,平坦加群からなる左分解である.同様に任意の加群は単射分解をもつ.これは単射加群からなる右分解である..

新しい!!: Tor関手と分解 (ホモロジー代数) · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: Tor関手とアーベル群 · 続きを見る »

アーベル群の圏

数学の一分野である圏論におけるアーベル群の圏(あーべるぐんのけん、category of abelian groups) は、アーベル群を対象とし群準同型を射とする圏である。アーベル群の圏はアーベル圏の原型であり、実際に任意の小さいアーベル圏は に埋め込める。.

新しい!!: Tor関手とアーベル群の圏 · 続きを見る »

前加法圏

数学、特に圏論において、前加法圏とは可換群のなすモノイド圏で豊穣化した圏のことである。言い換えると、圏Cが前加法的であるとは、Cの各hom集合 Hom(A,B) が可換群の構造を持ち、さらに射の合成について双線形であることをいう。 可換群の圏 を Ab と書く記法に由来して、前加法圏を「Ab-圏」と呼ぶこともある。著者によっては前加法圏を加法圏と呼ぶこともあるが、ある特別な前加法圏(以下の#特別な場合を参照)のことを加法圏と呼ぶのが最近の傾向である。.

新しい!!: Tor関手と前加法圏 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: Tor関手と環 (数学) · 続きを見る »

環上の加群

抽象代数学における環上の加群(かぐん、module)とは、ベクトル空間を一般化した概念で、係数(スカラー)を体の元とする代わりに、より一般の環の元としたものである。つまり、加群とは(ベクトル空間がそうであるように)加法的なアーベル群であって、その元と環の元との間に乗法が定義され、その乗法が結合的かつ加法に関して分配的となるようなものである。 任意のアーベル群は有理整数環上の加群であり、したがって環上の加群はアーベル群の一般化でもある。また、環のイデアルは環上の加群であり、したがって環上の加群はイデアルの一般化でもある。このように環上の加群はベクトル空間・アーベル群・イデアルを包括する概念であるので、さまざまな議論を加群の言葉によって統一的に扱うことができるようになる。 加群は群の表現論に非常に近しい関連を持つ。また、加群は可換環論やホモロジー代数における中心概念の一つであり、ひろく代数幾何学や代数的位相幾何学において用いられる。.

新しい!!: Tor関手と環上の加群 · 続きを見る »

Ext函手

数学では、ホモロジー代数の Ext函手(Ext functors)は、Hom函手の導来函手である。Ext函手は、最初代数幾何学で使われ、その後は数学の多くの分野で共通して使われている。名称の "Ext" は、函手とアーベル圏での拡大(Extension)との関係からきている。.

新しい!!: Tor関手とExt函手 · 続きを見る »

鎖複体

数学において、鎖複体あるいはチェイン複体 (chain complex) と双対鎖複体あるいは余鎖複体、コチェイン複体 (cochain complex) は、元来は代数トポロジーの分野で使われていた。(余)鎖複体は、位相空間の様々な次元の(コ)と(コ)バウンダリの間の関係を表す代数的な手段である。より一般的に、ホモロジー代数では、空間との関係を立ち去った抽象的な鎖複体の研究がされる。ホモロジー代数としての研究では、(余)鎖複体を公理的に代数的構造として扱う。 (余)鎖複体の応用は、通常、ホモロジー群(余鎖複体ではコホモロジー群)を定義し適用する。より抽象的な設定では、様々な同値関係(たとえば、のアイデアで始まるもの)が複体へ適用される。鎖複体は、アーベル圏で定義することも容易にできる。.

新しい!!: Tor関手と鎖複体 · 続きを見る »

自由アーベル群

抽象代数学において、自由アーベル群 (free abelian group) あるいは自由 Z-加群 (free Z-module) とは基底をもったアーベル群のことを言う。.

新しい!!: Tor関手と自由アーベル群 · 続きを見る »

零因子

抽象代数学において、環 R の元 a は、ax.

新しい!!: Tor関手と零因子 · 続きを見る »

捩れ部分群

アーベル群の理論において、アーベル群 A の捩れ部分群(ねじれぶぶんぐん、torsion subgroup) AT は A の部分群であって有限の位数をもつすべての元からなるものである。アーベル群 A が捩れ (torsion) 群(あるいは'''周期的''' (periodic) 群であるとは、A のすべての元の位数が有限であることで、torsion-free であるとは、単位元を除く A のすべての元の位数が無限であることである。 AT が加法で閉じていることの証明は加法の可換性によっている(例の節を見よ)。 A がアーベル群であれば、捩れ部分群 T は A の fully characteristic subgroup であり、剰余群 A/T は torsion-free である。すべての群をその捩れ部分群に送りすべての準同型をその捩れ部分群への制限に送る、アーベル群の圏から捩れ群の圏への共変関手が存在する。すべての群をその捩れ部分群による商に送りすべての準同型をその明らかな誘導写像(well-defined であることは容易に確かめられる)に送る、アーベル群の圏から torsion-free な群の圏への共変関手も存在する。 A が有限生成アーベル群であれば、その捩れ部分群 T と torsion-free な部分群の直和として書くことができる(しかしこれはすべての非有限生成アーベル群に対して正しくない)。A の捩れ部分群 S と torsion-free な部分群の直和としての任意の分解において、S は T と等しくなければならない(しかし torsion-free 部分群は一意的には定まらない)。これは有限生成アーベル群の分類において重要なステップである。.

新しい!!: Tor関手と捩れ部分群 · 続きを見る »

有限生成アーベル群

抽象代数学において、アーベル群 (G,+) が有限生成 (finitely generated) であるとは、G の有限個の元 x1,...,xs が存在して、G のすべての元 x が n1,...,ns を整数として の形に書けるということである。この場合、集合 を G の生成系、生成集合 (generating set) あるいは x1,..., xs は G を 生成する (generate) という。 明らかに、すべての有限アーベル群は有限生成である。有限生成アーベル群はわりと単純な構造をもっており、完全に分類することができて、以下で説明される。.

新しい!!: Tor関手と有限生成アーベル群 · 続きを見る »

普遍係数定理

代数トポロジーにおいて、普遍係数定理(ふへんけいすうていり、universal coefficient theorems)はホモロジー論とコホモロジー論の間の関係を確立する。例えば、位相空間 の整係数ホモロジー論と、任意のアーベル群 に係数をもつホモロジーは以下のように関連する。整係数ホモロジー群 は群 を完全に決定する。ここで はあるいはより一般の特異ホモロジー論でもよい: 結果自体は自由アーベル群のチェイン複体についてのホモロジー代数の純粋な成果である。結果の形は、Tor関手を使うという代償を払って、他の係数 を使うことができる形である。 例えば を に取って係数が modulo 2 であるようにすることは一般的である。これはホモロジーに 2-捩れがないことによって straightforward になる。極めて一般的に、結果は のベッチ数 と体 に係数をもつベッチ数 の間に成り立つ関係を示す。これらは異なるかもしれないが、 の標数がホモロジーに -捩れがある素数 であるときのみである。.

新しい!!: Tor関手と普遍係数定理 · 続きを見る »

ここにリダイレクトされます:

Tor函手ねじれ積

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »