ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

捩れ (代数学)

索引 捩れ (代数学)

抽象代数学において、捩れ(ねじれ、torsion)は、群の場合は、有限位数の元を言い、また環上の加群の場合は、環のある正則元によって零化される加群の元を言う。.

39 関係: 加群の局所化ねじれなし加群単位元単項イデアル整域可換体可換環多項式平坦加群位数 (群論)ネーター環モジュラー群ホモロジー代数学ベクトル空間アーベル多様体アーベル群アーベル群のランクケイリー・ハミルトンの定理商体積閉集合群 (数学)環 (数学)環の局所化環上の加群非可換整域解析的トーション自由加群自由アーベル群零因子Tor関手抽象代数学捩れ部分群核 (代数学)楕円曲線有限群有限生成加群数論力学整域整数普遍係数定理

加群の局所化

可換環論や代数幾何学において、加群の局所化 (localization of a module) は環上の加群に分母を導入する構成である。正確には、与えられた加群 M から を含む新しい加群 S−1M を構成する系統的な方法である。ここで分母の s は R のある与えられた部分集合 S を動く。 この技術は、特に代数幾何学において、加群と層論との関係のように、基本的となっている。加群の局所化は環の局所化を一般化する。.

新しい!!: 捩れ (代数学)と加群の局所化 · 続きを見る »

ねじれなし加群

代数学において、捩れなし加群 (torsion-free module) は環上の加群であって 0 が環の正則元(非零因子)によって零化される唯一の元であるようなものである。 整域において環の正則元はその 0 でない元であるので、この場合捩れなし加群は 0 が環のある 0 でない元によって零化される唯一の元であるようなものである。整域上だけで考えこの条件を捩れなし加群の定義として使う著者もいるが、より一般の環上ではこれはうまくいかない、というのも環が零因子をもてばこの条件を満たす加群は零加群しかないからだ。.

新しい!!: 捩れ (代数学)とねじれなし加群 · 続きを見る »

単位元

数学、とくに抽象代数学において、単位元(たんいげん, )あるいは中立元(ちゅうりつげん, )は、二項演算を備えた集合の特別な元で、ほかのどの元もその二項演算による単位元との結合の影響を受けない。.

新しい!!: 捩れ (代数学)と単位元 · 続きを見る »

単項イデアル整域

代数学において単項イデアル整域(たんこうイデアルせいいき、あるいは主イデアル整域、principal ideal domain; PID)あるいは主環(しゅかん、anneau principal)とは、任意のイデアルが単項イデアルであるような(可換)整域のことである。 より一般に、任意のイデアルが単項イデアルであるような(零環でない)可換環を単項イデアル環と呼ぶ(この場合、整域とは限らない、つまり零因子をもつかもしれない)が、文献によっては(例えばブルバキなどでは)「主(イデアル)環」という呼称によって、ここでいう「単項イデアル整域」のことを指している場合があるので注意が必要である。.

新しい!!: 捩れ (代数学)と単項イデアル整域 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 捩れ (代数学)と可換体 · 続きを見る »

可換環

数学、特に抽象代数学の一分野である環論における可換環(かかんかん、commutative ring)は、その乗法が可換であるような環をいう。可換環の研究は可換環論あるいは可換代数学と呼ばれる。 いくつか特定の種類の可換環は以下のようなクラスの包含関係にある。.

新しい!!: 捩れ (代数学)と可換環 · 続きを見る »

多項式

数学における多項式(たこうしき、poly­nomial)は、多数を意味するpoly- と部分を意味する -nomen あるいは nomós を併せた語で、定数および不定元(略式ではしばしば変数と呼ぶ)の和と積のみからなり、代数学の重要な対象となる数学的対象である。歴史的にも現代代数学の成立に大きな役割を果たした。 不定元がひとつの多項式は、一元多項式あるいは一変数多項式 と呼ばれ、不定元を とすれば のような形をしている。各部分 "", "", "", "" のことを項(こう、)と呼ぶ。一つの項だけからできている式を単項式 (monomial)、同様に二項式 (binomial)、三項式 (trinomial) などが、-nomial にラテン配分数詞を付けて呼ばれる。すなわち、多項式とは「多数」の「項」を持つものである。単項式の語が頻出であることに比べれば、二項式の語の使用はやや稀、三項式あるいはそれ以上の項数に対する語の使用はごく稀で一口に多項式として扱う傾向があり、それゆえ単項式のみ多項式から排他的に分類するものもある。また多項式のことを整式 (integral expression) と呼ぶ流儀もある。 多項式同士の等式として与えられる方程式は多項式方程式と呼ばれ、特に有理数係数の場合において代数方程式という。多項式方程式は多項式函数の零点を記述するものである。 不定元がふたつならば二元 (bivariate), 三つならば三元 (trivariate) というように異なるアリティを持つ多元多項式が同様に定義できる。算術あるいは初等代数学において、数の計算の抽象化として実数(あるいは必要に応じてより狭く有理数、整数、自然数)を代表する記号としての「文字」変数を伴う「」およびその計算を扱うが、それは大抵の場合多変数の多項式である。 本項では主として一元多項式を扱い、多元の場合にも多少触れるが、詳細は多元多項式の項へ譲る。.

新しい!!: 捩れ (代数学)と多項式 · 続きを見る »

平坦加群

数学において、平坦加群(へいたんかぐん、flat module)とは、テンソル積をとる関手 が完全となる加群 のことである。 ホモロジー代数学および代数幾何学における基本的な概念のひとつ。ジャン=ピエール・セールによって導入された。.

新しい!!: 捩れ (代数学)と平坦加群 · 続きを見る »

位数 (群論)

数学の分野である群論において、m.

新しい!!: 捩れ (代数学)と位数 (群論) · 続きを見る »

ネーター環

数学においてネーター環(ネーターかん、Noetherian ring)は、イデアルの昇鎖条件などのある種の有限性を持つ環の一種。エミー・ネーターによって提唱された。すべてのイデアルは有限生成という条件から単項イデアル整域の一般化と見ることもできる。.

新しい!!: 捩れ (代数学)とネーター環 · 続きを見る »

モジュラー群

数学においてモジュラー群(modular group)とは、数論、幾何学、代数学や他の現代の数学の分野における基礎研究対象であり、幾何学的変換群や行列群により表されるものである。.

新しい!!: 捩れ (代数学)とモジュラー群 · 続きを見る »

ホモロジー代数学

ホモロジー代数学(homological algebra)は、一般の代数的な設定のもとでホモロジーを研究する数学の分野である。それは比較的新しい分野であり、その起源は19世紀の終わりの、(代数トポロジーの前身)と抽象代数学(加群や の理論)の、主にアンリ・ポワンカレとダフィット・ヒルベルトによる研究にまでさかのぼる。 ホモロジー代数学の発展は圏論の出現と密接に結びついている。概して、ホモロジー代数はホモロジー的関手とそれから必然的に生じる複雑な代数的構造の研究である。数学においてきわめて有用で遍在する概念の1つはチェイン複体 (chain complex) の概念であり、これはそのホモロジーとコホモロジーの両方を通じて研究できる。ホモロジー代数は、これらの複体に含まれる情報を得、それを環、加群、位相空間や、他の 'tangible' な数学的対象のホモロジー的不変量の形で描写する手段を提供してくれる。これをするための強力な手法はによって与えられる。 まさにその起源から、ホモロジー代数学は代数トポロジーにおいて非常に多くの役割を果たしている。その影響の範囲は徐々に拡大しており現在では可換環論、代数幾何学、代数的整数論、表現論、数理物理学、作用素環論、複素解析、そして偏微分方程式論を含む。K-理論はホモロジー代数学の手法を利用する独立した分野であり、アラン・コンヌの非可換幾何もそうである。.

新しい!!: 捩れ (代数学)とホモロジー代数学 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 捩れ (代数学)とベクトル空間 · 続きを見る »

アーベル多様体

数学において、特に代数幾何学や複素解析や数論では、アーベル多様体(abelian variety)は、射影代数多様体であり、また正則函数(regular function)により定義することのできる群法則を持つ代数群でもある代数多様体を言う。アーベル多様体は、代数幾何の最も研究されている対象であり、同時に代数幾何学や数論やそれ以外の他の分野の研究の不可欠な道具である。 アーベル多様体は、任意の体に係数を持つ方程式により定義することができる。従って、多様体はその体の上で定義されると言う。歴史的には、最初研究されたアーベル多様体は複素数体上で定義された多様体であった。そのようなアーベル多様体はまさに複素射影空間へ埋め込むことができ複素トーラスであることが判明している。代数体上に定義されたアーベル多様体は、特別であり、数論の観点から重要である。環の局所化のテクニックは、数体上に定義されたアーベル多様体から有限体上や様々な局所体上に定義されたアーベル多様体を自然に導く。 アーベル多様体は代数多様体のヤコビ多様体(ピカール多様体のゼロ点の連結成分として)自然に現れてくる。アーベル多様体の群法則は必然的に可換となり、多様体は非特異となる。楕円曲線のアーベル多様体は次元が 1 である。アーベル多様体は小平次元が 0 である。.

新しい!!: 捩れ (代数学)とアーベル多様体 · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: 捩れ (代数学)とアーベル群 · 続きを見る »

アーベル群のランク

数学において、アーベル群 A のランク (rank)、階数、プリューファーランク (Prüfer rank)、あるいは捩れなしランク (torsion-free rank) は極大線型独立部分集合の濃度である。A のランクは A に含まれる最大の自由アーベル群のサイズを決定する。A が捩れなしであれば次元がランク A の有理数体上のベクトル空間に埋め込まれる。有限生成アーベル群に対して、ランクは強い不変量でありすべてのそのような群はそのランクと捩れ部分群によって同型を除いて決定される。は完全に分類されている。しかしながら、より高いランクのアーベル群の理論はより難解である。 用語ランクは基本アーベル群の文脈では異なる意味を持つ。.

新しい!!: 捩れ (代数学)とアーベル群のランク · 続きを見る »

ケイリー・ハミルトンの定理

イリー・ハミルトンの定理(ケイリー・ハミルトンのていり、Cayley–Hamilton theorem)、またはハミルトン・ケイリーの定理とは、線型代数学において、(実数体や複素数体を含む)可換環上の正方行列は固有方程式を満たすという定理である。アーサー・ケイリーとウィリアム・ローワン・ハミルトンにちなむ。.

新しい!!: 捩れ (代数学)とケイリー・ハミルトンの定理 · 続きを見る »

商体

数学における整域の分数体(ぶんすうたい、field of fractions)あるいは商体(しょうたい、field of quotients)とは、与えられた整域に対してそれを部分環として含む最小の体である。整域 R の商体の元は a ≠ 0 および b なる整域 R の元によって分数 b/a の形に表される。環 R の商体が K であることを K.

新しい!!: 捩れ (代数学)と商体 · 続きを見る »

積閉集合

抽象代数学における積閉集合(せきへいしゅうごう、multiplicatively closed set)あるいは乗法的集合(じょうほうてきしゅうごう、multiplicative set)は、(有限)積に関して閉じている集合を言う。 積閉集合は特に可換環論において重要である。そこでは積閉集合が環の局所化の構成に用いられる。.

新しい!!: 捩れ (代数学)と積閉集合 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: 捩れ (代数学)と群 (数学) · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: 捩れ (代数学)と環 (数学) · 続きを見る »

環の局所化

抽象代数学における環の局所化(きょくしょか、localization)あるいは分数環 (ring of fraction)、商環 (ring of quotient)ここでいう「分数環」や「商環」は、「分数体」や「商体」と同様の語法であって、剰余環の別名としての「商環」(quotient ring) とは異なる。商体や全商環は本項にいう意味での商環の特別な場合になっている(例節を参照)。 は、環に乗法逆元を機械的に添加する方法である。すなわち、環 とその部分集合 が与えられたとき、環 と から への環準同型を構成して、 の準同型像が における単元(可逆元)のみからなるようにする。さらに、 が「可能な限りで最良な」あるいは「最も一般な」ものとなるようにするということを考える(こういった状況はふつうは普遍性によって表されるべきものである)。環 の部分集合 による局所化は で表され、あるいは が素イデアル \mathfrak の補集合であるときには R_ で表される。 のことを と表すこともあるが、通常混乱の恐れはない。 局所化は完備化と重要な関係があり、環を局所化すると完備になるということがよくある。.

新しい!!: 捩れ (代数学)と環の局所化 · 続きを見る »

環上の加群

抽象代数学における環上の加群(かぐん、module)とは、ベクトル空間を一般化した概念で、係数(スカラー)を体の元とする代わりに、より一般の環の元としたものである。つまり、加群とは(ベクトル空間がそうであるように)加法的なアーベル群であって、その元と環の元との間に乗法が定義され、その乗法が結合的かつ加法に関して分配的となるようなものである。 任意のアーベル群は有理整数環上の加群であり、したがって環上の加群はアーベル群の一般化でもある。また、環のイデアルは環上の加群であり、したがって環上の加群はイデアルの一般化でもある。このように環上の加群はベクトル空間・アーベル群・イデアルを包括する概念であるので、さまざまな議論を加群の言葉によって統一的に扱うことができるようになる。 加群は群の表現論に非常に近しい関連を持つ。また、加群は可換環論やホモロジー代数における中心概念の一つであり、ひろく代数幾何学や代数的位相幾何学において用いられる。.

新しい!!: 捩れ (代数学)と環上の加群 · 続きを見る »

非可換整域

数学の特に環論と呼ばれる抽象代数学の一分野における(非可換)整域あるいは域(いき、domain)とは、右または左零因子を持たない(つまり ならば または が成り立つ、を満たすとも言われる)環のことを言う。しばしば自明でない(一つよりも多くの元を持つ)ことを仮定するが、域が乗法単位元を持つならば、この仮定は と同値であり、この場合の域は「左または右零因子を持たない非自明な環」のことになる。1(≠ 0) を持つ可換域は(可換)整域と呼ばれる。; 定理 (Wedderburn): 有限域は自動的に有限体になる。 零因子について(少なくとも可換環の場合には)位相幾何学的な解釈をすることができる。環 が可換整域となるための必要十分条件は、 が被約環(つまり冪零元を持たない環)であり、かつそのスペクトル が既約位相空間となることである。前者の性質はある種の無限小の情報を保有しているとしばしば考えられ、対して後者はより幾何学的な情報を与えている。例えば、体 上の環 は整域でない( および の属する類が零因子を与える)が、これは幾何学的にはこの環のスペクトルが既約でない(実際に、二つの既約成分である直線 と の和となる)ことに対応する。.

新しい!!: 捩れ (代数学)と非可換整域 · 続きを見る »

解析的トーション

ライデマイスタートーション(Reidemeister torsion)またはRトーション、ライデマイスター・フランツトーションとは、がに対して導入した多様体のである 。さらに、とによってより高次元の場合へと一般化された。 ライデマイスタートーションに対し、その解析的類似としてとイサドール・シンガーが導入したのが解析的トーション(analytic torsion)またはレイ・シンガートーションであり、こちらはリーマン多様体の位相不変量である。レイとシンガーは「コンパクトなリーマン多様体において、ライデマイスタートーションと解析的トーションは一致する」と予想した。この予想はとにより証明された。 代数的位相幾何学において、ホモトピー同値であり位相同型でない空間を識別できる不変量として最初に与えられたのがライデマイスタートーションであり、これはレンズ空間の分類にも用いられる。それゆえ、これを以って幾何学的トポロジーという分野が誕生したと見ることができる。 このほかライデマイスタートーションはと密接な関係を持ち、また数論的位相幾何学においては大きな動機付けの一つとなっている 。トーションに関する近年の研究は書籍, を参照。.

新しい!!: 捩れ (代数学)と解析的トーション · 続きを見る »

自由加群

数学において、自由加群(じゆうかぐん、free module) とは、加群の圏におけるである。集合 が与えられたとき、 上の自由加群とは を基底 にもつ自由加群である。たとえば、すべてのベクトル空間は自由であり、集合上の自由ベクトル空間は集合上の自由加群の特別な場合である。任意の加群はある自由加群の準同型像である。.

新しい!!: 捩れ (代数学)と自由加群 · 続きを見る »

自由アーベル群

抽象代数学において、自由アーベル群 (free abelian group) あるいは自由 Z-加群 (free Z-module) とは基底をもったアーベル群のことを言う。.

新しい!!: 捩れ (代数学)と自由アーベル群 · 続きを見る »

零因子

抽象代数学において、環 R の元 a は、ax.

新しい!!: 捩れ (代数学)と零因子 · 続きを見る »

Tor関手

ホモロジー代数において、Tor 関手 (Tor functor, torsion functor) はテンソル積の関手の導来関手である。それらは最初一般に代数トポロジーにおいてと普遍係数定理を表現するために定義された。 特に R を環とし、R-Mod で左 R-加群の圏を、Mod-R で右 R-加群の圏を表す。R-Mod の加群 B をひとつ選んで固定する。Mod-R の対象 A に対し、T(A).

新しい!!: 捩れ (代数学)とTor関手 · 続きを見る »

抽象代数学

抽象代数学 (ちゅうしょうだいすうがく、abstract algebra) とは、群、環、体、加群、ベクトル空間や線型環のように公理的に定義される代数的構造に関する数学の研究の総称である。.

新しい!!: 捩れ (代数学)と抽象代数学 · 続きを見る »

捩れ部分群

アーベル群の理論において、アーベル群 A の捩れ部分群(ねじれぶぶんぐん、torsion subgroup) AT は A の部分群であって有限の位数をもつすべての元からなるものである。アーベル群 A が捩れ (torsion) 群(あるいは'''周期的''' (periodic) 群であるとは、A のすべての元の位数が有限であることで、torsion-free であるとは、単位元を除く A のすべての元の位数が無限であることである。 AT が加法で閉じていることの証明は加法の可換性によっている(例の節を見よ)。 A がアーベル群であれば、捩れ部分群 T は A の fully characteristic subgroup であり、剰余群 A/T は torsion-free である。すべての群をその捩れ部分群に送りすべての準同型をその捩れ部分群への制限に送る、アーベル群の圏から捩れ群の圏への共変関手が存在する。すべての群をその捩れ部分群による商に送りすべての準同型をその明らかな誘導写像(well-defined であることは容易に確かめられる)に送る、アーベル群の圏から torsion-free な群の圏への共変関手も存在する。 A が有限生成アーベル群であれば、その捩れ部分群 T と torsion-free な部分群の直和として書くことができる(しかしこれはすべての非有限生成アーベル群に対して正しくない)。A の捩れ部分群 S と torsion-free な部分群の直和としての任意の分解において、S は T と等しくなければならない(しかし torsion-free 部分群は一意的には定まらない)。これは有限生成アーベル群の分類において重要なステップである。.

新しい!!: 捩れ (代数学)と捩れ部分群 · 続きを見る »

核 (代数学)

数学において、準同型の核(かく、kernel)とは、その準同型の単射からのずれの度合いを測る道具である。代数系における準同型の核が "自明" (trivial) であることとその準同型が単射であることとが同値となる。.

新しい!!: 捩れ (代数学)と核 (代数学) · 続きを見る »

楕円曲線

数学における楕円曲線(だえんきょくせん、elliptic curve)とは種数 の非特異な射影代数曲線、さらに一般的には、特定の基点 を持つ種数 の代数曲線を言う。 楕円曲線上の点に対し、積に関して、先述の点 を単位元とする(必ず可換な)群をなすように、積を代数的に定義することができる。すなわち楕円曲線はアーベル多様体である。 楕円曲線は、代数幾何学的には、射影平面 の中の三次の平面代数曲線として見ることもできる。より正確には、射影平面上、楕円曲線はヴァイエルシュトラス方程式あるいはヴァイエルシュトラスの標準形 により定義された非特異な平面代数曲線に双有理同値である(有理変換によってそのような曲線に変換される)。そしてこの形にあらわされているとき、 は実は射影平面の「無限遠点」である。 また、の標数が でも でもないとき、楕円曲線は、アフィン平面上次の形の式により定義された非特異な平面代数曲線に双有理同値である。 非特異であるとは、グラフが尖点を持ったり、自分自身と交叉したりはしないということである。この形の方程式もヴァイエルシュトラス方程式あるいはヴァイエルシュトラスの標準形という。係数体の標数が や のとき、上の式は全ての非特異を表せるほど一般ではない(詳細な定義は以下を参照)。 が重根を持たない三次多項式として、 とすると、種数 の非特異平面曲線を得るので、これは楕円曲線である。が次数 でとすると、これも種数 の平面曲線となるが、しかし、単位元を自然に選び出すことができない。さらに一般的には、単位元として働く有理点を少なくとも一つ持つような種数 の代数曲線を楕円曲線と呼ぶ。例えば、三次元射影空間へ埋め込まれた二つの二次曲面の交叉は楕円曲線である。 楕円関数論を使い、複素数上で定義された楕円曲線はトーラスのへの埋め込みに対応することを示すことができる。トーラスもアーベル群で、実はこの対応は群同型かつ位相的に同相にもなっている。したがって、位相的には複素楕円曲線はトーラスである。 楕円曲線は、数論で特に重要で、現在研究されている主要な分野の一つである。例えば、アンドリュー・ワイルズにより(リチャード・テイラーの支援を得て)証明されたフェルマーの最終定理で重要な役割を持っている(モジュラー性定理とフェルマーの最終定理への応用を参照)。また、楕円曲線は、楕円暗号(ECC) や素因数分解への応用が見つかっている。 楕円曲線は、楕円ではないことに注意すべきである。「楕円」ということばの由来については楕円積分、楕円関数を参照。 このように、楕円曲線は次のように見なすことができる。.

新しい!!: 捩れ (代数学)と楕円曲線 · 続きを見る »

有限群

数学および抽象代数学において、有限群(ゆうげんぐん、finite group)とは台となっている集合Gが有限個の元しか持たないような群のことである。20世紀の間数学者は、特に有限群のや、可解群や冪零群 の理論などといった、有限群の理論のさまざまな面を深く研究していた。全ての有限群の構造の完全な決定は余りに遠大な目標だった: あり得る構造の数はすぐに圧倒的に大きくなった。しかし、単純群の完全な分類という目標は達成された。つまり任意の有限群の「組み立て部品」は現在では完全に知られている(任意の有限群は組成列を持つ)。 20世紀の後半には、シュヴァレーやといった数学者によってや関連する群の有限類似の理解が深まった。それらの群の族の一つには有限体上の一般線型群がある。 有限群は、ある数学的・物理的対象の構造を保つ変換が有限個しかない場合に、その対象の対称性を考えるときに出て来る群である。他方で、""を扱っているようにもみなせるリー群の理論は、関連するワイル群の影響を強く受ける。有限次ユークリッド空間に作用する鏡映によって生成される有限群も存在する。それゆえ、有限群の特性は、理論物理学や化学などの分野で役目を持つ。.

新しい!!: 捩れ (代数学)と有限群 · 続きを見る »

有限生成加群

数学において、有限生成加群(ゆうげんせいせいかぐん、finitely generated module)とは、有限な生成集合をもつ加群のことである。有限生成 R-加群はまた有限 R-加群 (finite R-module, module of finite type) や R 上有限 (finite over R) とも呼ばれる。 関連した概念に、有限余生成加群 (finitely cogenerated module)、有限表示加群 (finitely presented module)、有限関係加群 (finitely related module)、連接加群 (coherent module) があり、これらはすべてあとで定義される。ネーター環上では、有限生成、有限表示、連接加群の概念は一致する。 たとえば体上の有限生成加群とは単に有限次元ベクトル空間であり、有理整数環上の有限生成加群とは単に有限生成アーベル群である。.

新しい!!: 捩れ (代数学)と有限生成加群 · 続きを見る »

数論力学

数論力学(すうろんりきがく、Arithmetic dynamics)は、数学における力学系と数論という二つの領域を融合した分野である。 is a field that amalgamates two areas of mathematics, dynamical systems and number theory.--> 離散力学とは、古典的には複素平面や実直線の自己写像の反復合成の研究のことである。数論力学は、多項式や有理函数の繰り返しの適用の下で、整数点、有理点、-進点、あるいは、代数的点の数論的な性質を研究することである。数論力学の基本的な目標は、数論的な性質をその基礎にある幾何学的な構造のことばで記述することにある。 p-adic, and/or algebraic points under repeated application of a polynomial or rational function.

新しい!!: 捩れ (代数学)と数論力学 · 続きを見る »

整域

抽象代数学における整域(せいいき、integral domain)は、零因子を持たない可換環であって、自明環 でないものをいう。整域の概念は整数全体の成す環の一般化になっており、整除可能性を調べるのに自然な設定を与える。環の定義に乗法単位元を含めない場合であっても、単に可換環あるいは整域と言ったときには乗法単位元を持つと仮定することが少なくない。即ち、整域とは単位的可換域のことをいう。 上記の如く「整域」を定めるのが広く採用されているけれども、いくらかの揺れもある。特に、非可換な整域を許すことが時としてある。しかし、「整域」(integral domain) という語を可換の場合のために用い、非可換の場合には「域」(domain) を用いることにすると約束するのがたいていの場合には有効である(奇妙な話ではあるが、この文脈では形容辞「整」の中に「可換」の意も含まれるということになる)。別な文献では(ラングが顕著だが)整環 (entire ring) を用いるものがある「整環」という用語は、代数体の整環 (order) などに対しても用いられる。。 いくつか特定の種類の整域のクラスについては、以下のような包含関係が成立する。 零因子の非存在(零積法則)は、整域において非零元による乗法の簡約律が満足されることを意味する。つまり、a ≠ 0 のとき、等式 から が結論できる。.

新しい!!: 捩れ (代数学)と整域 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 捩れ (代数学)と整数 · 続きを見る »

普遍係数定理

代数トポロジーにおいて、普遍係数定理(ふへんけいすうていり、universal coefficient theorems)はホモロジー論とコホモロジー論の間の関係を確立する。例えば、位相空間 の整係数ホモロジー論と、任意のアーベル群 に係数をもつホモロジーは以下のように関連する。整係数ホモロジー群 は群 を完全に決定する。ここで はあるいはより一般の特異ホモロジー論でもよい: 結果自体は自由アーベル群のチェイン複体についてのホモロジー代数の純粋な成果である。結果の形は、Tor関手を使うという代償を払って、他の係数 を使うことができる形である。 例えば を に取って係数が modulo 2 であるようにすることは一般的である。これはホモロジーに 2-捩れがないことによって straightforward になる。極めて一般的に、結果は のベッチ数 と体 に係数をもつベッチ数 の間に成り立つ関係を示す。これらは異なるかもしれないが、 の標数がホモロジーに -捩れがある素数 であるときのみである。.

新しい!!: 捩れ (代数学)と普遍係数定理 · 続きを見る »

ここにリダイレクトされます:

ねじれ (抽象代数学)ねじれ加群ねじれ元ねじれ部分加群トーション群捩れ (代数)捩れ (抽象代数学)捩れ加群捩れ元捩れ部分加群

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »