ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

量子重力理論

索引 量子重力理論

量子重力理論(りょうしじゅうりょくりろん、)は、重力相互作用(重力)を量子化した理論である。単に量子重力(りょうしじゅうりょく:Quantum Gravity(QG), Quantum Gravitation)または重力の量子論(Quantum Theory of Gravity)などとも呼ばれる。 ユダヤ系ロシア人のマトベイ・ブロンスタインがパイオニアとされる。一般相対性理論と量子力学の双方を統一する理論と期待されている。物理学の基礎概念である時間、空間、物質、力を統一的に理解するための鍵であり、物理学における最重要課題の一つと言われている。 量子重力理論は現時点ではまったく未完成の未知の理論である。量子重力を考える上で最大の問題点はその指針とすべき基本的な原理がよく分かっていないということである。そもそも重力は自然界に存在する四つの力(基本相互作用)の中で最も弱い。従って、量子化された重力が関係していると考えられる現象が現在到達できる技術レベルでは観測できないためである。.

72 関係: AdS/CFT対応力 (物理学)AURIGA宇宙の年表宇宙のインフレーション宇宙進化論万物の理論万有引力一般相対性理論京都大学基礎物理学研究所余剰次元マトベイ・ブロンスタインマイクロブラックホールマキシム・コンツェビッチハートル=ホーキングの境界条件ポール・ギンスパーグランベルトのW関数リー・スモーリンリウヴィル場理論ループ量子重力理論ロジャー・ペンローズボグダノフ事件ブラックホールの熱力学ブラックホール情報パラドックスプランク時代ヒッグス粒子ビッグバンビッグクランチツイスター理論フランク・ティプラーニキータ・ネクラソフホログラフィック原理ホイーラー・ドウィット方程式アノマリーアインシュタイン多様体カムラン・ヴァッファクローノンゲージ理論ジュリアン・バーバージョン・ホイーラースティーヴン・ホーキング因果力学的単体分割因果集合BTZブラックホールCDT符号数統一場理論物理学物理学に関する記事の一覧物理学の未解決問題...特異点定理階層性問題隠れた変数理論裸の特異点計算機の歴史超弦理論超重力理論野村泰紀重力重力と相対性理論の年表重力子重力を説明する古典力学的理論重力波検出器量子力学量子群量子論F(R)重力N=4 超対称ヤン・ミルズ理論極限ブラックホール朝永振一郎(2+1)-次元位相重力理論 インデックスを展開 (22 もっと) »

AdS/CFT対応

論物理学では、AdS/CFT対応(AdS/CFTたいおう、anti-de Sitter/conformal field theory correspondence)は、マルダセーナ双対(Maldacena duality)あるいはゲージ/重力双対(gauge/gravity duality)とも呼ばれ、2つの物理理論の種類の間の関係を予言するものである。対応の片側は、共形場理論 (CFT) で、場の量子論で基本粒子を記述するヤン=ミルズ理論の類似物を意味し、対応する反対側は、反ド・ジッター空間(AdS)で、量子重力の理論で使われる空間である。この対応は弦理論やM-理論のことばで定式化された。 双対性は、弦理論と量子重力の理解の主要な発展の現れである。この理由は、双対性がある境界条件を持つ弦理論の(non-perturbative)な定式化であるからであり、注目を浴びている量子重力のアイデアのホログラフィック原理を最もうまく実現しているからである。ホログラフィック原理は、もともとジェラルド・トフーフトが提唱し、レオナルド・サスキンドにより改善されている。 加えて、の場の量子論の研究への強力なツールを提供している。 双対性の有益さの大半は、強弱双対性から来ている。つまり、場の量子論が強い相互作用である場合に、重力理論の側は弱い相互作用であるので、数学的に取り扱い易くなっている。この事実は、強結合の理論を強弱対称性により数学的に扱い易い弱結合の理論に変換することにより、原子核物理学や物性物理学での多くの研究に使われてきている。 AdS/CFT対応は、最初に1997年末、フアン・マルダセナにより提起された。この対応の重要な面は、、、アレクサンドル・ポリヤコフの論文や、エドワード・ウィッテンの論文により精査された。2014にはマルダセナの論文の引用は10000件を超え、高エネルギー物理学の分野の最も多く引用される論文となっている。.

新しい!!: 量子重力理論とAdS/CFT対応 · 続きを見る »

力 (物理学)

物理学における力(ちから、force)とは、物体の状態を変化させる原因となる作用であり、その作用の大きさを表す物理量である。特に質点の動力学においては、質点の運動状態を変化させる状態量のことをいう。広がりを持つ物体の場合は、運動状態とともにその形状を変化させる。 本項ではまず、古代の自然哲学における力の扱いから始め近世に確立された「ニュートン力学」や、古典物理学における力学、すなわち古典力学の発展といった歴史について述べる。 次に歴史から離れ、現在の一般的視点から古典力学における力について説明し、その後に古典力学と対置される量子力学について少し触れる。 最後に、力の概念について時折なされてきた、「形而上的である」といったような批判などについて、その重要さもあり、項を改めて扱う。.

新しい!!: 量子重力理論と力 (物理学) · 続きを見る »

AURIGA

AURIGA (Antenna Ultracriogenica Risonante per l'Indagine Gravitazionale Astronomica) はイタリアの極低温共振型重力波検出器である。 パドヴァ近郊の国立核物理学研究所のレニャーロ国立研究所に設置されている。重力波と量子重力理論の研究に使用される。.

新しい!!: 量子重力理論とAURIGA · 続きを見る »

宇宙の年表

宇宙の年表(うちゅうのねんぴょう)は我々の住む宇宙で起きた出来事の年表であり、ビッグバン理論を中心に他の科学理論も交えてまとめたものである。 宇宙の歴史、宇宙の展開、宇宙の進化などとも表現されるものであるが、他の宇宙では冷却速度や対称性の破れ方の違いなどによって違った過程をとる可能性もあるので注意が必要である。 観測によれば、宇宙はおよそ138億年前に誕生した。それ以来宇宙は3つの段階を経過してきている。未だに解明の進んでいない最初期宇宙は今日地上にある加速器で生じさせられるよりも高エネルギーの素粒子からなる高温の状態であり、またほんの一瞬であったとされている。そのためこの段階の基礎的特徴はインフレーション理論などにおいて分析されているが、大部分は推測からなりたっている。 次の段階は初期宇宙と呼ばれ、高エネルギー物理学により解明されてきている。これによれば、はじめに陽子、電子、中性子そして原子核、原子が生成された。中性水素の生成にともない、宇宙マイクロ波背景が放射された。 そのような段階を経て、最初の恒星とクエーサー、銀河、銀河団、超銀河団は形成された。 宇宙の終焉については、さまざまな理論がある。.

新しい!!: 量子重力理論と宇宙の年表 · 続きを見る »

宇宙のインフレーション

宇宙のインフレーション(うちゅうのインフレーション、)とは、初期の宇宙が指数関数的な急膨張(インフレーション)を引き起こしたという、初期宇宙の進化モデルである。ビッグバン理論のいくつかの問題を一挙に解決するとされる。インフレーション理論・インフレーション宇宙論などとも呼ばれる。この理論は、1981年に佐藤勝彦K.

新しい!!: 量子重力理論と宇宙のインフレーション · 続きを見る »

宇宙進化論

宇宙進化論(うちゅうしんかろん、cosmogony)は、存在の起源、宇宙の起源、現実の起源に関する理論である。語源はギリシア語で、「宇宙、世界」を意味する と「生まれる、起こる」を意味するである。宇宙科学や天文学の文脈では、この用語は太陽系の形成を意味することが多い。 自然主義の宇宙進化論を作ろうとする試みは、2つの条件によって制約される。1つは科学哲学や科学自体の認識論的制約、特に科学は「なぜ」宇宙が存在するのか問うことができるか否かという制約に基づくものである。もう1つのさらにプラグマティズム的問題は、量子重力についての試験可能な理論がないため、プランク時間以内の宇宙の存在の最初の瞬間について物理学的に説明する方法がないということである。しかし、弦理論学者は、弦理論を用いて記述する公式が得られると信じている。.

新しい!!: 量子重力理論と宇宙進化論 · 続きを見る »

万物の理論

万物の理論(ばんぶつのりろん、Theory of Everything; ToE)とは、自然界に存在する4つの力、すなわち電磁気力(電磁力とも言う)・弱い力・強い力・重力を統一的に記述する理論(統一場理論)の試みである。 このうち、電磁気力と弱い力はワインバーグ・サラム理論(電弱理論)によって電弱力という形に統一されている。電弱力と強い力を統一的に記述する理論は大統一理論(GUT:Great Unification Therory)と呼ばれ、現在研究が進められている。最終的には重力も含めた全ての力を統一的に記述する理論が考えられ、これを万物の理論または超大統一理論(SUT; Super Unification Therory)という。.

新しい!!: 量子重力理論と万物の理論 · 続きを見る »

万有引力

万有引力(ばんゆういんりょく、universal gravitation)または万有引力の法則(ばんゆういんりょくのほうそく、law of universal gravitation)とは、「地上において質点(物体)が地球に引き寄せられるだけではなく、この宇宙においてはどこでも全ての質点(物体)は互いに gravitation(.

新しい!!: 量子重力理論と万有引力 · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

新しい!!: 量子重力理論と一般相対性理論 · 続きを見る »

京都大学基礎物理学研究所

京都大学基礎物理学研究所(きょうとだいがくきそぶつりがくけんきゅうしょ、英称:Yukawa Institute for Theoretical Physics、略称:基研・基礎研・YITP)は、京都大学の附置研究所で、理論物理学の諸問題についての研究および、国内の研究者の共同利用、国内外の研究者間の交流の場を提供するために設置された研究所である。共同利用・共同研究拠点に指定されている。.

新しい!!: 量子重力理論と京都大学基礎物理学研究所 · 続きを見る »

余剰次元

余剰次元(よじょうじげん、extra dimensions)とは、4次元よりも高次(5次元以上)の時空を表す理論物理学の概念である。 物理学では、3次元の空間的な次元と 1次元の時間的な次元が、許容されている次元であるが、さらに次元を導入することで、4つの基本的な力を統一しようという理論がある。最も有名な理論として弦理論は、10次元の時空の次元を要求し、さらに基本的な 11-次元の理論は、それ以前の 5つの超弦理論をその中に含むM-理論と呼ばれる理論に基づいている。現在、これらの余剰次元の存在を検証するにたる実験結果や観測結果は得られていない。余剰次元の存在を仮定すると、何らかの物理的メカニズムにより背後に隠れている必要がある。良く研究されている可能性として、余剰次元は現在の実験では見ることのできないくらい小さなスケールに「巻き上げ」られているかも知れないというものである。サイズに関する極限や余剰次元のほかの性質は、Large Hadron Colliderのような素粒子実験により決められる。CMS Collaoration, "Search for Microscopic Black Hole Signatures at the Large Hadron Collider," http://arxiv.org/abs/1012.3375 場の量子論のレベルで、カルツァ=クライン理論は、小さなコンパクトな余剰次元を伝播する重力は、大きな距離ではゲージ相互作用と等価であることが実現されるということを基礎として、ゲージ作用と重力を統一する。特に、余剰次元の幾何学が自明なとき、電磁気学を再現する。しかし、充分に高いエネルギーで短い距離では、この設定は量子重力を記述しようとすることの直接的な障害となっていることと同じ障害で完成していない。従って、これらのモデルは、いまだに弦理論の提供しようとしていることのひとつである(UV completion)を求められている。このように、カルツァ・クライン理論はそれ自体が不完全な理論であるか、もしくは構築中の弦理論のモデルのある一部であるかのどちらかではないかと考えられている。 小さな、巻き上げられた余剰次元に加えて、現実の宇宙に存在する物質は (3 + 1)-次元の部分空間上へ局所化されているので、代わって現れない余剰次元が存在するかもしれない。このように、余剰次元は小さくコンパクトである必要はなく、(large extra dimensions)であるかも知れない。D-ブレーンは、この役割を果たす弦理論により予言される様々な次元を持つ拡張された力学的対象である。D-ブレーンは、終点がブレーンに固定されたゲージ相互作用に付帯した開弦の励起と、一方、重力相互作用を媒介する閉弦は全時空(バルク)上を自由に伝播するという弦の性質を持つ。このことは、何故、重力が他のりからよりも指数的に弱いかの理由に関係しているかも知れない。高次元の体積の中へ伝播するほど、自分自身を充分に希釈することになる。 ブレーン物理学のいくつかの側面は、(brane cosmology)へ応用されている。たとえば、ブレーンガス宇宙論 は、トポロジー的で熱力学的な思考により、何故、空間次元は 3次元であるのかを説明しようとしている。このアイデアに従うと、弦が一般的に交差しうる空間的次元の最大数が 3 であるからである。もし、最初に大きなコンパクト次元の回りの弦の巻きつき数が大きいとすると、空間はマクロスコピックなサイズへ膨張するだけであり、反対に、これらの巻き数がなくなると仮定することは、弦は互いに相手を見つけて打ち消しあう。しかし、3次元では、弦はあいてを見つけ打ち消しあうに充分な率ではないので、空間の次元が 3であることが、宇宙の初期構成の一部により与えられた大きさとして許容されることとなる。 いくつかの理論物理学の理論では、空間の余剰次元を何らかの理由で導入している。.

新しい!!: 量子重力理論と余剰次元 · 続きを見る »

マトベイ・ブロンスタイン

マトヴェイ・ペトロヴィチ・ブロンスタイン(Matvei Petrovich Bronstein、1906年12月2日 - 1938年2月18日)は、ソビエト連邦の量子重力理論の物理学者。ヨシフ・スターリンの大粛清により処刑された。.

新しい!!: 量子重力理論とマトベイ・ブロンスタイン · 続きを見る »

マイクロブラックホール

マイクロブラックホール は、そのシュヴァルツシルト半径が量子サイズのブラックホールである。ミニブラックホールとも呼ばれる。ブラックホールの質量はシュヴァルツシルト半径に比例するため、質量もそれに応じ小さいが、量子サイズであることを考慮すればきわめて大きい。 ブラックホールを記述する一般相対性理論のシュヴァルツシルト解は、任意の質量のブラックホールを許容するが、当初はこのような極微のブラックホールを生成する現象は知られておらず、存在しえないと考えられていた。しかし、ビッグバン直後の高エネルギー状態の中で発生した可能性がある。.

新しい!!: 量子重力理論とマイクロブラックホール · 続きを見る »

マキシム・コンツェビッチ

マキシム・コンツェビッチ マキシム・コンツェビッチ(Максим Концевич,Maxim Kontsevich, 1964年8月25日 - )は、ロシア出身の数学者。専門は数理物理学、代数幾何学、トポロジー。 モスクワ大学で数学を学び、ドイツのボン大学で の指導の下、1992年に博士号を取得。 1998年のICM(Berlin, German)でフィールズ賞を受賞した。 現在はフランスのIHES教授兼ラトガース大学教授。 業績に、 ウィッテン予想の証明。つまり量子重力の二つのモデルが等価であることの証明や位相的場の理論における貢献。 結び目理論におけるコンツェビッチ不変量(完全な量子不変量として期待されている。)の構成、一般のポアソン多様体の変形量子化、 行列型エアリー関数の構成、量子コホモロジー環の定式化、モチーフ的ガロア群における貢献、オペラドの再発見、 シンプレクティック幾何学の非可換化、モチーフ積分、モチーフ測度の創始、安定曲線や安定写像のモジュライスタックの超弦理論への応用、 ホモロジカルミラー対称性予想の提起、カラビ-ヤウ多様体に対する平坦構造(フロベニウス構造)の構成、リジッド解析幾何学のミラー対称性への応用。ヤコビヤン予想をディクシマー予想に帰着させた。 Cubic K3曲面におけるホモロジー的ミラー対称性予想を解決がある。 関数体上のラングランズ予想の高次元化やヴェイユ予想の高次元化を提唱した。 ドリーニュ61歳記念カンファレンスでは非可換モチーフについて講演した。.

新しい!!: 量子重力理論とマキシム・コンツェビッチ · 続きを見る »

ハートル=ホーキングの境界条件

ハートル.

新しい!!: 量子重力理論とハートル=ホーキングの境界条件 · 続きを見る »

ポール・ギンスパーグ

パソコンをしながら自転車に乗るポール・ギンスパーグ ポール・ギンスパーグ(Paul Ginsparg、1956年-)はアメリカの物理学者。2001年からコーネル大学の教授(物理学、計算情報科学)。アメリカ物理学会のフェロー。プレプリントサーバarXivの開発者として有名。arXivは1991年から2001年、彼がロスアラモス国立研究所のスタッフだった時期に開発された。 論文の投稿分野は場の量子論、弦理論、共形場理論、量子重力理論。.

新しい!!: 量子重力理論とポール・ギンスパーグ · 続きを見る »

ランベルトのW関数

数学におけるランベルト W 函数(ランベルトWかんすう、Lambert W function)あるいはオメガ函数 (ω function), 対数積(product logarithm; 乗積対数)は、函数 の逆関係の分枝として得られる函数 の総称である。ここに は指数函数で は任意の複素数とする。すなわち は を満たす。 上記の方程式で と置きかえれば、任意の複素数 に対する 函数(一般には 関係)の定義方程式 を得る。 函数 は単射ではないから、関係 は( を除いて)多価である。仮に実数値の に注意を制限するとすれば、複素変数 は実変数 に取り換えられ、関係の定義域は区間 に限られ、また開区間 上で二価の函数になる。さらに制約条件として を追加すれば一価函数 が定義されて、 および を得る。それと同時に、下側の枝は であって、 と書かれる。これは から まで単調減少する。 ランベルト 関係は初等函数では表すことができない。ランベルト は組合せ論において有用で、例えば木の数え上げに用いられる。指数函数を含む様々な方程式(例えばプランク分布、ボーズ–アインシュタイン分布、フェルミ–ディラック分布などの最大値)を解くのに用いられ、また のような の解としても生じる。生化学において、また特に酵素動力学において、ミカエリス–メンテン動力学の経時動力学解析に対する閉じた形の解はランベルト 函数によって記述される。 W の絶対値で決定している。.

新しい!!: 量子重力理論とランベルトのW関数 · 続きを見る »

リー・スモーリン

リー・スモーリン (1955年6月6日生まれ)アメリカの理論物理学者、ペリメーター理論物理研究所教員、ウォータールー大学の物理学教授、トロント大学の哲学部の大学院教授のメンバー。スモーリンが2006年に出版した『 The Trouble with Physics』の中で実行可能な科学的な理論だと弦理論を批判した。彼は量子重力理論、特にループ量子重力理論として知られるアプローチに貢献した。ループ量子重力理論と弦理論、の2つの主なアプローチは、同じ基礎理論の異なる側面として調和できると主張する。彼の研究分野には、宇宙論、素粒子論、量子力学の基礎、数理生物学などがある。,.

新しい!!: 量子重力理論とリー・スモーリン · 続きを見る »

リウヴィル場理論

物理学におけるリウヴィル場理論(あるいは単にリウヴィル理論、Liouville field theory, Liouville theory)とは、2-次元の場の量子論で、古典的な運動方程式がジョゼフ・リウヴィルのリーマン面を統一する古典的な幾何学的問題で現れる非線型第二階微分方程式となっている場の量子論を言う。 この場の理論は次の局所的な作用で定義される。 S.

新しい!!: 量子重力理論とリウヴィル場理論 · 続きを見る »

ループ量子重力理論

ループ量子重力理論(ループりょうしじゅうりょくりろん)は、時空(時間と空間)にそれ以上の分割不可能な最小単位が存在することを記述する理論である。超弦理論と並び、重力の古典論である一般相対性理論を量子化した量子重力理論の候補である。 同じく量子重力理論の候補である超弦理論は、時空は背景場として最初からそこに存在するものとして定義しており、理論自身のダイナミクスにより決定されているわけではない。それに対しループ量子重力理論は、一般相対論と同様に理論自身が時空そのものを決定している。(背景独立性).

新しい!!: 量子重力理論とループ量子重力理論 · 続きを見る »

ロジャー・ペンローズ

ャー・ペンローズ(Sir Roger Penrose, 1931年8月8日 - )は、イギリス・エセックス州コルチェスター生まれの数学者、宇宙物理学・理論物理学者。.

新しい!!: 量子重力理論とロジャー・ペンローズ · 続きを見る »

ボグダノフ事件

ボグダノフ事件(ボグダノフじけん)とは、フランスの双子の兄弟であるイゴール・ボグダノフ (Igor Bogdanov) とグリシュカ・ボグダノフ (Grichka Bogdanov) によって著された一連の理論物理学論文の正当性を巡る学術論争である。.

新しい!!: 量子重力理論とボグダノフ事件 · 続きを見る »

ブラックホールの熱力学

物理学において、ブラックホール熱力学(ブラックホールねつりきがく、black hole thermodynamics)は、ブラックホールの事象の地平線の存在を含む熱力学の法則を探す研究分野である。黒体輻射 (black body radiation) の統計力学の研究が量子力学の到来を促したのと同じように、ブラックホールの統計力学を理解しようとする努力は、量子重力理論の理解に深い影響を与えてきており、ホログラフィック原理の定式化を導いた。 -->.

新しい!!: 量子重力理論とブラックホールの熱力学 · 続きを見る »

ブラックホール情報パラドックス

ブラックホールのイメージ ブラックホール情報パラドックス(Black hole information paradox)は、量子力学と一般相対性理論の組合せに起因するパラドックスである。物理的情報は、ブラックホールの中で永遠に消失するため、多くの量子状態が同じ状態を取ることを許容する。これは、ある時点での物理系に関する完全な情報は、別の時点での状態を決定するべきだという、科学的方法の原則から逸脱するため、論争を呼んだ。量子力学の基礎的な前提では、系の完全な情報は、波動関数の収縮まで、波動関数の中に埋め込まれる。波動関数の進化は、ユニタリ作用素によって決定され、ユニタリティは、情報は量子状態に保存されることを示唆する。これは、決定論の厳しい形である。.

新しい!!: 量子重力理論とブラックホール情報パラドックス · 続きを見る »

プランク時代

プランク時代(プランクじだい、Planck epoch)とは、宇宙論において、宇宙の歴史の最初の0秒から約10-43秒(プランク時間)の間の時間で、量子重力理論が支配的であった。ドイツの物理学者マックス・プランクにちなんで名づけられた。プランク時間はおそらく時間の最小単位であり、プランク時代はこの長さであるため、時間の最初の瞬間であるとも言える。この瞬間が訪れた約137億年前には、重力は他の基本相互作用と同じくらい強く、全ての力は統一されていたと考えられている。極めて高温高圧で、プランク時代の宇宙の状態は不安定で一時的であり、対称性の破れの進展により基本相互作用が生じた。近代の宇宙論では、プランク時代は大統一理論の時代で、対称性の破れによって宇宙のインフレーションの時代が始まり、極めて短時間に宇宙が爆発的に拡大したと考えられている。.

新しい!!: 量子重力理論とプランク時代 · 続きを見る »

ヒッグス粒子

ヒッグス粒子(ヒッグスりゅうし、 ヒッグス・ボソン)とは、1964年にピーター・ヒッグスが提唱したヒッグス機構において要請される素粒子である。 ヒッグス自身は「so-called Higgs boson(いわゆる ヒッグス粒子と呼ばれているもの)」と呼んでおり、他にも様々な呼称がある。 本記事では便宜上ヒッグス機構・ヒッグス粒子の双方について説明する。質量の合理的な説明のために、ヒッグス機構という理論体系が提唱されており、その理論内で「ヒッグス場」や「ヒッグス粒子」が言及されているという関係になっているためである。.

新しい!!: 量子重力理論とヒッグス粒子 · 続きを見る »

ビッグバン

ビッグバン理論では、宇宙は極端な高温高密度の状態で生まれた、とし(下)、その後に空間自体が時間の経過とともに膨張し、銀河はそれに乗って互いに離れていった、としている(中、上)。 ビッグバン(Big Bang)とは、宇宙の開闢直後、時空が指数関数的に急膨張したインフレーションの終了後に相転移により生まれた超高温高密度のエネルギーの塊のことである。また、宇宙は非常に高温高密度の状態から始まり、それが大きく膨張することによって低温低密度になっていったとする膨張宇宙論のことをビッグバン理論 (Big bang theory) という。 「ビッグバン」という語は、狭義では宇宙の(ハッブルの法則に従う)膨張が始まった時点を指す。その時刻は今から138.2億年(13.82 × 109年)前と計算されている。より広義では、宇宙の起源や宇宙の膨張を説明する、現代的な宇宙論的パラダイムをも指す言葉である。 ビッグバン理論(ビッグバン仮説)では「宇宙は「無」の状態から誕生した」とされるが、この「無」やなぜ「無」から宇宙が生まれたのかなどの問題は未だ謎のままである。 遠方の銀河がハッブルの法則に従って遠ざかっているという観測事実を一般相対性理論を適用して解釈すれば、宇宙が膨張しているという結論が得られる。宇宙膨張を過去へと外挿すれば、宇宙の初期には全ての物質とエネルギーが一カ所に集まる高温度・高密度状態にあったことになる。この初期状態、またはこの状態からの爆発的膨張をビッグバンという。この高温・高密度の状態よりさらに以前については、一般相対性理論によれば重力的特異点になるが、物理学者たちの間でこの時点の宇宙に何が起きたかについては広く合意されているモデルはない。 20世紀前半までは、天文学者の間でも「宇宙は不変で定常的」という考え方が支配的だった。1948年にジョージ・ガモフは高温高密度の宇宙がかつて存在していたことの痕跡として宇宙マイクロ波背景放射 (CMB) が存在することを主張、その温度を5Kと推定した。このCMB が1964年になって発見されたことにより、対立仮説(対立理論)であった定常宇宙論の説得力が急速に衰えた。その後もビッグバン理論を高い精度で支持する観測結果が得られるようになり、膨張宇宙論が多数派を占めるようになった。.

新しい!!: 量子重力理論とビッグバン · 続きを見る »

ビッグクランチ

ビッグクランチ ビッグクランチ前の宇宙 ビッグクランチ(Big Crunch)とは、予測される宇宙の終焉の一形態である。現在考えられている宇宙モデルでは、宇宙はビッグバンによって膨張を開始したとされているが、宇宙全体に含まれる質量(エネルギー)がある値よりも大きい場合には、自身の持つ重力によっていずれ膨張から収縮に転じ、宇宙にある全ての物質と時空は無次元の特異点に収束すると考えられる。 ただし、プランク長と呼ばれる微小な長さよりも十分に小さくなった宇宙を理論的に取り扱うためには、一般相対性理論に加えて量子力学的効果をとり入れる必要がある。このような理論を量子重力理論と呼ぶが、2005年現在では完全な量子重力理論はまだ構築されていないため、ビッグクランチによって何が起こるかを物理学的に記述することはできていない。ビッグクランチの後、「振動宇宙」(Oscillatory universe) として再び宇宙が膨張に転じるかもしれないと考える科学者もいる。 宇宙がビッグクランチを迎えるのか、それとも永遠に膨張を続けるのかについては、以下の2点に依存している。.

新しい!!: 量子重力理論とビッグクランチ · 続きを見る »

ツイスター理論

ツイスター理論(ツイスターりろん、)は、ロジャー・ペンローズによって1960年代後半に提唱された数学の理論の一つである。.

新しい!!: 量子重力理論とツイスター理論 · 続きを見る »

フランク・ティプラー

フランク・ジェニングス・ティプラー三世(Frank Jennings Tipler IIITerrie M. Rooney (editor), Contemporary Authors, Vol.

新しい!!: 量子重力理論とフランク・ティプラー · 続きを見る »

ニキータ・ネクラソフ

ニキータ・アレクサンドロヴィッチ・ネクラソフ(Никита Александрович Некрасов、Nikita Alexandrovich Nekrasov,1973年4月10日 - )は、ロシアのモスクワ出身の理論物理学者。専門は素粒子論。 モスクワ物理工科大学(MIPT)を卒業。モスクワの理論実験物理学研究所(IETP)で修士の学位を得る。 1996年にプリンストン大学でPh.Dを取得。2000年からIHÉS教授。 主な業績として、のプレポテンシャルに関するネクラソフの公式がある。.

新しい!!: 量子重力理論とニキータ・ネクラソフ · 続きを見る »

ホログラフィック原理

ホログラフィック原理 (holographic principle) は、空間の体積の記述はある領域の境界、特にのような光的境界の上に符号化されていると見なすことができるという量子重力および弦理論の性質である。ヘーラルト・トホーフトによって最初に提唱され、レオナルド・サスキンドによって精密な弦理論による解釈が与えられた。サスキンドはトホーフトとのアイデアを組み合わせることからこの解釈を導いた。ソーンは1978年に弦理論はより低次元の記述が可能であり、ここから現在ホログラフィック的と呼ばれるやり方で重力が現れることを見出していた。 より大きなより思弁的な意味では、この理論は、全宇宙は宇宙の地平面上に「描かれた」2次元の情報構造と見なすことができ、我々が観測する3次元は巨視的スケールおよび低エネルギー領域での有効な記述にすぎないことを示唆する。宇宙の地平面は、有限の領域で時間とともに膨張していることもあり、数学的には正確に定義されていない。 ホログラフィック原理はブラックホール熱力学から着想された。ブラックホール熱力学ではどんなスケールの領域でも最大エントロピーはその領域の半径の三乗ではなく二乗に比例することを示唆する。ブラックホールの場合、ブラックホールに落ち込んだすべての物体が持つ情報は事象の地平面の表面の変動に完全に含まれることが推測される。ホログラフィック原理はブラックホール情報パラドックスを弦理論の枠組み内で解決する。.

新しい!!: 量子重力理論とホログラフィック原理 · 続きを見る »

ホイーラー・ドウィット方程式

ホイーラー・ドウィット方程式(ホイーラー・ドウィットほうていしき、)またはWDW方程式とは、理論物理学者ジョン・ホイーラー とブライス・ドウィット によって構築された、宇宙全体の波動関数が量子重力理論の中で満たすべき方程式である。 単純にいえば、WDW方程式は (ただし \hat は量子化された一般相対性理論における全ハミルトニアン拘束条件)というものである。 このような波動関数のひとつの例がハートル・ホーキング状態である。.

新しい!!: 量子重力理論とホイーラー・ドウィット方程式 · 続きを見る »

アノマリー

アノマリー(英語:Anomaly)とは、ある法則・理論からみて異常であったり、説明できない事象や個体等を指す。科学的常識、原則からは説明できない逸脱、偏差を起こした現象を含む。すでに説明できるようになった現象でも、アノマリーあるいは異常という名称がそのまま残ったものも多い。 超常現象学では、超常現象 についての科学的研究を行う。計算機科学における異常検出とは、関連データから不正データを検出する手法一般に関する事柄である。 下記にアノマリーに関連する語句を示す。.

新しい!!: 量子重力理論とアノマリー · 続きを見る »

アインシュタイン多様体

微分幾何と数理物理において、アインシュタイン多様体(Einstein manifold)は、リッチテンソルが計量テンソルに比例するリーマン多様体もしくは、擬リーマン多様体である。通常、一般相対論で研究する 4次元のローレンツ多様体とは違い、この条件は、符合と同様に計量の次元も任意であることが可能であるにもかかわらず、この条件と計量が(宇宙定数を持つ)真空のアインシュタイン方程式の解であることとが同値であるとの理由から、アインシュタイン多様体はアルベルト・アインシュタイン(Albert Einstein)の名前に由来している。 M が基礎となる n-次元多様体で、g がその計量テンソルであれば、アインシュタインの条件は、ある定数 k が存在し、 であることを意味する。ここに、Ric は g のリッチテンソルを表わす。k.

新しい!!: 量子重力理論とアインシュタイン多様体 · 続きを見る »

カムラン・ヴァッファ

ムラン・ヴァッファ カムラン・バッファ(Cumrun Vafa,1960年8月1日 - )は、イラン出身の理論物理学者。専門は素粒子論。 マサチューセッツ工科大学(MIT)を卒業。1985年にプリンストン大学でPh.D.を取得。1990年からハーバード大学教授。.

新しい!!: 量子重力理論とカムラン・ヴァッファ · 続きを見る »

クローノン

ーノン(chronon)は、時間が連続していないという仮説の一部として提案されている、離散的かつ分割不可能な時間の単位である時間の量子である。.

新しい!!: 量子重力理論とクローノン · 続きを見る »

ゲージ理論

ージ理論(ゲージりろん、gauge theory)とは、連続的な局所変換の下でラグランジアンが不変となるような系を扱う場の理論である。.

新しい!!: 量子重力理論とゲージ理論 · 続きを見る »

ジュリアン・バーバー

ュリアン・バーバー(Julian Barbour、1937年 - )は、イギリスの物理学者であり、量子重力理論と科学史の専門家である。 1968年にケルン大学からアインシュタインの一般相対性理論の基礎に関する論文で博士号を取得した。バーバーは、自由な研究を望むために大学には籍をおかず、パートタイムの翻訳業で経済的な糧を得ながら、妻と3人の子供を養い、しかも優れた学術論文を発表した。約30年以上にわたり時間の研究を続け、その成果を科学雑誌ネイチャー等に30以上の科学論文を公表した。時間論においてユニークな理論を提唱しており、著書であるThe End of Time にて、宇宙には時間は存在しておらず、時間とはあくまで人類の感覚としての幻想だと主張した。彼はイングランドのバンバァリイ(Banbury)近郊に居を構えている。.

新しい!!: 量子重力理論とジュリアン・バーバー · 続きを見る »

ジョン・ホイーラー

ョン・アーチボルト・ホイーラー(John Archibald Wheeler, 1911年7月9日 - 2008年4月13日)は、アメリカ合衆国の物理学者である。.

新しい!!: 量子重力理論とジョン・ホイーラー · 続きを見る »

スティーヴン・ホーキング

ティーヴン・ウィリアム・ホーキング(Stephen William Hawking、1942年1月8日 - 2018年3月14日)は、イギリスの理論物理学者である。大英帝国勲章(CBE)受勲、FRS(王立協会フェロー)、FRA(ロイヤル・ソサエティ・オブ・アーツフェロー)。スティーブン・ホーキングとも。 一般相対性理論と関わる分野で理論的研究を前進させ、1963年にブラックホールの特異点定理を発表し世界的に名を知られた。1971年には「宇宙創成直後に小さなブラックホールが多数発生する」とする理論を提唱、1974年には「ブラックホールは素粒子を放出することによってその勢力を弱め、やがて爆発により消滅する」とする理論(ホーキング放射)を発表、量子宇宙論という分野を形作ることになった。現代宇宙論に多大な影響を与えた人物である。 また、一般人向けに現代の理論的宇宙論を平易に解説するサイエンス・ライターの才能も持ち合わせており、その著作群が各国で翻訳されており、これでも人々によく知られている(日本語版は『ホーキング、宇宙を語る』など)。 「車椅子の物理学者」としても知られる。1960年代、学生の頃に筋萎縮性側索硬化症(ALS)を発症したとされている。ALSは長い間、発症から5年程度で死に至る病であると考えられていたが、途中で進行が急に弱まり、発症から50年以上にわたり研究活動を続けた。晩年は意思伝達のために重度障害者用意思伝達装置を使っており、スピーチや会話ではコンピュータプログラムによる合成音声を利用していた。.

新しい!!: 量子重力理論とスティーヴン・ホーキング · 続きを見る »

因果力学的単体分割

因果力学的単体分割(いんがりきがくてきたんたいぶんかつ、, CDT)とは、、、イェルジ・ユルキェビッチ により理論化され、 とリー・スモーリン()により広められた手法で、ループ量子重力理論と同様に背景独立的な量子重力理論へのアプローチである。 すなわち、このアプローチでは時空は所与の舞台(次元空間)として扱われるのではなく、時空連続体それ自体がどのように生起するのかを示すことが試みられる。 多くの量子重力理論家らが主催した カンファレンスにおいて CDT を深く論じたプレゼンテーションがいくつかなされ、理論家にとっての転回点となった。このアプローチはよい半古典的説明ができると思われるため、かなりの興味を集めた。マクロには、良く知られた4次元時空を再現するのに対して、プランクスケール付近では二次元となり、等時断面がフラクタル構造を持つことがわかった。これらの興味深い結果は、と呼ばれるアプローチを用いた Lauscher と Reuter の発見のほか、他の最新理論とも合致している。サイエンティフィック・アメリカンの2007年2月号に簡潔な記事が掲載され、理論の概要と共に何故物理学者の興奮を引き起こしたのか、その歴史的意義から説明されている。2008年7月号には最初の提唱者らによる CDT の記事が特集されている。.

新しい!!: 量子重力理論と因果力学的単体分割 · 続きを見る »

因果集合

因果集合 (causal sets) プログラムは量子重力へのアプローチの一つである。これは、時空は本質的に離散的であり時空の事象はすべて半順序によって関連しているという仮定に基づいている。この半順序は時空の事象間の因果関係という物理的意味を持っている。.

新しい!!: 量子重力理論と因果集合 · 続きを見る »

BTZブラックホール

BTZブラックホール は、発見者であるマキシモ・バニャドス (Máximo Bañados)、(Claudio Teitelboim)とジョルゲ・ザネーリ (Jorge Zanelli) の名前にちなんでいて、負の宇宙定数を持つ(2+1)-次元重力理論のブラックホール解である。.

新しい!!: 量子重力理論とBTZブラックホール · 続きを見る »

CDT

CDT.

新しい!!: 量子重力理論とCDT · 続きを見る »

符号数

数学、とくに線型代数学における符号数(ふごうすう、signature)は固有値の符号(正・負・零)を重複度を込めて数えたものである。.

新しい!!: 量子重力理論と符号数 · 続きを見る »

統一場理論

統一場理論(とういつばりろん)とは、場の理論において種々の相互作用力を一種類に統一する理論である。自然界の四つの力を全て統一することが到達点で、この全ての力を統一した理論のことを万物の理論と呼ぶ。現在、万物の理論の候補は、超弦理論のみであると考えられている。.

新しい!!: 量子重力理論と統一場理論 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 量子重力理論と物理学 · 続きを見る »

物理学に関する記事の一覧

物理学用語の一覧。物理学者名は含まない。;他の物理学関係の一覧.

新しい!!: 量子重力理論と物理学に関する記事の一覧 · 続きを見る »

物理学の未解決問題

物理学の未解決問題(ぶつりがくのみかいけつもんだい)では、物理学における未解決問題を挙げる。 物理学の基礎レベルにおいても、また日常みられる複雑な現象においても、未解明の現象は多数存在し、以下に挙げたものはその少数の例にすぎない。.

新しい!!: 量子重力理論と物理学の未解決問題 · 続きを見る »

特異点定理

特異点定理(とくいてんていり)またはペンローズ・ホーキングの特異点定理() は、重力は重力の特異点(en:gravitational singularity)を必要とするかどうか、という問いへの、一般相対性理論による結論のまとめである。 これらの定理は、物質は妥当なエネルギー状況 を満たしているため、この問いに肯定的に回答している。これは、妥当な物質をともなう一般相対性理論の厳密解は、一般相対性理論が崩壊する特異点を含んでいる、ということを示している。.

新しい!!: 量子重力理論と特異点定理 · 続きを見る »

階層性問題

階層性問題(Hierarchy problem)は物理学、特に素粒子物理学や高エネルギー物理学の分野が抱える未解決問題の一つである。この問題は、場の量子論および繰り込みという手法の適用によって生じる。 理論の定数として導入される元のパラメータ(結合定数や質量)は、繰り込みの手法によって実験で得られるパラメータと結びつけられる。通常は繰り込み後のパラメータは元のパラメータと強く関係しているが、ある場合には、元のパラメータとそれに対する量子補正が巧妙に打ち消しあってしまったかのような状況が起こる。逆に言えば、最初に物理定数を決定する際に、十桁以上に及ぶ量子補正を考慮した値を恣意的に選ぶ()事を行わなければならないのである。これはの観点とも関係し、問題とみなされている。 階層性問題に現れる繰り込みを、直接扱うのは困難である。なぜならそのような量子補正に現れる二次発散は、繰り込みにおいてミクロスケールの物理が寄与するからである。現在考案されている最もミクロな物理である量子重力理論について、現実の問題を扱えるほど具体的な部分はほとんど究明されていない。従って現在は、ファインチューニング無しで階層性問題を解決するような何らかの物理現象を、仮定として導入するアプローチが主流である。.

新しい!!: 量子重力理論と階層性問題 · 続きを見る »

隠れた変数理論

れた変数理論 (かくれたへんすうりろん、hidden variable theory)とは、量子力学に特徴的な確率的な性質を、実験者が観測できない変数を導入して説明する理論である。 確率的な性質を理由に量子力学が不完全だと主張する少数派の決定論的物理学者に支持されていたが、ベルの不等式の破れの検証後は支持するものがさらに少数となった。 例えば隠れた変数理論の最も有名な支持者アルベルト・アインシュタインの言葉に、「神はサイコロを振らない」というものがある。これはアインシュタインの、完全な物理学理論は決定論的であるべきとの信念の表れであるEinstein, A., Podolsky, B. and Rosen, N. (1935), Phys.

新しい!!: 量子重力理論と隠れた変数理論 · 続きを見る »

裸の特異点

裸の特異点(はだかのとくいてん、)は、一般相対性理論における用語で、事象の地平面 に囲まれていない、時空の特異点である。 通常、ブラックホールの特異点は、光も出て行くことができない空間に囲まれており、その外側にいる我々がその特異点を直接観測することはできない。つまり、特異点の情報は外に伝わらないため、事象の地平面の外側では特異点の存在にかかわらず、物理現象・因果律を議論することができる。それに対して、裸の特異点では、物質密度が無限大となる点あるいは時空の曲率が無限大となる点が、外側から観測することができてしまうことを意味する。 このような無限大の量を含む点が存在すれば、一般相対性理論は破綻するので、理論的に因果関係を予測することができなくなる。一般相対性理論自身の解として特異点が予言されることは事実であるが、はたして裸の特異点が存在するのかどうかが長い間の理論上の問題となっている。ペンローズは、このような裸の特異点は自然界には発生しないだろうと予想して宇宙検閲官仮説 を唱え、特異点は必ず事象の地平面によって隠される、と考えた。 1992年にシャピーロとトイコルスキーによって示された円盤状の塵 (dust) の崩壊のシミュレーションでは、崩壊した軸上の少し外れた点において、曲率は無限大に破綻した。このシミュレーションでは事象の地平線ができなかったので、裸の特異点が形成されたと考えられた。この結果は、宇宙検閲官仮説が破れた例であるといえる。 また、1993年にチョプティックが、ブラックホール形成に対する臨界現象を数値計算で発見した。それによると、球対称時空のスカラー場の重力崩壊においては、ブラックホールが形成されるかどうかの臨界点付近ではスカラー場の初期振幅とブラックホールの質量との間に、冪則の関係があることが示された。この結果は、宇宙検閲官仮説が破れる可能性があることを示唆する。 ホーキングは、キップ・ソーンと「宇宙検閲官仮説」は守られるかどうかで賭けをしていたが、これらのシミュレーション結果を受けて、数年後、負けを認めた(その後、物理的条件をより厳密にした賭けを続けているが)。 現在の理論で裸の特異点が存在するとしても、量子重力理論が完成すれば回避されるのではないか、と期待されている。.

新しい!!: 量子重力理論と裸の特異点 · 続きを見る »

計算機の歴史

計算機の歴史(けいさんきのれきし)の記事では、計算機(計算機械)やコンピュータの歴史について述べる。また、コンピュータは計算機械であるばかりでなく、同時に情報処理機械でもあるので、本項でも計算機械に限らずデータ処理機械にも触れる。あまり一般的な語ではないが「コンピューティング」の歴史だと捉えるとよいであろう。.

新しい!!: 量子重力理論と計算機の歴史 · 続きを見る »

論(ろん)とは、ある事象に対し順序立てられた思考・意見・言説をまとめた物である。.

新しい!!: 量子重力理論と論 · 続きを見る »

超弦理論

ラビ-ヤウ空間 超弦理論(ちょうげんりろん、)は、物理学の理論、仮説の1つ。物質の基本的単位を、大きさが無限に小さな0次元の点粒子ではなく、1次元の拡がりをもつ弦であると考える弦理論に、超対称性という考えを加え、拡張したもの。超ひも理論、スーパーストリング理論とも呼ばれる。 宇宙の姿やその誕生のメカニズムを解き明かし、同時に原子、素粒子、クォークといった微小な物のさらにその先の世界を説明する理論の候補として、世界の先端物理学で活発に研究されている理論である。この理論は現在、理論的な矛盾を除去することには成功しているが、なお不完全な点を指摘する専門家もおり、また実験により検証することが困難であろうとみなされているため、物理学の定説となるまでには至っていない。.

新しい!!: 量子重力理論と超弦理論 · 続きを見る »

超重力理論

超重力理論(ちょうじゅうりょくりろん)とは、一般相対論を超対称化した理論、言い方を変えれば局所超対称性の理論である。量子化した際は、単なる一般相対論より紫外発散が弱くなるため、量子重力理論の文脈において1980年代初頭に精力的に研究された。超対称性のゲージ理論と考えることもできる。対応するゲージ場がグラヴィティーノである。.

新しい!!: 量子重力理論と超重力理論 · 続きを見る »

野村泰紀

野村 泰紀(のむら やすのり、1974年 - )は、日本の物理学者。理学博士(東京大学、2000年)。専門は、素粒子論、宇宙論。 カリフォルニア大学バークレー校教授、バークレー理論物理学センター長。ローレンス・バークレー国立研究所上席研究員。東京大学カブリ数物連携宇宙研究機構主任研究員。 余剰次元、統一理論等の素粒子理論現象論、量子重力理論、マルチバース宇宙論等に幅広い活動がある。.

新しい!!: 量子重力理論と野村泰紀 · 続きを見る »

重力

重力(じゅうりょく)とは、.

新しい!!: 量子重力理論と重力 · 続きを見る »

重力と相対性理論の年表

重力と相対性理論の年表(じゅうりょくとそうたいせいりろんのねんぴょう)。.

新しい!!: 量子重力理論と重力と相対性理論の年表 · 続きを見る »

重力子

重力子(じゅうりょくし、graviton、グラビトン)は、素粒子物理学における四つの力のうちの重力相互作用を伝達する役目を担わせるために導入される仮説上の素粒子。2016年までのところ未発見である。 アルベルト・アインシュタインの一般相対性理論より導かれる重力波を媒介する粒子として提唱されたものである。スピン2、質量0、電荷0、寿命無限大のボース粒子であると予想され、力を媒介するゲージ粒子である。.

新しい!!: 量子重力理論と重力子 · 続きを見る »

重力を説明する古典力学的理論

重力を説明する古典力学的理論(じゅうりょくをせつめいするこてんりきがくてきりろん、)では、天体の運行を支配する力の起源である重力を古典力学の理論で説明しようとして提案された、16世紀から19世紀の科学者たちの理論について概説する。これらのエーテルを仮定する理論は現代では支持されておらず、重力は一般相対性理論により説明される。.

新しい!!: 量子重力理論と重力を説明する古典力学的理論 · 続きを見る »

重力波検出器

重力波検出器(じゅうりょくはけんしゅつき)とは重力波の検出を目的とする観測装置である。重力波と量子重力理論の研究に使用される。.

新しい!!: 量子重力理論と重力波検出器 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 量子重力理論と量子力学 · 続きを見る »

量子群

数学と理論物理学において、用語量子群(りょうしぐん、quantum group)は付加構造を持った様々な種類の非可換代数を指す。一般に、量子群はある種のホップ代数である。ただ1つの包括的な定義があるわけではなく、広範に類似した対象の族がある。 用語「量子群」は最初量子可積分系の理論において現れた。ウラジーミル・ドリンフェルト (Володи́мир Дрі́нфельд) と神保道夫によってホップ代数のある特定のクラスとして定義されたのだった。同じ用語は古典リー群あるいはリー環を変形したあるいはそれに近い他のホップ代数に対しても用いられる。例えば、ドリンフェルトと神保の仕事の少し後にによって導入された、量子群の `bicrossproduct' のクラスである。 ドリンフェルトのアプローチでは、量子群は補助的なパラメーター q あるいは h に依存したホップ代数として生じる。この代数は、q.

新しい!!: 量子重力理論と量子群 · 続きを見る »

量子論

量子論(りょうしろん)とは、ある物理量が任意の値を取ることができず、特定の離散的な値しかとることができない、すなわち量子化を受けるような全ての現象と効果を扱う学問である。粒子と波動の二重性、物理的過程の不確定性、観測による不可避な擾乱も特徴である。量子論は、マックス・プランクのまで遡る全ての理論、、概念を包括する。量子仮説は1900年に、例えば光や物質構造に対する古典物理学的説明が限界に来ていたために産まれた。 量子論は、相対性理論と共に現代物理学の基礎的な二つの柱である。量子物理学と古典物理学との間の違いは、微視的な(例えば、原子や分子の構造)もしくは、特に「純粋な」系(例えば、超伝導やレーザー光)において特に顕著である。しかし、様々な物質の化学的および物理的性質(色、磁性、電気伝導性など)のように日常的な事も、量子論によってしか説明ができない。 量子論には、量子力学と量子場理論と呼ばれる二つの理論物理学上の領域が含まれる。量子力学はの場の影響下での振る舞いを記述する。量子場理論は場も量子的対象として扱う。これら二つの理論の予測は、実験結果と驚くべき精度で一致する。唯一の欠点は、現状の知識状態では一般相対性理論と整合させることができないという点にある。.

新しい!!: 量子重力理論と量子論 · 続きを見る »

F(R)重力

f(R)重力(f(R)じゅうりょく)とはアインシュタインの一般相対性理論に補正を加えた重力理論の中の一つである。f(R)重力は、リッチスカラーの函数により定義される一連の理論である。最も単純な場合が、この函数がスカラーに等しいときで、これが一般相対論である。任意の函数を導入するために、暗黒物質やダークエネルギーの存在を加えることなく宇宙の(structure formation)や(accelerated expansion)を説明出来る可能性を持っている。重力の量子論に起源をもつ汎函数形式も考えられている。f(R)重力は1970年に(Hans Adolph Buchdahl)により導入された。 (このときは、φ が任意函数の名前で f の代わりで使われていた。) A wide range of phenomena can be produced from this theory by adopting different functions; however, many functional forms can now be ruled out on observational grounds, or because of pathological theoretical problems.--> (although φ was used rather than f for the name of the arbitrary function).

新しい!!: 量子重力理論とF(R)重力 · 続きを見る »

N=4 超対称ヤン・ミルズ理論

N.

新しい!!: 量子重力理論とN=4 超対称ヤン・ミルズ理論 · 続きを見る »

極限ブラックホール

論物理学では、極限ブラックホール(extremal black hole)は、与えられた電荷と角運動量を持つことと整合する可能な限り最小の質量を持つブラックホールである。言い換えると、極限ブラックホールは、固定した定数の速度で回転して存在することのできる最小の可能なブラックホールである。 超対称性理論では、極限ブラックホールは超対称的である。極限ブラックホールは一つまたはそれ以上の超電荷の下で不変である。このことは (BPS bound)の結果である。そのようなブラックホールは静的でありホーキング輻射しない。これらのブラックホールエントロピーは、弦理論で計算することが可能である。 セーン・キャロル(Sean Carroll)により、極限ブラックホールのエントロピーは 0 であることが示唆されている。キャロルは、エントロピーの欠如することを、ブラックホールがその中にの別の次元を作ることにより説明した。 In other words, this is the smallest possible black hole that can exist while rotating at a given fixed constant speed.

新しい!!: 量子重力理論と極限ブラックホール · 続きを見る »

朝永振一郎

朝永 振一郎(ともなが しんいちろう、1906年(明治39年)3月31日 - 1979年(昭和54年)7月8日)は、日本の物理学者。相対論的に共変でなかった場の量子論を超多時間論で共変な形にして場の演算子を形成し、場の量子論を一新した。超多時間論を基に繰り込み理論の手法を生み出し、量子電磁力学の発展に寄与した功績によってノーベル物理学賞を受賞した。また、非摂動論の一般理論である中間結合理論は、物性や素粒子の状態を調べる基本手法となった。東京生まれで京都育ち。なお、朝永家自体は長崎県の出身。武蔵野市名誉市民。.

新しい!!: 量子重力理論と朝永振一郎 · 続きを見る »

(2+1)-次元位相重力理論

間次元が 2 で時間次元が 1 のとき、一般相対性理論は伝播する重力的な自由度を持たない。実は、真空状態で時空は常に局所平坦(もしくは宇宙定数に応じてド・ジッター空間か、もしくは反ド・ジッター空間)となることを示すことができる。このことが、(2+1)-次元位相重力 を重力的な局所自由度を持たないトポロジカルな理論とする。 Chern-Simons理論と重力の関係は、1980年代に入ると注目されるようになった。この間に、エドワード・ウィッテン(Edward Witten)は、(2+1)-次元重力は、負の宇宙定数に対してはゲージ群が SO(2,2) であるチャーン・サイモンズ理論に等価であり、正の宇宙定数に対してはゲージ群が SO(3,1) のチャーン・サイモンズ理論に等価であると論じている。この理論は完全可解であり、量子重力理論のとなっている。キリング形式はホッジ双対と関わっている。 ウィッテンは、後に、考え方を変更し、非摂動的な (2+1)-次元位相重力は、チャーン・サイモンズ理論とは異なっているとした。何故ならば、汎函数測度は、非特異な多脚場(vielbein)の上にのみ存在するからである。(この論文の中で)彼は、CFT-双対はモンスター共形場理論ではないかと示唆し、BTZブラックホールのエントロピーを計算した。.

新しい!!: 量子重力理論と(2+1)-次元位相重力理論 · 続きを見る »

ここにリダイレクトされます:

量子重力

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »