ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

おうし座T型星

索引 おうし座T型星

おうし座T型星を取り囲む降着円盤の想像図 おうし座T型星(おうしざテ(ィ)ーがたせい、T Tauri star, TTS)は、爆発型変光星の一種である。.

32 関係: 原始惑星系円盤原始星おうし座おうし座T星可視光線太陽系太陽質量太陽黒点主系列星彩層微惑星ハービッグAe/Be型星リチウム分子雲ケルビン・ヘルムホルツ機構スペクトルスペクトル分類磁場爆発型変光星角運動量保存の法則自転電波連星陽子-陽子連鎖反応X線林トラック恒星恒星風核融合反応木星惑星科学星周円盤

原始惑星系円盤

原始惑星系円盤(げんしわくせいけいえんばん、protoplanetary disk)は新しく生まれた恒星(おうし座T型星)の周囲を取り巻く濃いガスが回転している円盤である。英語では proplyd という略称で呼ばれる場合もある。原始惑星系円盤のガス物質は円盤の内側の境界から中心星の表面に向かって落ち込んでいるため、この円盤は一種の降着円盤であると見ることもできる。(この降着過程は円盤内部で物質が集積して惑星が作られる過程とは別である。) おうし座T型星を取り巻く原始惑星系円盤は、近接連星系の周囲に存在する円盤とは大きさや温度の点で異なっている。原始惑星系円盤の半径は約1,000天文単位までで、連星系の円盤に比べて低温である。その温度は円盤の最も内側でようやく1,000Kを越える程度である。原始惑星系円盤には多くの場合ジェットが付随している。 典型的な原始星は水素分子を主成分とする分子雲から生まれる。分子雲の一部で大きさ・質量・密度などがある上限値に達すると、その雲の塊は自己重力によって収縮を始める。このような収縮しつつあるガス雲は原始太陽系星雲 (solar nebula) と呼ばれ、収縮によって密度が次第に高くなる。この収縮過程でガス雲が元々持っていたガスの乱雑運動は均される一方で、ガス雲の全角運動量は角運動量保存則によって不変なため、原始太陽系星雲が収縮して小さくなるにつれて星雲全体がある回転軸の周りに自転するようになる。この自転によって(生地を回転させることで平たいピザができるのと同様に)ガス雲は扁平になり、円盤状の形状を持つようになる。この最初の収縮過程は約10万年続く。この収縮が終わる頃には中心星の表面温度は同じ質量を持つ主系列星と同程度にまで上昇し、光を放射して外部から見えるようになる。この段階に達した星はおうし座T型星と呼ばれる。その後、円盤から中心星へのガスの降着が約1,000万年続いた後、円盤は外部から見えなくなる。円盤が観測されなくなる原因は、中心星の恒星風によって吹き飛ばされるか、あるいは単に質量降着が終わって円盤が光を放射しなくなるためだと考えられている。これまでに発見されている原始惑星系円盤で最も年齢が古いものは約2,500万年である。 太陽系の形成を説明する星雲説では原始惑星系円盤がどのようにして惑星系へと進化するかを次のように説明している。原始惑星系円盤の内部では、塵や氷の微粒子が静電気力や重力相互作用によって集積し、微惑星が作られる。この集積過程は、円盤のガスを系の外に四散させようとする中心のおうし座T型星からの恒星風や、円盤の物質を中心星に落とし込もうとする降着過程との競争となる。 我々の銀河系の中では、いくつかの若い星の周囲で原始惑星系円盤が観測されている。このような原始惑星系円盤は1984年にがか座β星で最初に発見された。最近のハッブル宇宙望遠鏡による観測で、オリオン大星雲の中に多くの原始惑星系円盤が見つかっている。 また太陽に近い明るい恒星の中でも、こと座のベガやかんむり座α星、みなみのうお座のフォーマルハウトなどでガスや塵からなる大きな円盤が恒星を取り巻いているのが発見され、当初は原始惑星系円盤ではないかと考えられた。これらのうち、ベガとフォーマルハウトはカストル運動星群 (Castor co-moving group) と呼ばれるほぼ同じ空間運動をしている恒星で、かつては同じ星間雲から生まれたと考えられている。最近のヒッパルコス衛星による観測で、この運動星群の年齢は約2±1億年と見積もられている。このことから、ベガとフォーマルハウトに見られる赤外線放射の超過は原始惑星系円盤というよりは、微惑星同士の衝突の過程で弾き飛ばされた小天体からなる円盤という解釈が妥当であると現在では考えられている。この説はハッブル宇宙望遠鏡によるフォーマルハウトの円盤の観測によっても裏付けられている。.

新しい!!: おうし座T型星と原始惑星系円盤 · 続きを見る »

原始星

原始星(げんしせい)(protostar)とは、誕生初期の恒星のことで、暗黒星雲の一部が自己の重力で収縮しはじめ、可視光でも観測できるおうし座T型星になる前の状態までを指す。 暗黒星雲が近くの超新星爆発などによる衝撃波を受けると、それによって物質の濃淡ができる。濃くなった部分は重力が強くなるので、周囲の物質を引きつけさらに物質の濃度が濃くなる。するとさらに重力が強くなり、加速度的に濃度が濃くなっていく。このようにして原始星が誕生する。 原始星には周囲からさらに物質が集積してくるので、降着円盤が形成され、原始星に取り込まれきれなかった物質は、円盤に垂直な方向へ宇宙ジェットとして放出される。この宇宙ジェットが周囲の星雲の物質と衝突して輝いているのがハービッグ・ハロー天体である。 原始星には周囲の物質が超音速で落下していき衝撃波面が形成されている。その面で落下物質の運動エネルギーが一気に熱に変わっている。そのため、原始星は主系列星よりも非常に明るく輝いている。この時は原始星はまだ周囲を暗黒星雲に覆われているため、星雲の外からは可視光では観測できず赤外線だけが観測される。この状態は、それを理論的に導出した日本の宇宙物理学者・林忠四郎にちなんで林フェイズと呼ばれる。 原始星は自己の重力でゆっくりと収縮していき、その際の重力エネルギーの解放で徐々に中心核の温度を上げていく。また、恒星風により周囲の暗黒星雲を吹き飛ばす。こうして可視光でも観測可能になった星がおうし座T型星である。さらに中心核の温度が上昇し、水素の核融合反応が開始されると主系列星となる。 原始星フレアの温度はおよそ1億度で、エネルギーは太陽フレアの約1万倍にもなる。.

新しい!!: おうし座T型星と原始星 · 続きを見る »

おうし座

おうし座(牡牛座、Taurus)は、黄道十二星座の1つ。トレミーの48星座の1つでもある。 α星は、全天21の1等星の1つであり、アルデバランと呼ばれる。 この星座には、プレアデス星団をはじめ有名な天体が多い。.

新しい!!: おうし座T型星とおうし座 · 続きを見る »

おうし座T星

おうし座T星(T Tauri、T Tau)は、おうし座にある変光星で、おうし座T型星の典型である。ヒヤデス星団のV字型の最も北、おうし座ε星の近くにあり、星団の一員のように見えるが、実際にはヒヤデス星団より300光年程遠くにあり、一緒に誕生したのではないと考えられる。.

新しい!!: おうし座T型星とおうし座T星 · 続きを見る »

可視光線

可視光線(かしこうせん 英:Visible light)とは、電磁波のうち、ヒトの目で見える波長のもの。いわゆる光のこと。JIS Z8120の定義によれば、可視光線に相当する電磁波の波長は下界はおおよそ360-400 nm、上界はおおよそ760-830 nmである。可視光線より波長が短くなっても長くなっても、ヒトの目には見ることができなくなる。可視光線より波長の短いものを紫外線、長いものを赤外線と呼ぶ。可視光線に対し、赤外線と紫外線を指して、不可視光線(ふかしこうせん)と呼ぶ場合もある。 可視光線は、太陽やそのほか様々な照明から発せられる。通常は、様々な波長の可視光線が混ざった状態であり、この場合、光は白に近い色に見える。プリズムなどを用いて、可視光線をその波長によって分離してみると、それぞれの波長の可視光線が、ヒトの目には異なった色を持った光として認識されることがわかる。各波長の可視光線の色は、日本語では波長の短い側から順に、紫、青紫、青、青緑、緑、黄緑、黄、黄赤(橙)、赤で、俗に七色といわれるが、これは連続的な移り変わりであり、文化によって分類の仕方は異なる(虹の色数を参照のこと)。波長ごとに色が順に移り変わること、あるいはその色の並ぶ様を、スペクトルと呼ぶ。 もちろん、可視光線という区分は、あくまでヒトの視覚を主体とした分類である。紫外線領域の視覚を持つ動物は多数ある(一部の昆虫類や鳥類など)。太陽光をスペクトル分解するとその多くは可視光線であるが、これは偶然ではない。太陽光の多くを占める波長域がこの領域だったからこそ、人間の目がこの領域の光を捉えるように進化したと解釈できる。 可視光線は、通常はヒトの体に害はないが、例えば核爆発などの強い可視光線が目に入ると網膜の火傷の危険性がある。.

新しい!!: おうし座T型星と可視光線 · 続きを見る »

太陽系

太陽系(たいようけい、この世に「太陽系」はひとつしかないので、固有名詞的な扱いをされ、その場合、英語では名詞それぞれを大文字にする。、ラテン語:systema solare シュステーマ・ソーラーレ)とは、太陽および、その重力で周囲を直接的、あるいは間接的に公転する天体惑星を公転する衛星は、後者に当てはまるから構成される構造である。主に、現在確認されている8個の惑星歴史上では、1930年に発見された冥王星などの天体が惑星に分類されていた事もあった。惑星の定義も参照。、5個の準惑星、それを公転する衛星、そして多数の太陽系小天体などから成るニュートン (別2009)、1章 太陽系とは、pp.18-19 太陽のまわりには八つの惑星が存在する。間接的に太陽を公転している天体のうち衛星2つは、惑星では最も小さい水星よりも大きい太陽と惑星以外で、水星よりも大きいのは木星の衛星ガニメデと土星の衛星タイタンである。。 太陽系は約46億年前、星間分子雲の重力崩壊によって形成されたとされている。総質量のうち、ほとんどは太陽が占めており、残りの質量も大部分は木星が占めている。内側を公転している小型な水星、金星、地球、火星は、主に岩石から成る地球型惑星(岩石惑星)で、木星と土星は、主に水素とヘリウムから成る木星型惑星(巨大ガス惑星)で、天王星と海王星は、メタンやアンモニア、氷などの揮発性物質といった、水素やヘリウムよりも融点の高い物質から成る天王星型惑星(巨大氷惑星)である。8個の惑星はほぼ同一平面上にあり、この平面を黄道面と呼ぶ。 他にも、太陽系には多数の小天体を含んでいる。火星と木星の間にある小惑星帯は、地球型惑星と同様に岩石や金属などから構成されている小天体が多い。それに対して、海王星の軌道の外側に広がる、主に氷から成る太陽系外縁天体が密集している、エッジワース・カイパーベルトや散乱円盤天体がある。そして、そのさらに外側にはと呼ばれる、新たな小惑星の集団も発見されてきている。これらの小天体のうち、数十個から数千個は自身の重力で、球体の形状をしているものもある。そのような天体は準惑星に分類される事がある。現在、準惑星には小惑星帯のケレスと、太陽系外縁天体の冥王星、ハウメア、マケマケ、エリスが分類されている。これらの2つの分類以外にも、彗星、ケンタウルス族、惑星間塵など、様々な小天体が太陽系内を往来している。惑星のうち6個が、準惑星では4個が自然に形成された衛星を持っており、慣用的に「月」と表現される事がある8つの惑星と5つの準惑星の自然衛星の一覧については太陽系の衛星の一覧を参照。。木星以遠の惑星には、周囲を公転する小天体から成る環を持っている。 太陽から外部に向かって放出されている太陽風は、太陽圏(ヘリオスフィア)と呼ばれる、星間物質中に泡状の構造を形成している。境界であるヘリオポーズでは太陽風による圧力と星間物質による圧力が釣り合っている。長周期彗星の源と考えられているオールトの雲は太陽圏の1,000倍離れた位置にあるとされている。銀河系(天の川銀河)の中心から約26,000光年離れており、オリオン腕に位置している。.

新しい!!: おうし座T型星と太陽系 · 続きを見る »

太陽質量

太陽質量(たいようしつりょう、Solar mass)は、天文学で用いられる質量の単位であり、また我々の太陽系の太陽の質量を示す天文定数である。 単位としての太陽質量は、惑星など太陽系の天体の運動を記述する天体暦で用いられる天文単位系における質量の単位である。 また恒星、銀河などの天体の質量を表す単位としても用いられている。.

新しい!!: おうし座T型星と太陽質量 · 続きを見る »

太陽黒点

2004年に現れた太陽黒点 太陽黒点(たいようこくてん、sunspot)とは、太陽表面を観測した時に黒い点のように見える部分のこと。単に黒点とも呼ぶ。実際には完全な黒ではなく、この部分も光を放っているが、周囲よりも弱い光なので黒く見える。太陽黒点は、約9.5年から12年ほどの周期で増減を繰り返している。 黒点が暗いのは、その温度が約4,000℃と普通の太陽表面(光球)温度(約6,000℃)に比べて低いためである。発生原因は太陽の磁場であると考えられている。 黒点は太陽の自転とともに東から西へ移動する。大きな黒点群の中には太陽の裏側を回って再び地球から見える側に出てきても消えていない、1ヶ月ほど存在する寿命の長いものがある。(太陽の東西という言葉は地球から観測した場合の地球上での方位を指す。その天体に立った場合の方位ではない).

新しい!!: おうし座T型星と太陽黒点 · 続きを見る »

主系列星

主系列星(しゅけいれつせい、main sequence star)とは、ヘルツシュプルング・ラッセル図(HR図)上で、左上(明るく高温)から図の右下(暗く低温)に延びる線である主系列 (Main Sequence) に位置する恒星をいう。矮星ともいう。.

新しい!!: おうし座T型星と主系列星 · 続きを見る »

彩層

彩層(さいそう、chromosphere)とは、太陽などの恒星の表層部分で、光球の外側、コロナの内側に位置する薄いガスによって形成される層。 太陽の場合、厚さは数千から1万km。彩層の最下層である温度最低層では光球よりやや低温(4,700-5,800K)で、高度と共に増加してコロナとの境界層(遷移層)付近では1万度ケルビンに達する。彩層では磁場が支配的であり、磁気エネルギーの解放現象である太陽フレアや、プラズマが磁力線によって太陽大気中に保持された紅炎(プロミネンス)が観測される。肉眼では地球上から視認することはできないが、皆既日食発生時や水素の出すHα線フィルターを用いることで観測する事ができる。 Category:太陽.

新しい!!: おうし座T型星と彩層 · 続きを見る »

微惑星

微惑星(びわくせい、planetesimal)とは太陽系の形成初期に存在したと考えられている微小天体である。.

新しい!!: おうし座T型星と微惑星 · 続きを見る »

ハービッグAe/Be型星

ハービッグAe/Be型星(はーびっぐ・えいいー・びいいーがたせい、英:Herbig Ae/Be stars)は年齢1000万年未満の若い前主系列星である。スペクトル型はA型かB型であり、まだガスと塵のエンベロープに埋もれて星周円盤に取り巻かれている。スペクトル中に水素とカルシウムの輝線がみられる。太陽質量の2-8倍の天体で、星形成(自己重力による収縮)の過程にあり、主系列に至る前段階(つまり中心で水素の核連鎖反応が始まる前)にある。HR図上ではこの天体は主系列の右側に位置する。1960年に初めてこの種の天体を特定したアメリカの天文学者ジョージ・ハービッグにちなんでこの名がつけられた。ハービッグによる当初の分類基準は次のとおりである。.

新しい!!: おうし座T型星とハービッグAe/Be型星 · 続きを見る »

リチウム

リチウム(lithium、lithium )は原子番号 3、原子量 6.941 の元素である。元素記号は Li。アルカリ金属元素の一つで白銀色の軟らかい元素であり、全ての金属元素の中で最も軽く、比熱容量は全固体元素中で最も高い。 リチウムの化学的性質は、他のアルカリ金属元素よりもむしろアルカリ土類金属元素に類似している。酸化還元電位は全元素中で最も低い。リチウムには2つの安定同位体および8つの放射性同位体があり、天然に存在するリチウムは安定同位体である6Liおよび7Liからなっている。これらのリチウムの安定同位体は、中性子の衝突などによる核分裂反応を起こしやすいため恒星中で消費されやすく、原子番号の近い他の元素と比較して存在量は著しく小さい。 1817年にヨアン・オーガスト・アルフェドソンがペタル石の分析によって発見した。アルフェドソンの所属していた研究室の主催者であったイェンス・ベルセリウスによって、ギリシャ語で「石」を意味する lithos に由来してリチウムと名付けられた。アルフェドソンは金属リチウムの単離には成功せず、1821年にウィリアム・トマス・ブランドが電気分解によって初めて金属リチウムの単離に成功した。1923年にドイツのメタルゲゼルシャフト社が溶融塩電解による金属リチウムの工業的生産法を発見し、その後の金属リチウム生産へと繋がっていった。第二次世界大戦の戦中戦後には航空機用の耐熱グリースとしての小さな需要しかなかったが、冷戦下には水素爆弾製造のための需要が急激に増加した。その後冷戦の終了により核兵器用のリチウムの需要が大幅に冷え込んだものの、2000年代までにはリチウムイオン二次電池用のリチウム需要が増加している。 リチウムは地球上に広く分布しているが、非常に高い反応性のために単体としては存在していない。地殻中で25番目に多く存在する元素であり、火成岩や塩湖かん水中に多く含まれる。リチウムの埋蔵量の多くはアンデス山脈沿いに偏在しており、最大の産出国はチリである。海水中にはおよそ2300億トンのリチウムが含まれており、海水からリチウムを回収する技術の研究開発が進められている。世界のリチウム市場は少数の供給企業による寡占状態であるため、資源の偏在性と併せて需給ギャップが懸念されている。 リチウムは陶器やガラスの添加剤、光学ガラス、電池(一次電池および二次電池)、耐熱グリースや連続鋳造のフラックスとして利用される。2011年時点で最大の用途は陶器やガラス用途であるが、二次電池用途での需要が将来的に増加していくものと予測されている。リチウムの同位体は水素爆弾や核融合炉などにおいて核融合燃料であるトリチウムを生成するために利用されている。 リチウムは腐食性を有しており、高濃度のリチウム化合物に曝露されると肺水腫が引き起こされることがある。また、妊娠中の女性がリチウムを摂取することでの発生リスクが増加するといわれる。リチウムは覚醒剤を合成するためのバーチ還元における還元剤として利用されるため、一部の地域ではリチウム電池の販売が規制の対象となっている。リチウム電池はまた、短絡によって急速に放電して過熱することで爆発が起こる危険性がある。.

新しい!!: おうし座T型星とリチウム · 続きを見る »

分子雲

イータカリーナ星雲の分子雲 分子雲(Molecular cloud)は星雲の一種であり、その大部分は水素分子である。星形成が行われている場合は、育星場、星のゆりかごとも言う。典型的な分子雲の大きさは、直径が100万光年、質量は太陽の10万倍、温度は25K(-248℃)程度、密度は水素分子が10~100万個/cm。 低温の水素分子は放射を出さず検出が難しいため、しばしば一酸化炭素輝線を用いて水素分子ガスの総質量を決定する。ここで一酸化炭素輝線の光度と水素分子ガスの質量の比は一定と仮定されているものの、この比の値は場所によってばらつきがある 。.

新しい!!: おうし座T型星と分子雲 · 続きを見る »

ケルビン・ヘルムホルツ機構

ルビン・ヘルムホルツ機構(ケルビン・ヘルムホルツきこう、Kelvin-Helmholtz mechanism)は、恒星や惑星の表面の温度が下がった時に生じる天文学的過程である。冷えることによって圧力が低下し、結果として恒星や惑星は縮む。しかし今度は、この収縮によって、恒星や惑星の核の温度は上昇する。木星、土星及び中心部の温度が核融合を起こすほど高くない褐色矮星では、この機構が存在する証拠が得られている。木星は、この機構によって、太陽から受けるよりも多くのエネルギーを放射していると推定されるが、土星はそうではないと考えられている。 この機構は、19世紀末にケルビン卿として知られるウィリアム・トムソンとヘルマン・フォン・ヘルムホルツによって、太陽のエネルギー源を説明するために提案された。19世紀中頃、エネルギー保存の法則が受け入れられ、この法則の帰結の1つとして、太陽が輝き続けるためには、何らかのエネルギー源が必要という問題が持ち上がった。核反応が未知であったため、太陽エネルギーの源の主要候補は、重力収縮であると考えられた。 しかし、すぐにアーサー・エディントンらにより、地質学的や生物学的な証拠により地球の年齢が数十億歳であるのに対して、この機構によって得られるエネルギー量では、太陽は数百万年しか輝けないことが明らかとされた。太陽エネルギーの真の源については、1930年代にハンス・ベーテが核融合によるものであることを明らかにするまでは、不明なままであった。.

新しい!!: おうし座T型星とケルビン・ヘルムホルツ機構 · 続きを見る »

スペクトル

ペクトル()とは、複雑な情報や信号をその成分に分解し、成分ごとの大小に従って配列したもののことである。2次元以上で図示されることが多く、その図自体のことをスペクトルと呼ぶこともある。 様々な領域で用いられる用語で、様々な意味を持つ。現代的な意味のスペクトルは、分光スペクトルか、それから派生した意味のものが多い。.

新しい!!: おうし座T型星とスペクトル · 続きを見る »

スペクトル分類

ペクトル分類(スペクトルぶんるい、spectral classification)は、恒星の分類法の一つである。スペクトル分類によって細分された星のタイプをスペクトル型 (spectral type) と呼ぶ。恒星から放射された電磁波を捉え、スペクトルを観察することによって分類する。恒星のスペクトルはその表面温度や化学組成により変わってくる。表面温度により分類する狭義のスペクトル型(ハーバード型とも)と、星の本来の明るさを示す光度階級 (luminosity class) があり、両者を合わせて2次元的に分類するMKスペクトル分類が広く使われる。.

新しい!!: おうし座T型星とスペクトル分類 · 続きを見る »

磁場

磁場(じば、Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。 この項では一般的な磁場の性質、及びHを扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。.

新しい!!: おうし座T型星と磁場 · 続きを見る »

爆発型変光星

型変光星(ばくはつがたへんこうせい)(eruptive variable)とは、変光星の一種。恒星の外層や大気の爆発によって変光する星で、規則性が見られない。.

新しい!!: おうし座T型星と爆発型変光星 · 続きを見る »

角運動量保存の法則

角運動量保存の法則(かくうんどうりょうほぞんのほうそく)とは、質点系について、単位時間あたりの全角運動量の変化は外力によるトルク(力のモーメント)に等しい(ただし内力が中心力であるときに限る)という法則である。 この特別な場合として、外力が働かない(もしくは外力が働いていたとしてもそれによるトルクが0の)場合、質点系の角運動量は常に一定である。例えば、フィギュアスケートの選手がスピンをする際、前に突き出した腕を体に引きつけることで回転が速くなる(角速度が大きくなる)。このとき回転軸から腕先までの距離が短くなるため、かわりに回転が速くなることによって、角運動量が一定に保たれる。 回転する「こま」は、回転軸にそって、(上から見て)時計回りなら下向きの、反時計回りなら上向きの角運動量を持っている。独楽の回転軸(それは重心を貫いている)が鉛直方向に平行であれば、独楽にかかる重力と、床から独楽が受ける垂直抗力が共に1本の直線上(回転軸上)にあるため、独楽に働く外力によるトルクは0である。従って、この場合独楽の角運動量は一定であり、独楽は軸周りの回転だけを続ける。ところが、独楽が傾くと独楽にかかる重力と、床から独楽が受ける垂直抗力は、1本の直線上には乗らず、従って、これらの力がトルクを生じる。このトルクが独楽の角運動量を変化される。その結果、独楽は本来の回転軸のまわりの回転に加えて、それとは別の軸(独楽と床が接する点を通る鉛直線)のまわりでも回転をする。それが独楽の「みそすり運動」すなわち歳差運動である。.

新しい!!: おうし座T型星と角運動量保存の法則 · 続きを見る »

自転

自転(じてん、rotation)とは、物体がその内部の点または軸のまわりを回転すること、およびその状態である。 天体の自転運動を表す言葉として用いられることが多い。力学における剛体の自転は、単に回転と呼ぶことの方が多く、オイラーの運動方程式により記述できる。英語で自転を意味する spin に由来するスピンという言葉も同義語であるが、物体の自転の意味でのスピンは自然科学以外の分野で用いられることが多い。例えばフィギュアスケートにおけるスピンや自動車がスリップして起きるスピンがある。量子力学や素粒子物理学におけるスピンも語源は自転に由来するが、物体の自転とは異なる概念と考えられている。.

新しい!!: おうし座T型星と自転 · 続きを見る »

電波

ムネイル 電波(でんぱ)とは、電磁波のうち光より周波数が低い(言い換えれば波長の長い)ものを指す。光としての性質を備える電磁波のうち最も周波数の低いものを赤外線(又は遠赤外線)と呼ぶが、それよりも周波数が低い。.

新しい!!: おうし座T型星と電波 · 続きを見る »

連星

連星(れんせい、)とは2つの恒星が両者の重心の周りを軌道運動している天体である。双子星(ふたごぼし)とも呼ばれる。連星は、地球から遠距離にあると、一つの恒星と思われ、その後に連星である事が判明する場合もある。この2世紀間の観測で、肉眼で見える恒星の半数以上が連星である可能性が示唆されている。通常は明るい方の星を主星、暗い方を伴星と呼ぶ。また、3つ以上の星が互いに重力的に束縛されて軌道運動している系もあり、そのような場合にはn連星またはn重連星などと呼ばれる。 また、二重星という言葉も連星を示す場合が多い。しかし、実際には、複数の恒星が地球から見て、同じ方向に位置しており、「見かけ上、連星のように見える」場合を表す。それぞれの恒星の、地球からの距離は全く異なり、物理的にも何の関連性も無い。二重星は、距離が異なるので、光度の差から、年周視差や視線速度を正確に求める事が出来る。しかし、中にはアルビレオのように、二重星か真の連星かが分かっていないものもある。.

新しい!!: おうし座T型星と連星 · 続きを見る »

陽子-陽子連鎖反応

'''陽子-陽子連鎖反応の概要''' 左上の反応では2個の陽子(赤)が反応し、陽電子(白)とニュートリノ(ν)を放出後、陽子と中性子(灰色)からなる重水素が形成される。次の反応では重水素と陽子が結合し、ガンマ線(γ)を放出してヘリウム3が生成する。最後の反応では2個のヘリウム3が結合し、陽子を2個放出してヘリウム4に至る。電子は反応に寄与しないため、省略されている。 陽子-陽子連鎖反応(ようしようしれんさはんのう、proton-proton chain reaction)とは恒星の内部で水素をヘリウムに変換する核融合反応の一種である。日本語ではppチェイン、pp連鎖反応などと呼ばれることが多い。CNOサイクルと並んで、恒星内で起こる水素の核融合反応の主要な過程であり、太陽と同程度かそれより質量の小さい恒星でのエネルギー生成の大半を担っている。 一般に、2つの水素原子(陽子)の間に働くクーロン力に打ち勝って核融合反応が起こるためには大きなエネルギー(すなわち高い温度)と圧力(密度)を必要とする。恒星内部で陽子-陽子連鎖反応が完了するまでの平均的な時間尺度は109年のオーダーである。このように反応の進行がゆっくりとしているため、太陽や小質量星は長い時間にわたって輝くことができる。 陽子-陽子連鎖反応が太陽や他の恒星のエネルギー生成の基本原理であることは1920年代にアーサー・エディントンによって提唱された。当時は、陽子がクーロン障壁を越えるためには太陽の温度は低過ぎると考えられていた。後に量子力学が発展すると、陽子の波動関数がトンネル効果によってクーロン障壁を越えることで、古典力学の予言より低い温度で陽子同士が融合できることが明らかとなった。.

新しい!!: おうし座T型星と陽子-陽子連鎖反応 · 続きを見る »

X線

透視画像。骨と指輪の部分が黒く写っている。 X線(エックスせん、X-ray)とは、波長が1pm - 10nm程度の電磁波のことを言う。発見者であるヴィルヘルム・レントゲンの名をとってレントゲン線と呼ばれる事もある。放射線の一種である。X線撮影、回折現象を利用した結晶構造の解析などに用いられる。.

新しい!!: おうし座T型星とX線 · 続きを見る »

林トラック

林トラック(はやしとらっく、Hayashi track)とは、ほぼ静水圧平衡に達した星間ガス雲の塊が原始星として進化する過程でヘルツシュプルング・ラッセル図上を移動する軌跡である。日本の林忠四郎によって初めてその存在が理論的に提唱された。 林は1961年に、恒星の有効温度には最小値が存在することを示した。この最小値よりも低温の星では静水圧平衡が維持できないため、星は力学的に安定に存在することができない。この境界は温度で約4,000K付近に相当し、HR図上では右側の境界線として表れる。原始星となるガス雲の温度がこの温度より低い場合にはガス雲は収縮し、この境界温度に達するまで温度が上昇する。この境界温度に達した原始星はケルビン-ヘルムホルツ収縮の時間尺度で収縮を続けるが、有効温度はほとんど上昇せず、HR図上をほぼ垂直下向きに(光度が暗くなる方向に)移動する。この移動経路を林トラックと呼び、HR図で林トラックより右(低温)側の領域を林の禁止領域、また原始星が林トラック上にある時代を林フェイズと呼ぶ。 林トラックにある原始星の内部のエネルギー輸送は完全に対流優勢となっている。これは、原始星は温度が低くガスの不透明度が大きいため、輻射によるエネルギー輸送が効果的に働かず、その結果として星内部での温度勾配が大きくなるためである。質量が0.5太陽質量以下の星は前主系列段階のほぼ全ての時代を林トラック上で過ごし、林トラックの下端で主系列に乗る。質量が0.5太陽質量より大きい星は林トラックの末端まで進んだところで内部温度が十分高くなり、中心部の不透明度が下がって対流輸送よりも輻射輸送の方が効果的にエネルギーを外部へ輸送するようになる。このため、ヘニエイトラックという別の進化経路に移り、HR図上をほぼ水平に左(高温側)に向かって進化して主系列に至る。従って、ある質量を持つ原始星が林トラック上で最も光度が暗くなる点は、その質量の星の内部が完全に対流優勢の状態でいられる最小光度の点となる。 林トラックの上にある原始星の内部は完全に対流的となっていることから、主系列に達したばかりの恒星の内部はほぼ一様な化学組成を持っていると考えてよい。.

新しい!!: おうし座T型星と林トラック · 続きを見る »

恒星

恒星 恒星(こうせい)は、自ら光を発し、その質量がもたらす重力による収縮に反する圧力を内部に持ち支える、ガス体の天体の総称である。人類が住む地球から一番近い恒星は、太陽系唯一の恒星である太陽である。.

新しい!!: おうし座T型星と恒星 · 続きを見る »

恒星風

恒星風(こうせいふう)あるいは単に星風(せいふう)とは、恒星表面から吹き出すガスの流れのことである。太陽からも太陽風という形で常時ガスが放出されており、太陽フレアの際には太陽風の速度が上昇する。 恒星は自分自身の重力によってガスを保持している。しかし表面でガスの圧力や輻射圧(光圧)、磁気的な圧力などが高くなることによって一部のガスが重力を振り切って恒星から放出される。 おうし座T型星においては、主系列星に移行する途中のある時期に急激に恒星風が強くなり周囲のガスを吹き飛ばすと考えられている。 赤色巨星の表面においては重力が弱いために容易にガスが放出される。そのため赤色巨星が恒星風として放出する質量は太陽よりも数万倍も多い。 また大質量星においては星の表面が高温であるためガスの圧力や輻射圧が高く恒星風が強い。このような星が恒星風によって水素の外層を失ったと考えられるのがウォルフ・ライエ星である。.

新しい!!: おうし座T型星と恒星風 · 続きを見る »

核融合反応

核融合反応(かくゆうごうはんのう、nuclear fusion reaction)とは、軽い核種同士が融合してより重い核種になる核反応を言う。単に核融合と呼ばれることも多い。.

新しい!!: おうし座T型星と核融合反応 · 続きを見る »

木星

記載なし。

新しい!!: おうし座T型星と木星 · 続きを見る »

惑星科学

惑星科学(わくせいかがく、planetary science)は、惑星について研究する学問である。地球科学と天文学をつなぐ学問であるといえるが、天文学が中学校・高等学校においては地学分野に、大学では物理学の一分野として位置づけられているのに対し、惑星科学は中学・高校・大学のいずれでも地学=地球科学の一分野とされている。それは惑星科学が地球科学の他惑星への応用という一面を持っているからである。 なお、惑星科学のうち特に物理学的手法を用いるものを惑星物理学と呼ぶ。.

新しい!!: おうし座T型星と惑星科学 · 続きを見る »

星周円盤

SAO 206462。 星周円盤とは、星の周りに存在する円盤状の物質の集積体で、ガス、塵、微惑星、小惑星、その他恒星の周りを公転する天体の破片などからできている。 非常に若い恒星の周りでは、星周円盤が惑星系を形成する素材となる。もう少し時間が経過した恒星の周りでは、微惑星形成が起こる。コンパクト星の周りなどでは、中心天体に向かって効率的に物質が降着する円盤が形成される。 このように、星周円盤は様々な過程で出現し得る。.

新しい!!: おうし座T型星と星周円盤 · 続きを見る »

ここにリダイレクトされます:

Tタウリ型星

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »