ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ベータ崩壊

索引 ベータ崩壊

ベータ崩壊(ベータほうかい、beta decay)とは、放射線としてベータ線(電子)を放出する放射性崩壊の一種である。 後にベータ線のみを放出するとするとベータ線のエネルギーレベルの連続性を説明できないことから、電子(ベータ線)と同時にニュートリノと呼ばれる粒子も放出する弱い相互作用の理論として整理された。.

66 関係: 原子番号原子核半減期反粒子同重体塩素中性子中性子過剰核二重ベータ崩壊二重電子捕獲弱い相互作用マヨラナ粒子マンガンネオンネオジムヨウ素ヴォルフガング・パウリプラセオジムパリティ対称性の破れパウリの排他原理ビスマスフッ素フェルミ粒子ニュートリノニールス・ボーアダウンクォークベータ粒子アルミニウムアルファ崩壊アルファ粒子アルゴンアップクォークアクチニウムイリジウムウーの実験ウィークボソンカリウムガンマ崩壊ガンマ線クォークスピン角運動量CP対称性の破れ粒子線特性X線魔法数質量数超対称性酸素電子電子ニュートリノ...電子配置電子捕獲電磁波電気学会陰極線陽子陽電子R過程核子核分裂反応核図表核種標準模型放射線放射性崩壊放射性物質 インデックスを展開 (16 もっと) »

原子番号

原子番号(げんしばんごう)とは、原子において、その原子核の中にある陽子の個数を表した番号である。電荷をもたない原子においては、原子中の電子の数に等しい。量記号はZで表すことがあるが、これはドイツ語のZahlの頭文字で数・番号という意味である。現在、元素の正式名称が決定している最大の原子番号は118である。.

新しい!!: ベータ崩壊と原子番号 · 続きを見る »

原子核

原子核(げんしかく、atomic nucleus)は、単に核(かく、nucleus)ともいい、電子と共に原子を構成している。原子の中心に位置する核子の塊であり、正の電荷を帯びている。核子は、基本的には陽子と中性子から成っているが、通常の水素原子(軽水素)のみ、陽子1個だけである。陽子と中性子の個数、すなわち質量数によって原子核の種類(核種)が決まる。 原子核の質量を半経験的に説明する、ヴァイツゼッカー=ベーテの質量公式(原子核質量公式、他により改良された公式が存在する)がある。.

新しい!!: ベータ崩壊と原子核 · 続きを見る »

半減期

半減期(はんげんき、half-life)とは、ある放射性同位体が、放射性崩壊によってその内の半分が別の核種に変化するまでにかかる時間を言う。.

新しい!!: ベータ崩壊と半減期 · 続きを見る »

反粒子

反粒子(はんりゅうし)とは、ある素粒子(または複合粒子)と比較して、質量とスピンが等しく、電荷など正負の属性が逆の粒子を言う。特に陽電子や反陽子などの反レプトンや反バリオンをさす場合もある。 反粒子が通常の粒子と衝突すると対消滅を起こし、すべての質量がエネルギーに変換される。逆に、粒子反粒子対の質量よりも大きなエネルギーを何らかの方法(粒子同士の衝突や光子などの相互作用)によって与えると、ある確率で粒子反粒子対を生成することができ、これを対生成と呼ぶ。.

新しい!!: ベータ崩壊と反粒子 · 続きを見る »

同重体

同重体(どうじゅうたい、、同重核、カタカナでアイソバーとも)は、質量数が等しいが、陽子や中性子の数が異なる核種のことである。例えば、14Cと14Nは同重体である。同重体同士は異なる元素であるので、化学的性質は異なる。ようは陽子と中性子の数の和が等しく、その比率が違うということである。 ベータ崩壊はどのモードでも陽子と中性子が互いに移り変わるだけで質量数が変化しないので、親核種と娘核種は同重体の関係にある。 隣り合った同重体、すなわち原子番号が1つだけ異なる同重体の双方が安定核種である例は知られていない。このことはオーストリアの物理学者によって1934年に提唱され、マッタウフの通則と呼ばれる。2つ以上離れた同重体が共に安定核種である例はあり、例えば36Sと36Ar、124Snと124Teと124Xeなどは安定である。奇数の質量数で安定した同重体が複数ある例は知られていない。.

新しい!!: ベータ崩壊と同重体 · 続きを見る »

塩素

Chlore lewis 塩素(えんそ、chlorine)は原子番号17の元素。元素記号は Cl。原子量は 35.45。ハロゲン元素の一つ。 一般に「塩素」という場合は、塩素の単体である塩素分子(Cl2、二塩素、塩素ガス)を示すことが多い。ここでも合わせて述べる。塩素分子は常温常圧では特有の臭いを持つ黄緑色の気体で、腐食性と強い毒を持つ。.

新しい!!: ベータ崩壊と塩素 · 続きを見る »

中性子

中性子(ちゅうせいし、neutron)とは、原子核を構成する粒子のうち、無電荷の粒子の事で、バリオンの1種である。原子核反応式などにおいては記号 n で表される。質量数は原子質量単位で約 、平均寿命は約15分でβ崩壊を起こし陽子となる。原子核は、陽子と中性子と言う2種類の粒子によって構成されている為、この2つを総称して核子と呼ぶ陽子1個で出来ている 1H と陽子3個で出来ている 3Li の2つを例外として、2015年現在の時点で発見報告のある原子の内、最も重い 294Og までの全ての"既知の"原子核は陽子と中性子の2種類の核子から構成されている。。.

新しい!!: ベータ崩壊と中性子 · 続きを見る »

中性子過剰核

中性子過剰核(ちゅうせいしかじょうかく)とは、不安定核の一形態で、同じ陽子数の安定同位体と比較して中性子を多く含んだ核種を指す。.

新しい!!: ベータ崩壊と中性子過剰核 · 続きを見る »

二重ベータ崩壊

二重ベータ崩壊(にじゅうベータほうかい、double beta decay)は、原子核内の2つの中性子がほぼ同時に陽子になるという、(広義の)ベータ崩壊の一種である。.

新しい!!: ベータ崩壊と二重ベータ崩壊 · 続きを見る »

二重電子捕獲

二重電子捕獲(にじゅうでんしほかく、Double electron capture)は原子核の崩壊形式。核子の数が 、原子番号が である核種 において、二重電子捕獲は、の核種の方が質量が小さい場合に限って可能である。 この崩壊過程では、原子核内の2個の陽子によって、軌道上にある2個の電子が捕獲され、中性子を生じる。また、2個のニュートリノが放出される。陽子が中性子に変化するので、中性子数は2大きくなり、陽子数は2小さくなる。そして、質量数 は変化しない。原子番号が変わるので、娘核種は親核種とは異る元素に変化する。 たとえば、 この核反応ではクリプトン78が2個の電子を捕獲し、セレン78と2個のニュートリノに変化している。 多くの場合、この崩壊過程は単一の電子捕獲のように、より発生する確率の高い現象に隠されてしまう。しかし、他の過程がすべて禁制されるか強く抑制される時は、二重電子捕獲は崩壊の主な形式になる。天然の核種で二重電子捕獲を行うと予測されている元素は35種類も存在する。しかし観測されているのはバリウム130についてのみである。観測が難しい一つの理由として、二重電子捕獲の確率が非常に小さいことがあげられる。実際、この過程における半減期の理論予測はおおよそ年である。二つ目の理由として、二重電子捕獲に際して検出できる電磁波や粒子は、励起原子核から生成放出される特性X線やオージェ電子に限られることがある。これら粒子の持つエネルギーの範囲はおおよそ 以下であり、バックグラウンドノイズのレベルが高い。これらの理由から、二重電子捕獲の実験的検出は二重ベータ崩壊の検出よりも難しい。 母原子核と娘原子核の質量差が電子2個に相当する よりも大きい場合、陽電子放出と電子捕獲の組み合わせのような他の崩壊過程でのエネルギーの解放に十分である。それらは二重電子捕獲と競合し、分岐比は核の特性に依存する。質量の差異が電子4個に相当する よりも大きい時、また別の崩壊現象である二重陽電子崩壊が起こりうる。天然の核種でこれら3種類の崩壊現象が同時に可能なものは6種のみである。.

新しい!!: ベータ崩壊と二重電子捕獲 · 続きを見る »

弱い相互作用

弱い相互作用(よわい そうごさよう、)とは、素粒子の間で作用する4つの基本相互作用の内の一つである。弱い核力、あるいは単に弱い力とも呼ばれる。この相互作用による効果として代表的なものにベータ崩壊がある。電磁相互作用と比較して、力が非常に弱いことからこの名がついた。.

新しい!!: ベータ崩壊と弱い相互作用 · 続きを見る »

マヨラナ粒子

マヨラナ粒子(マヨラナりゅうし、Majorana particle)とは、粒子と反粒子が同一の中性フェルミ粒子の呼び名である。マヨラナフェルミオンともいう。 スピン1/2の素粒子であるフェルミ粒子は、その運動方程式がディラック方程式に従い、数学的な表式は4成分のスピノルとして表される。フェルミ粒子のカイラリティには左巻きと右巻きとがあり、ディラック方程式中のディラックのガンマ行列をワイル表示で表すと、左巻き成分と右巻き成分は2種類のワイルスピノル(2成分スピノル)に分解できる。電子と陽電子の関係のように、粒子と反粒子が荷電共役で結ばれている場合には、電子の左巻きワイルスピノルと陽電子の右巻きワイルスピノル、電子の右巻きワイルスピノルと陽電子の左巻きワイルスピノルがそれぞれ関連付けられる。マヨラナ粒子は、ワイルスピノルが1種類のみで構成され、粒子と反粒子が同一となっている。このような条件(マヨラナ条件)が満たされるのは、中性フェルミ粒子の場合に限られ、荷電フェルミ粒子はマヨラナ粒子になりえない。.

新しい!!: ベータ崩壊とマヨラナ粒子 · 続きを見る »

マンガン

マンガン(manganese 、manganum)は原子番号25の元素。元素記号は Mn。日本語カタカナ表記での名称のマンガンは Mangan をカタカナに変換したもので、日本における漢字表記の当て字は満俺である。.

新しい!!: ベータ崩壊とマンガン · 続きを見る »

ネオン

ネオン(neon )は原子番号 10、原子量 20.180 の元素である。名称はギリシャ語の'新しい'を意味する「νέος (neos)」に由来する。元素記号は Ne。 単原子分子として存在し、単体は常温常圧で無色無臭の気体。融点 −248.7 ℃、沸点 −246.0 ℃(ただし融点沸点とも異なる実験値あり)。密度は 0.900 g/dm (0 ℃, 1 atm)・液体時は 1.21 g/cm (−246 ℃)。空気中に18.2 ppm含まれ、希ガスとしてはアルゴンに次ぐ割合で存在する。工業的には、空気を液化・分留して作る手段が唯一事業性を持てる。磁化率 −0.334×10 cm/g。1体積の水に溶解する体積比は0.012。 ネオンの三重点(約24.5561 K)はITS-90の定義定点になっている。.

新しい!!: ベータ崩壊とネオン · 続きを見る »

ネオジム

ネオジム(neodymium、Neodym)は原子番号60の金属元素。元素記号は Nd。希土類元素の一つで、ランタノイドにも属する。 日本語の「ネオジム」はドイツ語の Neodym の字訳である。製品名等で「ネオジウム」「ネオジューム」等の呼称も用いられることがあり、用法の正誤については議論がある。.

新しい!!: ベータ崩壊とネオジム · 続きを見る »

ヨウ素

ヨウ素(ヨウそ、沃素、iodine)は、原子番号 53、原子量 126.9 の元素である。元素記号は I。あるいは分子式が I2 と表される二原子分子であるヨウ素の単体の呼称。 ハロゲン元素の一つ。ヨード(沃度)ともいう。分子量は253.8。融点は113.6 ℃で、常温、常圧では固体であるが、昇華性がある。固体の結晶系は紫黒色の斜方晶系で、反応性は塩素、臭素より小さい。水にはあまり溶けないが、ヨウ化カリウム水溶液にはよく溶ける。これは下式のように、ヨウ化物イオンとの反応が起こることによる。 単体のヨウ素は、毒物及び劇物取締法により医薬用外劇物に指定されている。.

新しい!!: ベータ崩壊とヨウ素 · 続きを見る »

ヴォルフガング・パウリ

ヴォルフガング・エルンスト・パウリ(Wolfgang Ernst Pauli, 1900年4月25日 - 1958年12月15日)はオーストリア生まれのスイスの物理学者。スピンの理論や、現代化学の基礎となっているパウリの排他律の発見などの業績で知られる。 アインシュタインの推薦により、1945年に「1925年に行われた排他律、またはパウリの原理と呼ばれる新たな自然法則の発見を通じた重要な貢献」に対してノーベル物理学賞を受賞した。.

新しい!!: ベータ崩壊とヴォルフガング・パウリ · 続きを見る »

プラセオジム

プラセオジム(praseodymium)は原子番号59の元素。元素記号は Pr。希土類元素の一つ(ランタノイドにも属す)。 和名のプラセオジムとは、ドイツ語の praseodym からきている。なお、プラセオジウムと呼ばれたり記述することもあるが、これは間違った呼称である。.

新しい!!: ベータ崩壊とプラセオジム · 続きを見る »

パリティ対称性の破れ

パリティ対称性の破れ(パリティたいしょうせいのやぶれ、Parity violation)とは、空間反転した(鏡に映した)ときに物理法則が同じにならないこと、または、その様な状態を言う。弱い相互作用が関与する物理現象で起こる。 P対称性の破れ、あるいは、パリティ非保存とも。.

新しい!!: ベータ崩壊とパリティ対称性の破れ · 続きを見る »

パウリの排他原理

パウリの排他原理(パウリのはいたげんり、Pauli exclusion principle)とは、2 つ以上のフェルミ粒子は同一の量子状態を占めることはできない、というものであり、1925年にヴォルフガング・パウリが提出したフェルミ粒子に関する仮定であるW.

新しい!!: ベータ崩壊とパウリの排他原理 · 続きを見る »

ビスマス

ビスマス(bismuth)は原子番号83の元素。元素記号は Bi。第15族元素の一つ。日本名は蒼鉛。.

新しい!!: ベータ崩壊とビスマス · 続きを見る »

フッ素

フッ素(フッそ、弗素、fluorine)は原子番号 9 の元素。元素記号はラテン語のFluorumの頭文字よりFが使われる。原子量は 18.9984 で、最も軽いハロゲン元素。また、同元素の単体であるフッ素分子(F2、二弗素)をも示す。 電気陰性度は 4.0 で全元素中で最も大きく、化合物中では常に -1 の酸化数を取る。反応性が高いため、天然には蛍石や氷晶石などとして存在し、基本的に単体では存在しない。.

新しい!!: ベータ崩壊とフッ素 · 続きを見る »

フェルミ粒子

フェルミ粒子(フェルミりゅうし)は、フェルミオン(Fermion)とも呼ばれるスピン角運動量の大きさが\hbarの半整数 (1/2, 3/2, 5/2, …) 倍の量子力学的粒子であり、その代表は電子である。その名前は、イタリア=アメリカの物理学者エンリコ・フェルミ (Enrico Fermi) に由来する。.

新しい!!: ベータ崩壊とフェルミ粒子 · 続きを見る »

ニュートリノ

ニュートリノ()は、素粒子のうちの中性レプトンの名称。中性微子とも書く。電子ニュートリノ・ミューニュートリノ・タウニュートリノの3種類もしくはそれぞれの反粒子をあわせた6種類あると考えられている。ヴォルフガング・パウリが中性子のβ崩壊でエネルギー保存則と角運動量保存則が成り立つように、その存在仮説を提唱した。「ニュートリノ」の名はβ崩壊の研究を進めたエンリコ・フェルミが名づけた。フレデリック・ライネスらの実験により、その存在が証明された。.

新しい!!: ベータ崩壊とニュートリノ · 続きを見る »

ニールス・ボーア

ニールス・ヘンリク・ダヴィド・ボーア(Niels Henrik David Bohr、1885年10月7日 - 1962年11月18日)は、デンマークの理論物理学者。量子論の育ての親として、前期量子論の展開を指導、量子力学の確立に大いに貢献した。王立協会外国人会員。.

新しい!!: ベータ崩壊とニールス・ボーア · 続きを見る »

ダウンクォーク

ダウンクォーク (down quark, 記号:d) は、物質を構成する主要な素粒子の一つで、第一世代のクォークである。.

新しい!!: ベータ崩壊とダウンクォーク · 続きを見る »

ベータ粒子

ベータ粒子(ベータりゅうし、β粒子、beta particle)は、放射線の一種で、その実体は電子または陽電子である。ベータ粒子の流れを、ベータ線と呼ぶ。普通「ベータ線」という場合は、負電荷を持った電子の流れを指す。.

新しい!!: ベータ崩壊とベータ粒子 · 続きを見る »

アルミニウム

アルミニウム(aluminium、aluminium, aluminum )は、原子番号 13、原子量 26.98 の元素である。元素記号は Al。日本語では、かつては軽銀(けいぎん、銀に似た外見をもち軽いことから)や礬素(ばんそ、ミョウバン(明礬)から)とも呼ばれた。アルミニウムをアルミと略すことも多い。 「アルミ箔」、「アルミサッシ」、一円硬貨などアルミニウムを使用した日用品は数多く、非常に生活に身近な金属である。天然には化合物のかたちで広く分布し、ケイ素や酸素とともに地殻を形成する主な元素の一つである。自然アルミニウム (Aluminium, Native Aluminium) というかたちで単体での産出も知られているが、稀である。単体での産出が稀少であったため、自然界に広く分布する元素であるにもかかわらず発見が19世紀初頭と非常に遅く、精錬に大量の電力を必要とするため工業原料として広く使用されるようになるのは20世紀に入ってからと、金属としての使用の歴史はほかの重要金属に比べて非常に浅い。 単体は銀白色の金属で、常温常圧で良い熱伝導性・電気伝導性を持ち、加工性が良く、実用金属としては軽量であるため、広く用いられている。熱力学的に酸化されやすい金属ではあるが、空気中では表面にできた酸化皮膜により内部が保護されるため高い耐食性を持つ。.

新しい!!: ベータ崩壊とアルミニウム · 続きを見る »

アルファ崩壊

アルファ崩壊(アルファほうかい、α崩壊、alpha decay)とは、放射線としてアルファ線(α線)を放出する放射性崩壊の一種である。アルファ崩壊が発生する原因は量子力学におけるトンネル効果である。.

新しい!!: ベータ崩壊とアルファ崩壊 · 続きを見る »

アルファ粒子

フレミング左手の法則 ベータ線の実態である電子やガンマ線と異なり、ヘリウム4の原子核であるアルファ粒子は一枚の紙すら通過できない。 原子核がアルファ崩壊してアルファ粒子を放出している アルファ粒子(アルファりゅうし、α粒子、alpha particle)は、高い運動エネルギーを持つヘリウム4の原子核である。陽子2個と中性子2個からなる。放射線の一種のアルファ線(α線、alpha ray)は、アルファ粒子の流れである。 固有の粒子記号は持たず、ヘリウム4の2価陽イオンとして (より厳密には )と表される。.

新しい!!: ベータ崩壊とアルファ粒子 · 続きを見る »

アルゴン

アルゴン(argon)は原子番号 18 の元素で、元素記号は Ar である。原子量は 39.95。周期表において第18族元素(希ガス)かつ第3周期元素に属す。.

新しい!!: ベータ崩壊とアルゴン · 続きを見る »

アップクォーク

アップクォーク (up quark, 記号:u) は、物質を構成する主要な素粒子の一つで、第一世代のクォークである。.

新しい!!: ベータ崩壊とアップクォーク · 続きを見る »

アクチニウム

アクチニウム (actinium) は原子番号89の元素。元素記号は Ac。アクチノイド元素の一つ。.

新しい!!: ベータ崩壊とアクチニウム · 続きを見る »

イリジウム

イリジウム(iridium )は原子番号77の元素。元素記号は Ir。 白金族元素の一つで、単体では白金に似た白い光沢(銀白色)を持つ金属(遷移金属)として存在する。.

新しい!!: ベータ崩壊とイリジウム · 続きを見る »

ウーの実験

ウーの実験(ウーのじっけん)は、1956年に中国系アメリカ人物理学者呉健雄(チェンシュン・ウー)とアメリカ国立標準局低温研究グループが共同して行った核物理学実験である 。実験の目的は、弱い相互作用にもパリティの保存が適用されているかどうかをはっきりさせることであった。パリティの保存は電磁相互作用と強い相互作用ではこれ以前に実証されていた。もしパリティの保存が真であるならば、空間が反転した世界はこの世界の鏡像として振舞うことになる。もしパリティの保存が破れているならば、空間が反転した世界とこの世界の鏡像とを区別することが可能ということになる。 実験では、弱い相互作用によってパリティの保存が破れていることが証明された(パリティ対称性の破れ)。この結果は物理学界では予想されていなかった。物理学界ではパリティはであると考えられていた。パリティ非保存を着想し、実験を提唱した理論物理学者の李政道(ヂョンダオ・リー)と楊振寧(ヂェンニン・ヤン)はこの結果によって1957年のノーベル物理学賞を授与された。.

新しい!!: ベータ崩壊とウーの実験 · 続きを見る »

ウィークボソン

ウィークボソン (weak boson) は素粒子物理学において、弱い相互作用を媒介する素粒子である。弱ボソンとも言う。 ウィークボソンはスピン1のベクトルボソンで、WボソンとZボソンの二種類が存在する。Wボソンは陽子の約80倍、Zボソンは約90倍と他の素粒子に比べて大きな質量をもち、ごく短時間のうちに別の粒子に崩壊してしまうという特徴を持つ。 Wボソンは電荷 ±1 (W+,W−)をもち、両者は互いに反粒子の関係にある。 Zボソンは電荷 0 で、反粒子は自分自身である。 1968年に理論で存在が予言され、1983年に欧州合同原子核研究所にてその存在が確認された。.

新しい!!: ベータ崩壊とウィークボソン · 続きを見る »

カリウム

リウム(Kalium 、)は原子番号 19 の元素で、元素記号は K である。原子量は 39.10。アルカリ金属に属す典型元素である。医学・薬学や栄養学などの分野では英語のポタシウム (Potassium) が使われることもある。和名では、かつて加里(カリ)または剥荅叟母(ぽたしうむ)という当て字が用いられた。 カリウムの単体金属は激しい反応性を持つ。電子を1個失って陽イオン K になりやすく、自然界ではその形でのみ存在する。地殻中では2.6%を占める7番目に存在量の多い元素であり、花崗岩やカーナライトなどの鉱石に含まれる。塩化カリウムの形で採取され、そのままあるいは各種の加工を経て別の化合物として、肥料、食品添加物、火薬などさまざまな用途に使われる。 生物にとっての必須元素であり、神経伝達で重要な役割を果たす。人体では8番目もしくは9番目に多く含まれる。植物の生育にも欠かせないため、肥料3要素の一つに数えられる。.

新しい!!: ベータ崩壊とカリウム · 続きを見る »

ガンマ崩壊

ンマ崩壊(ガンマほうかい、)、γ崩壊は、励起された原子核がガンマ線を放出して崩壊する放射性崩壊。ガンマ崩壊は、アルファ崩壊やベータ崩壊と違い、核種が変わらない、つまり、原子番号や質量数が変わらない崩壊である。 具体的には、エネルギーをもらうなどして励起された原子核、アルファ崩壊やベータ崩壊などで崩壊した娘核種がすでに励起した状態であった場合は、高いエネルギー準位から低いエネルギー準位に遷移する際に、その準位間のエネルギー差に等しいエネルギーを持つガンマ線を放出して安定な原子核へと移行する。励起状態の核がγ線を放出するまでの時間は極めて短く、おおむね10-10秒以下である。 ガンマ崩壊はその崩壊において、角運動量とパリティの違いから.

新しい!!: ベータ崩壊とガンマ崩壊 · 続きを見る »

ガンマ線

ンマ線(ガンマせん、γ線、gamma ray)は、放射線の一種。その実体は、波長がおよそ 10 pm よりも短い電磁波である。 ガンマ線.

新しい!!: ベータ崩壊とガンマ線 · 続きを見る »

クォーク

ーク(quark)とは、素粒子のグループの一つである。レプトンとともに物質の基本的な構成要素であり、クォークはハドロンを構成する。クオークと表記することもある。 クォークという名称は、1963年にモデルの提唱者の一人であるマレー・ゲルマンにより、ジェイムズ・ジョイスの小説『フィネガンズ・ウェイク』中の一節 "Three quarks for Muster Mark" から命名された 。.

新しい!!: ベータ崩壊とクォーク · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

新しい!!: ベータ崩壊とスピン角運動量 · 続きを見る »

CP対称性の破れ

CP対称性の破れとは、物理学、特に素粒子物理学において、CP対称性に従わない事象のことである。 CP対称性の破れは1964年に中性K中間子の崩壊の観測から発見され、ジェイムズ・クローニンとヴァル・フィッチはその功績により1980年にノーベル物理学賞を受賞した。現在も、理論物理及び実験物理で積極的な研究が行なわれている分野の一つとなっている。 現在の宇宙では、物質が反物質よりもはるかに多い。 宇宙の歴史の中でこの非対称性を生成するためにはCP対称性の破れが必要条件であり、 サハロフの三条件のひとつとして知られている。.

新しい!!: ベータ崩壊とCP対称性の破れ · 続きを見る »

粒子線

粒子線(りゅうしせん、particle beam)とは、主にレプトン、ハドロン、(イオン化された)原子や分子などの粒子によるビームである。つまり、粒子が束状になって進んでいく状態である。 粒子線の代表的なものとして、電子線、陽子線、重粒子線、中性子線などがある。 ただし、単に「〜線」と言った場合、ビームとは限らない単なる放射線 (ray) の意味にも取れ曖昧なこともある。たとえば、「アルファ線」「ベータ線」「X線」「光線」等の「線」は放射線の意味である。粒子線のうち放射線であるものは特に粒子放射線と呼ぶ。.

新しい!!: ベータ崩壊と粒子線 · 続きを見る »

特性X線

ネルギーで内殻電子が励起される(左)と、その緩和過程で準位間に相当するエネルギーを持った特性X線が発生する(右)。 特性X線(とくせいえっくすせん)とは、ある原子の電子軌道や原子核において、高い電子準位から低い電子準位に遷移する過程で放射されるX線である。単一エネルギー、線スペクトルが特徴。 機器分析で使用される単一波長のX線はふつう特性X線を利用しており、発生源となる元素(ターゲット)と電子殻によって表記する。X線光電子分光ではMgKα線 (1253.6eV) やAlKα線 (1486.6eV)、X線回折ではCuKα線 (8.048keV) やMoKα線 (17.5keV) などを用いる。 内殻電子の励起源としてX線を用いたときに発生する特性X線は、蛍光X線(XRF)と呼ばれる。その他にも励起源に電子を用いて元素分析をする電子線マイクロアナライザ(EPMA)や、陽子やイオンを用いて元素分析をする粒子線励起X線分析(PIXE)がある。.

新しい!!: ベータ崩壊と特性X線 · 続きを見る »

魔法数

法数(まほうすう)とは、原子核が特に安定となる陽子と中性子の個数のことをいう。陽子数または中性子数が魔法数である核種を魔法核と呼ぶ。 核構造のシェルモデルでは、殻(シェル)が「閉じている」状態(閉殻)は安定性が高く、崩壊や核分裂が起きにくくなる。計算上特定の値が該当し、魔法数となる。陽子と中性子はよく似ているので同じ値となる。 現在、広く承認されている魔法数は 2, 8, 20, 28, 50, 82, 126 の7つで、原子番号がこれらにあたる元素は、周辺の元素に比べて多くの安定同位体を持っている。中性子数がこれに該当する同中性子体についても同様で、例えば核種の一覧を見ると、縦の20と横の20には安定同位体が並んでいるのがわかる。 一部の中性子過剰核では、8, 20, 28は消えて、別の魔法数である 6, 16, 32, 34 が現れる事が研究によって示されている。この領域のことを反転の島(Island of inversion)と呼ぶ。(50、82は維持される)。また、最近の研究から、中性子過剰な炭素同位体の陽子数6が魔法数である事が明らかになった。 魔法数は1949年にマリア・ゲッパート=メイヤーとヨハネス・ハンス・イェンゼンによって理論的な説明が成され、ノーベル賞授与対象となった。.

新しい!!: ベータ崩壊と魔法数 · 続きを見る »

質量数

質量数(しつりょうすう、mass number)は、原子核を構成する陽子と中性子の数を合わせたものを言う長倉三郎ほか編、『』、岩波書店、1998年、項目「質量数」より。ISBN 4-00-080090-6。通常、Aで表す。 同位体や核種を区別するときに用いられることが多い。元素記号の左肩に示す。たとえば、質量数12の炭素の場合は、 と表す。 同じ原子番号であるが質量数(すなわち中性子数)が異なる原子は同位体である。これに対して同じ質量数であるが原子番号(すなわち陽子数)が異なる原子を同重体、中性子数が同じであるが原子番号が異なるものを同中性子体(同調体)という。 質量数は原子核自体の質量とは別物である為、実際の数値はほとんど変わらないもののごく僅か異なる。実際の計算では質量数を質量として用いる事も多い。核子一つ一つの質量と電子の質量の総和より、実際の原子の質量の方が僅かに少なくこの差が質量欠損である。 またある中性原子の質量を原子質量単位を用いて表した質量をM、質量数をAとしたとき、その差の核子1個あたりの値 をパッキングフラクション(packing fraction)という。繰り返すがこれらは全て実際の質量とはほとんど等しいが正確には僅かに異なる。.

新しい!!: ベータ崩壊と質量数 · 続きを見る »

超対称性

超対称性(ちょうたいしょうせい,supersymmetry,SUSY)はボソンとフェルミオンの入れ替えに対応する対称性である。この対称性を取り入れた理論は超対称性理論などのように呼ばれる。また、超対称性粒子の一部はダークマターの候補の一つである。2013年1月現在、超対称性粒子は未発見である。.

新しい!!: ベータ崩壊と超対称性 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

新しい!!: ベータ崩壊と酸素 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: ベータ崩壊と電子 · 続きを見る »

電子ニュートリノ

電子ニュートリノ(electron neutrino)は、素粒子標準模型における第一世代のニュートリノである。レプトンの三世代構造において、同じく第一世代の荷電レプトンである電子と対をなすため、電子ニュートリノと名付けられた。 ベータ崩壊の過程で運動量とエネルギーが喪失するという現象から、1930年にヴォルフガング・パウリによって予測され、1956年にフレデリック・ライネスとクライド・カワンによって最初に検出された 。.

新しい!!: ベータ崩壊と電子ニュートリノ · 続きを見る »

電子配置

電子配置(でんしはいち、)とは、多電子系である原子や分子の電子状態が「一体近似で得られる原子軌道あるいは分子軌道に複数の電子が詰まった状態」として近似的に表すことができると考えた場合に、電子がどのような軌道に配置しているのか示したもので、これによって各元素固有の性質が決定される。.

新しい!!: ベータ崩壊と電子配置 · 続きを見る »

電子捕獲

電子捕獲(でんしほかく、electron capture、EC)とは、原子核の放射性崩壊の一種である。電子捕獲では、電子軌道の電子が原子核に取り込まれ、捕獲された電子は原子核内の陽子と反応し中性子となり、同時に電子ニュートリノが放出される。捕獲される電子は普通はK軌道の電子であるが、L軌道やM軌道の電子が捕獲される場合もある。.

新しい!!: ベータ崩壊と電子捕獲 · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

新しい!!: ベータ崩壊と電磁波 · 続きを見る »

電気学会

一般社団法人電気学会(いっぱんしゃだんほうじんでんきがっかい、英文名称:The Institute of Electrical Engineers of Japan、略称:IEEJ)は、1888年(明治21年)に電気学術の調査・研究と広報・普及を目的に創立された学会である。志田林三郎等によって創立され、初代会長には榎本武揚が就任した。会員数は約二万四千人。元文部科学省所管。.

新しい!!: ベータ崩壊と電気学会 · 続きを見る »

陰極線

極線(いんきょくせん、Cathode ray)とは真空管の中で観察される電子の流れである。真空に排気されたガラス容器に一対の電極を封入して電圧をかけると、陰極(電源のマイナス端子に接続された電極)の逆側にある容器内壁が発光する。その原因は陰極表面から電子が垂直に撃ち出されることによる。この現象は1869年にドイツの物理学者ヴィルヘルム・ヒットルフによって初めて観察され、1876年にによってKathodenstrahlen(陰極線)と名付けられた。近年では電子線や電子ビームと呼ばれることが多い。 電子が初めて発見されたのは、陰極線を構成する粒子としてであった。1897年、英国の物理学者J・J・トムソンは、陰極線の正体が負電荷を持つ未知の粒子であることを示し、この粒子が後に「電子」と呼ばれるようになった。初期のテレビに用いられていたブラウン管(CRT、cathode ray tubeすなわち「陰極線管」)は、収束させた陰極線を電場や磁場で偏向させることによって像を作っている。.

新しい!!: ベータ崩壊と陰極線 · 続きを見る »

陽子

陽子(ようし、())とは、原子核を構成する粒子のうち、正の電荷をもつ粒子である。英語名のままプロトンと呼ばれることも多い。陽子は電荷+1、スピン1/2のフェルミ粒子である。記号 p で表される。 陽子とともに中性子によって原子核は構成され、これらは核子と総称される。水素(軽水素、H)の原子核は、1個の陽子のみから構成される。電子が離れてイオン化した水素イオン(H)は陽子そのものであるため、化学の領域では水素イオンをプロトンと呼ぶことが多い。 原子核物理学、素粒子物理学において、陽子はクォークが結びついた複合粒子であるハドロンに分類され、2個のアップクォークと1個のダウンクォークで構成されるバリオンである。ハドロンを分類するフレーバーは、バリオン数が1、ストレンジネスは0であり、アイソスピンは1/2、超電荷は1/2となる。バリオンの中では最も軽くて安定である。.

新しい!!: ベータ崩壊と陽子 · 続きを見る »

陽電子

陽電子(ようでんし、ポジトロン、英語:positron)は、電子の反粒子。絶対量が電子と等しいプラスの電荷を持ち、その他の電子と等しいあらゆる特徴(質量やスピン角運動量 (1/2))を持つ。.

新しい!!: ベータ崩壊と陽電子 · 続きを見る »

R過程

r過程(アールかてい, r-process)は恒星核が重力崩壊する超新星爆発時に起きると考えられている元素合成(超新星元素合成)における、中性子を多くもつ鉄より重い元素のほぼ半分を合成する過程のこと。これは迅速かつ連続的に中性子をニッケル56のような核種に取り込むことによって起きる。そのためこの過程はr (Rapid) 過程と呼ばれる。重元素を合成するほかの過程にはs過程があり、これは漸近巨星分枝星 (赤色巨星への進化段階) でゆっくり (Slow) した中性子捕獲によって元素合成を行う。この2つの過程が鉄より重い元素の元素合成過程の大半を占める。r過程はs過程に比べ未解明の部分が多い。.

新しい!!: ベータ崩壊とR過程 · 続きを見る »

核子

核子(かくし、nucleon)は、原子核を構成する陽子と中性子の総称。原子の原子核は陽子と中性子により構成されていることにより、これらを総称して核子と呼ぶ。陽子も中性子もバリオンの一種であるため、核子もまたバリオンの一種である。 核子はダウンクォーク(d)とアップクォーク(u)により構成される(中性子は2個のdと1個のu、陽子は1個のdと2個のu)。これに対し、ストレンジという重いクォークを含んだ重いバリオンをハイペロンと呼び、Λ(アイソスピン0、uds), Σ(アイソスピン1、uus, uds, dds), Ξ(アイソスピン1/2、uss, dss), Ω(アイソスピン0, sss)と呼ばれる。また、原子核を構成する粒子にハイペロンを含んだ核をハイパー核と呼ぶ。.

新しい!!: ベータ崩壊と核子 · 続きを見る »

核分裂反応

核分裂反応(かくぶんれつはんのう、nuclear fission)とは、不安定核(重い原子核や陽子過剰核、中性子過剰核など)が分裂してより軽い元素を二つ以上作る反応のことを指す。オットー・ハーンとフリッツ・シュトラスマンらが天然ウランに低速中性子(slow neutron)を照射し、反応生成物にバリウムの同位体を見出したことにより発見され、リーゼ・マイトナーとオットー・ロベルト・フリッシュらが核分裂反応であると解釈し、fission(核分裂)と命名した。.

新しい!!: ベータ崩壊と核分裂反応 · 続きを見る »

核図表

核図表(かくずひよう)とは、陽子数と中性子数を座標軸にとった平面上に、原子核の核種を配置した図である。 原点に水素、X軸に中性子数、Y軸に陽子数を取り、各マスに核種(質量数などを付した元素記号)を記入するのが一般的で、既に発見された核種だけでなく、未発見核種を含めることもある。なお、wikipediaの核種の一覧ではX軸に陽子数、-Y軸に中性子数を取っている。 核図表は周期表と異なり元素の化学的な性質はほとんど読み取れないが、核の安定性や陽子・中性子数に基づく原子核の規則性を掴みやすい。元素合成等を考える上で重要となる。.

新しい!!: ベータ崩壊と核図表 · 続きを見る »

核種

核種(かくしゅ、、または nuclear species小田稔ほか編、『』、研究社、1998年、項目「nuclide」より。ISBN 978-4-7674-3456-8)とは、原子核の組成、すなわち核の中の陽子の数、中性子の数及び核のエネルギー準位によって規定される特定の原子の種類を言う。米国の核化学者 T. P. Kohman によって提案された。 核種は原子核の同位体やその他の性質を区別するために利用される。放射能を持つ核種を放射性核種、そうではない安定した核種を安定核種と呼ぶ。.

新しい!!: ベータ崩壊と核種 · 続きを見る »

標準模型

標準模型(ひょうじゅんもけい、、略称: SM)とは、素粒子物理学において、強い相互作用、弱い相互作用、電磁相互作用の3つの基本的な相互作用を記述するための理論のひとつである。標準理論(ひょうじゅんりろん)または標準モデル(ひょうじゅんモデル)とも言う。.

新しい!!: ベータ崩壊と標準模型 · 続きを見る »

放射線

放射線(ほうしゃせん、radiation、radial rays)とは、高い運動エネルギーをもって流れる物質粒子(アルファ線、ベータ線、中性子線、陽子線、重イオン線、中間子線などの粒子放射線)と高エネルギーの電磁波(ガンマ線とX線のような電磁放射線)の総称をいう。「放射線」に全ての電磁波を含め、電離を起こすエネルギーの高いものを電離放射線、そうでないものを非電離放射線とに分けることもあるが、一般に「放射線」とだけいうと、高エネルギーの電離放射線の方を指していることが多い 。 なお、広辞苑には「放射性元素の放射性崩壊に伴い放出される粒子放射線と電磁放射線(主にアルファ線、ベータ線、ガンマ線)を指す」広辞苑第五版 p.2432【放射線】、とあるが、これは放射性物質の放射能を問題とする文脈ではそれを指す、というくらいの意味である。.

新しい!!: ベータ崩壊と放射線 · 続きを見る »

放射性崩壊

放射性崩壊(ほうしゃせいほうかい、radioactive decay)または放射性壊変(ほうしゃせいかいへん)、あるいは放射壊変(ほうしゃかいへん)とは、構成の不安定性を持つ原子核が、放射線(α線、β線、γ線)を出すことにより他の安定な原子核に変化する現象の事を言う。放射性物質が放射線を出す原因はこの放射性崩壊である。.

新しい!!: ベータ崩壊と放射性崩壊 · 続きを見る »

放射性物質

放射性物質(ほうしゃせいぶっしつ、長倉三郎ほか編、『 』、岩波書店、1998年、項目「放射性物質」より。ISBN 4-00-080090-6)とは、放射能を持つ物質の総称である。主に、ウラン、プルトニウム、トリウムのような核燃料物質、放射性元素もしくは放射性同位体、中性子を吸収又は核反応を起こして生成された放射化物質を指す。.

新しい!!: ベータ崩壊と放射性物質 · 続きを見る »

ここにリダイレクトされます:

Β崩壊ベータ+崩壊陰電子崩壊陽電子崩壊

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »