ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

組合せ (数学)

索引 組合せ (数学)

数学において、組合せ(くみあわせ、combination, choose)とは、相異なる(あるいは区別可能な)いくつかの要素の集まりからいくつかの要素を(重複無く)選び出す方法である。あるいは選び出した要素をその“並べる順番の違いを区別せずに”並べたもののことである。組合せは組合せ論と呼ばれる数学の分野で研究される。卑近な例でいえば、デッキ(山札)から決まった数のカード(手札)を引くことや、ロトくじなどがその例である。.

70 関係: APLApproval voting力まかせ探索単体 (数学)多重集合対称性対角線小林みどり中学受験三角錐数三角数平方数二項定理二項係数五胞体数形式言語圏 (数学)チェコ語チキンマックナゲットバースカラ2世メビウス関数ランダムに配した点がなす直線リン脂質ローレンツ-ベルテロ則プロフェッサーキューブプログラムパスカルの三角形テンパズルデータベース消費フェルナン・ブローデルドミノベル数刺激惹起性多能性獲得細胞コンビネーションゆみみみっくす四角錐数C確率・統計算数組合せ爆発組合せ数学階乗順列血液型複雑ネットワーク論理学の歴史超立方体重複置換重複組合せ重複順列...配置状態関数離散数学GNU Scientific LibraryNCRSageMathV-Cube 6V-Cube 7VoIP投票券 (公営競技)格文法標準誤差数え上げ数学数学 (教科)数学A数学の年表数学ガール数学記号の表数学II数学III インデックスを展開 (20 もっと) »

APL

APL(エーピーエル)は、プログラミング言語のひとつで、1957年のケネス・アイバーソンによる創案に基づいた独特の表記法を用いる。処理系の実装は、ほとんどが対話型インタプリタである。とくに多次元配列の柔軟な処理が特徴である。「APL」は「プログラミング言語」(a programming language) の略であるが、言語の特性から、ときに「配列処理言語」(array processing language) などとされる。.

新しい!!: 組合せ (数学)とAPL · 続きを見る »

Approval voting

Approval votingでは、有権者はすべての候補に対して票を投じることができる。 approval voting は、選挙方法の一種である。投票者は1票を投ずるか否かを各々の候補者について別々に行うことができる。被選挙権の乱用から悪影響を受けない。戦略投票が横行しやすいと同時に、その方が望ましい。 一般的に、小選挙区制選挙で用いられる。大選挙区制に拡大させることもできるが、数理的性質は非常に異なる。approval votingは、range voting の単純型であり、有権者の意思を示すことができる範囲がきわめて拘束される。つまりその候補を受け入れるかどうかである。 主に多数代表の性質を持ち、超過投票で票を捨てるルールがない相対多数投票と比較される。.

新しい!!: 組合せ (数学)とApproval voting · 続きを見る »

力まかせ探索

力まかせ探索(ちからまかせたんさく、Brute-force search)またはしらみつぶし探索(Exhaustive search)は、単純だが非常に汎用的な計算機科学の問題解決法であり、全ての可能性のある解の候補を体系的に数えあげ、それぞれの解候補が問題の解となるかをチェックする方法である。 バックトラッキングと混同されやすいが、バックトラッキングでは解候補の大部分を明示的に探索することなく捨てることができる。例えば、エイト・クイーンは、8個のクイーンをチェスボード上で互いに取り合えない状態で配置するものである。力まかせ探索では 64! / 56!.

新しい!!: 組合せ (数学)と力まかせ探索 · 続きを見る »

単体 (数学)

数学、とくに位相幾何学において、n 次元の単体(たんたい、simplex)とは、「r ≤ n ならばどの r + 1 個の点も r − 1 次元の超平面に同時に含まれることのない」ような n + 1 個の点からなる集合の凸包のことで、点・線分・三角形・四面体といった基本的な図形の n 次元への一般化である。 単体は、頂点の位置さえ決めればそれのみによって一意的に決定される。さらに単体は単体的複体や鎖複体などの概念を与えるが、これらはさらに抽象化されて、幾何学を組合せ論的あるいは代数的に扱う道具となる。また逆に、抽象化された複体の概念から単体が定義される。.

新しい!!: 組合せ (数学)と単体 (数学) · 続きを見る »

多重集合

数学における多重集合(たじゅうしゅうごう、multiset)あるいはバッグ(bag; かばん)は、集合に同じ値の元がいくつも含まれるとき、各元がそれぞれいくつ含まれるかという重複度を考え合わせた集合概念である。非順序対、非順序組 (unordered tuple) ともいう。 クヌースによれば、1970年代に最初に多重集合 (multiset) という言葉を提案したのは、オランダ人数学者のニコラース・ホーバート・ド・ブラン (IPA) であるという クヌースは同書で、多重集合に対して提案された他の名前(例えば,リスト(list)、まとまり(bunch)、バッグ(bag)、堆積(heap)、標本(sample)、重みつき集合(weighted set)、コレクション(collection)、組(suite).など)も提示している。 多重集合の歴史に関するサーベイ論文である。 。しかし、数学における多重集合の概念は、"multiset" という名称がつけられる90年以上も前にすでに使用が認められる。実際、1888年に発表されたリヒャルト・デデキントの有名な論文 "Was sind und was sollen die Zahlen?" (「数とは何か、何であるべきか?」)において、実質的に多重集合の概念が用いられている。.

新しい!!: 組合せ (数学)と多重集合 · 続きを見る »

対称性

対称性(たいしょうせい、ラテン語・ギリシャ語: συμμετρία symmetria, 独:Symmetrie, 英:symmetry)とは、ある変換に関して不変である性質である。 英語を音訳したシンメトリーと呼ぶこともあるが、2つのmは同時に発音されるため、英語の発音は「シメトリー」に近い。.

新しい!!: 組合せ (数学)と対称性 · 続きを見る »

対角線

対角線(たいかくせん、diagonal)は、多角形上の異なる2つの頂点同士を結ぶ線分のうち辺を除く線分のことである。三角形以外の多角形は全て2本以上の対角線を持つ。 ある多角形の全ての内角が180度未満であるならば全ての対角線はその多角形の内部に存在し、その逆もまた成り立つ。 n角形の対角線の本数dは異なるn個の頂点から2点を選ぶ組み合わせから隣り合った2つの頂点同士を結ぶ線(つまり辺)の本数nを引くことで次のように計算できる。 正五角形の5本全ての対角線をつなげると五芒星になる。これは5本の線分を用いて辺を共有しない5つの三角形を作る方法としても知られる。 正六角形の9本の対角線のうち短い6本を組み合わせた図形はダビデの星の形として有名な六芒星になる。.

新しい!!: 組合せ (数学)と対角線 · 続きを見る »

小林みどり

小林 みどり(こばやし みどり、1951年1月 - )は、日本の数学者(組合せ論・グラフ理論)。学位は博士(理学)(慶應義塾大学・1991年)。 長崎大学経済学部助教授、静岡県立大学経営情報学部教授、静岡県立大学経営情報学部学部長、静岡県立大学附属図書館館長などを歴任した。.

新しい!!: 組合せ (数学)と小林みどり · 続きを見る »

中学受験

中学受験(ちゅうがくじゅけん)とは、中学校の入学試験を受験することである。特にこの試験を中学入試(ちゅうがくにゅうし)と言う。本記事では中学校の入学試験以外にも、前期中等教育の学校、すなわち中学校・中等教育学校前期課程・特別支援学校中学部などの入学試験と入学についても扱い、特に断らない限り「中学校(等)」「前期中等教育(の学校)」という表記は前掲の全てを含む。同様に「私立中学(等)」という表記は選抜制でない公立中学以外の全てを含む。.

新しい!!: 組合せ (数学)と中学受験 · 続きを見る »

三角錐数

三角錐数(さんかくすいすう、triangular pyramidal number)は球を右図のように三角錐の形にならべたとき、そこに含まれる球の総数にあたる自然数である。つまり三角数を1から小さい順に足した数のことである。四面体数(しめんたいすう、tetrahedral number)ともいう。 例: 1, 4 (.

新しい!!: 組合せ (数学)と三角錐数 · 続きを見る »

三角数

三角数(さんかくすう、)とは多角数の一種で、正三角形の形に点を並べたときにそこに並ぶ点の総数のことである。番目の三角数は から までの自然数の和に等しい。.

新しい!!: 組合せ (数学)と三角数 · 続きを見る »

平方数

平方数(へいほうすう、)とは、自然数の自乗(二乗)で表される整数のことである。正方形の形に点を並べたときにそこに並ぶ点の総数に等しいので、四角数(しかくすう)ともいい、多角数の一種である。最小の平方数として、定義に を加えることができる。平方数は無数にあり、その列は次のようになる。 平方数の列の隣接二項間についての漸化式を考えると、 から連続する正の奇数の総和は平方数に等しい:\sum_^n (2k-1).

新しい!!: 組合せ (数学)と平方数 · 続きを見る »

二項定理

初等代数学における二項定理(にこうていり、binomial theorem)または二項展開 (binomial expansion) は二項式の冪の代数的な展開を記述するものである。定理によれば、冪 は の形の項の和に展開できる。ただし、冪指数 は を満たす非負整数で、各項の係数 は と に依存して決まる特定の正整数である。例えば の項の係数 は二項係数 \tbinom (.

新しい!!: 組合せ (数学)と二項定理 · 続きを見る »

二項係数

数学における二項係数(にこうけいすう、binomial coefficients)は二項展開において係数として現れる正の整数の族である。二項係数は二つの非負整数で添字付けられ、添字 を持つ二項係数はふつう \tbinom と書かれる(これは二項冪 の展開における の項の係数である。適当な状況の下で、この係数の値は \tfrac で与えられる)。二項係数を、連続する整数 に対する各行に を から まで順に並べて得られる三角形状の数の並びをパスカルの三角形と呼ぶ。 この整数族は代数学のみならず数学の他の多くの分野、特に組合せ論において現れる。-元集合から -個の元を(その順番を無視して)選ぶ方法が \tbinom nk 通りである。二項係数の性質を用いて、記号 \tbinom nk の意味を、もともとの および が なる非負整数であった場合を超えて拡張することが可能で、そのような場合もやはり二項係数と称する。.

新しい!!: 組合せ (数学)と二項係数 · 続きを見る »

五胞体数

五胞体数(ごほうたいすう、pentatope number)は、点を右図のように五胞体の形に並べたとき、そこに含まれる点の総数にあたる自然数である。三角錐数を 1 から小さい順に加えた数と定義してもよい。例:15(.

新しい!!: 組合せ (数学)と五胞体数 · 続きを見る »

形式言語

形式言語(けいしきげんご、formal language)は、その文法(構文、統語論)が、場合によっては意味(意味論)も、形式的に与えられている(形式体系を参照)言語である。形式的でないために、しばしば曖昧さが曖昧なまま残されたり、話者集団という不特定多数によってうつろいゆくような自然言語のそれに対して、一部の人工言語や、いわゆる機械可読な(機械可読目録を参照)ドキュメント類などは形式言語である。この記事では形式的な統語論すなわち構文の形式的な定義と形式文法について述べる。形式的な意味論については形式意味論の記事を参照。.

新しい!!: 組合せ (数学)と形式言語 · 続きを見る »

圏 (数学)

数学の一分野である圏論において中核的な概念を成す圏(けん、category)は、数学的構造を取り扱うための枠組みであり、数学的対象をあらわす対象とそれらの間の関係を表す射の集まりによって与えられる。圏はそれ自体、群に類似した代数的構造として理解することができる 二つの圏が等しい(相等)とは、それらの対象の集まりが等しく、かつそれら対象の間の射の集まりが等しく、さらにそれら射の対の結合の仕方が相等となることを言う。圏論の目的に照らせば、圏がまったく相等しいことは非常に強すぎる条件であり(それよりも緩いでさえ強すぎる)、圏同値がしばしば考慮される(二つの圏が同値であるとは、大まかに言えば圏の相等において等式で与えられる関係を、それぞれの圏における同型で置き換えたものとして与えられる)。 圏論が初めて現れるのは Eilenberg–Mac Lane, "General Theory of Natural Equivalences" (1945) と題された論文である。古典的だが今もなお広く用いられる教科書として、マクレーンの がある。.

新しい!!: 組合せ (数学)と圏 (数学) · 続きを見る »

チェコ語

チェコ語(Čeština 、Český jazyk)は、スロヴァキア語やポーランド語、カシューブ語(ポメラニア語)、ソルブ語(ソラビア語、ヴェンド語とも)などと共に、西スラヴ語の一つである。チェコ共和国の人口(約1030万人、2007年3月現在)の9割以上を占めるチェコ人と、周辺国やアメリカ合衆国、カナダ等にコミュニティを作るチェコ系住民に話されている言語である(共和国の国内外合わせて約1200万人の話者が存在する)。.

新しい!!: 組合せ (数学)とチェコ語 · 続きを見る »

チキンマックナゲット

チキンマックナゲット(Chicken McNuggets、麦乐鸡、台: 麥克鷄塊)は、ファストフードチェーンのマクドナルドが販売しているチキン・ナゲットである。.

新しい!!: 組合せ (数学)とチキンマックナゲット · 続きを見る »

バースカラ2世

バースカラ(Bhāskara、カンナダ語: ಭಾಸ್ಕರಾಚಾರ್ಯ、1114年 - 1185年)は、インドの数学者で天文学者。7世紀の数学者バースカラ1世と区別するためバースカラ2世 (Bhaskara II) またはバースカラーチャーリヤ(Bhaskara Achārya、バースカラ先生の意)とも呼ばれる。南インドの現在のカルナータカ州ビジャープラ県にあたる Bijjada Bida でバラモン階級の家に生まれる。当時のインド数学の中心地であったウッジャインの天文台の天文台長を務めた。前任者には、ブラーマグプタ(598年 - 665年)やヴァラーハミヒラがいる。西ガーツ山脈地方に住んでいた。 代々、宮廷学者の地位を世襲しており、バースカラの息子やその子孫もその地位を継承していることが記録に残っている。父マヘーシュヴァラ(Mahesvara)は占星術師で、バースカラに数学を教え、バースカラはそれを息子 Loksamudra に継承させた。Loksamudra の息子は1207年に学校設立を助け、そこでバースカラの書いた文書の研究を行った。 バースカラは、12世紀の数学および天文学の発展に大きな業績を残した。主な著書として、『リーラーヴァティ』(主に算術を扱っている)、『ビージャガニタ』(代数学)、『シッダーンタ・シローマニ』(1150年)がある。『シッダーンタ・シローマニ』は Goladhyaya(球面)と Grahaganita(惑星の数学)の2部構成になっている。.

新しい!!: 組合せ (数学)とバースカラ2世 · 続きを見る »

メビウス関数

メビウス関数(メビウスかんすう)は、数論や組合せ論における重要な関数である。メビウスの輪で有名なドイツの数学者アウグスト・フェルディナント・メビウス (August Ferdinand Möbius) が1831年に紹介したことから、この名が付けられた。.

新しい!!: 組合せ (数学)とメビウス関数 · 続きを見る »

ランダムに配した点がなす直線

平面上にある一定の領域を定めてそこに多数の点をランダムに配置すると、それらの点を結ぶ線がいくつも引ける、ということが統計学的に言える。(人類学的な見地、超自然論的な見地に対して)この事実から、レイライン(直列配置)が人為的な何かでなく、単に偶然に存在しているだけだと言うことを証明できるとする者もいる。 一般に受け入れられている"直列配置"の正確な定義は、 と表現できる。 "幅 w の直線道"とは、平面上か球の大円上、あるいはもっと一般的にその他の測量上の多様な形状など、どのように地球を近似した場合においても、数学的な意味での直線からの距離が \frac 以下になる地点の集まりだといえる。このやり手法を用いると、ごく小さい差異しかない直列配置が無数に生まれることになるのを注意されたい。よって少なくとも一本の直列配置が、その点の配置を直列配置だと決定するのに必要である。上記のような事情から、直列配置そのものを探すよりも、それらしい点の集まりを数えていくほうが簡便である。 幅 w は重要なパラメータである。というのも、実世界は数学的な図上の点では表現できないし、直列配置だと認めるのに、厳密に直線状に乗っている必要はないからである。 例を挙げよう。1mm芯の鉛筆で50000分の1の地図に線を引くと、それは実際には50mの幅の線に相当する。.

新しい!!: 組合せ (数学)とランダムに配した点がなす直線 · 続きを見る »

リン脂質

リン脂質(リンししつ、Phospholipid)は、構造中にリン酸エステル部位をもつ脂質の総称。両親媒性を持ち、脂質二重層を形成して糖脂質やコレステロールと共に細胞膜の主要な構成成分となるほか、生体内でのシグナル伝達にも関わる。 コリンが複合した構造をもつ。.

新しい!!: 組合せ (数学)とリン脂質 · 続きを見る »

ローレンツ-ベルテロ則

ーレンツ-ベルテロ則(ローレンツ-ベルテロそく、Lorentz–Berthelot combining rules)は、レナード-ジョーンズ・ポテンシャルの異種粒子間パラメータを決定する計算則のひとつである。 分子間力ポテンシャルを決定する上で、同種粒子間 (アルゴン-アルゴン間、ネオン-ネオン間など) のパラメータを実験データにフィットするように決定し、異種粒子間 (アルゴン-ネオン間) をこの結合則により計算する。 大雑把に言えば、この結合則は現実をうまく表現できる。異種粒子間パラメータの数は組合せ的に増加するため、これを実験によらず簡便な計算によって求められることは分子シミュレーション上の当然の要請といえる。.

新しい!!: 組合せ (数学)とローレンツ-ベルテロ則 · 続きを見る »

プロフェッサーキューブ

プロフェッサーキューブ プロフェッサーキューブ(Professor's Cube)とは、ルービックキューブの5×5×5版の立方体パズルである。 配置の組み合わせの数は、282,870,942,277,741,856,536,180,333,107,150,328,293,127,731,985,672,134,721,536,000,000,000,000,000(約2.8×1074)通りである。 プロフェッサーキューブを揃えられるためには、ルービックリベンジとルービックキューブを揃えられることが必要不可欠である。この2つが揃えられる人にはそう難しくはない。但しセンターキューブの上下左右の(1面につき)4つのパーツだけは別に覚える必要がある。 色をそろえた状態.

新しい!!: 組合せ (数学)とプロフェッサーキューブ · 続きを見る »

プログラム

プログラム(program; programme, prographein(公示する)から);一般概念.

新しい!!: 組合せ (数学)とプログラム · 続きを見る »

パスカルの三角形

パスカルの三角形(パスカルのさんかくけい、英語:Pascal's triangle)は、二項展開における係数を三角形状に並べたものである。ブレーズ・パスカル(1623年 - 1662年)の名前がついているが、実際にはパスカルより何世紀も前の数学者たちも研究していた。 この三角形の作り方は単純なルールに基づいている。まず最上段に1を配置する。それより下の行はその位置の右上の数と左上の数の和を配置する。例えば、5段目の左から2番目には、左上の1と右上の3の合計である4が入る。このようにして数を並べると、上から n 段目、左から k 番目の数は、二項係数 に等しい(n-1Ck-1 と表すこともある)。これは、パスカルによって示された以下の式に基づいている。 負でない整数 n ≥ k に対して が成り立つ。 パスカルの三角形は三次元以上に拡張が可能である。3次の物は「パスカルのピラミッド」「パスカルの四面体」と呼ばれる。4次以上のものは一般に「パスカルの単体」と呼ばれる。.

新しい!!: 組合せ (数学)とパスカルの三角形 · 続きを見る »

テンパズル

テンパズル(10パズル)は、4桁の数字を一桁の数字4つとみなし、これに四則演算などを用いて10を作る遊び。メイクテン(make10)とも呼ばれる。切符の番号や車のナンバープレートなどでの短時間の遊びに利用され、日本経済新聞で渋滞時の時間の潰し方として紹介されたことがある。.

新しい!!: 組合せ (数学)とテンパズル · 続きを見る »

データベース消費

データベース消費(データベースしょうひ)とは、物語そのものではなくその構成要素が消費の対象となるようなコンテンツの受容のされ方を指す。批評家の東浩紀がゼロ年代初頭に導入した概念。.

新しい!!: 組合せ (数学)とデータベース消費 · 続きを見る »

フェルナン・ブローデル

Rue Brillat-Savarin'')のある建物に取り付けられた「'''フェルナン・ブローデル没地'''」の案内板 フェルナン・ブローデル(Fernand Braudel、1902年8月24日 - 1985年11月27日)はフランスの歴史学者。経済状態や地理的条件が世界史において果たす役割に注目し、20世紀の歴史学に大変革を起こした。.

新しい!!: 組合せ (数学)とフェルナン・ブローデル · 続きを見る »

ドミノ

ーム中のドミノ Albert Anker 『ドミノゲームをする少女』/19世紀後期の作。油彩画。 ドミノは、2つの正方形をくっつけた形をしている牌、それらの牌のひとそろい、もしくはそれを使って行うゲームである。.

新しい!!: 組合せ (数学)とドミノ · 続きを見る »

ベル数

香の図 5本の縦線を横線でつないでグループ化する方法の総数は5番目のベル数 B5.

新しい!!: 組合せ (数学)とベル数 · 続きを見る »

刺激惹起性多能性獲得細胞

刺激惹起性多能性獲得細胞(しげきじゃっきせいたのうせいかくとくさいぼう)は、動物の分化した細胞に弱酸性溶液に浸すなどの外的刺激を与えて再び分化する能力を獲得させたとして発表された細胞である。この細胞をもたらす現象を刺激惹起性多能性獲得(Stimulus-Triggered Acquisition of Pluripotency)と言う。 刺激惹起性多能性獲得細胞は、この現象の英語名から、論文内での略称や一般の呼称としてはSTAP細胞(スタップさいぼう、STAP cells)と呼ばれる。同様に、現象についてはSTAP現象(スタップげんしょう、STAP)、STAP細胞に増殖能を持たせたものはSTAP幹細胞(スタップかんさいぼう、STAP stem cells)とされる。また、胎盤形成へ寄与できるものはFI幹細胞と呼ばれる。 2014年1月に小保方晴子(理化学研究所)と笹井芳樹(理化学研究所)らが、チャールズ・バカンティ(ハーバード・メディカルスクール)や若山照彦(山梨大学)と共同で発見したとして、論文2本を世界的な学術雑誌ネイチャー(1月30日付)に発表した。発表直後には、生物学の常識をくつがえす大発見とされ、小保方が若い女性研究者であることに注目した大々的な報道もあって世間から大いに注目された。 しかし、論文発表直後から様々な疑義や不正が指摘され、7月2日に著者らはネイチャーの2本の論文を撤回した。その後も検証実験を続けていた理化学研究所は、同年12月19日に「STAP現象の確認に至らなかった」と報告し、実験打ち切りを発表。同25日に「研究論文に関する調査委員会」によって提出された調査報告書は、STAP細胞・STAP幹細胞・FI幹細胞とされるサンプルはすべてES細胞の混入によって説明できるとし、STAP論文はほぼ全て否定されたと結論づけられた。.

新しい!!: 組合せ (数学)と刺激惹起性多能性獲得細胞 · 続きを見る »

コンビネーション

ンビネーション(combination), コンビネータ (combinator).

新しい!!: 組合せ (数学)とコンビネーション · 続きを見る »

ゆみみみっくす

『ゆみみみっくす』とは株式会社ゲームアーツが1993年1月29日にメガCD用に発売したインタラクティブコミックである。.

新しい!!: 組合せ (数学)とゆみみみっくす · 続きを見る »

四角錐数

四角錐数(しかくすいすう、square pyramidal number)は球を右図のように1段目に1個、2段目に4個、3段目に9個、…というように正四角錐の形に積んだとき、そこに含まれる球の総数にあたる自然数である。つまり1から順に平方数をいくつか加えた数のことである。 四角錐数を小さい順に列記すると 例: 1, 5 (.

新しい!!: 組合せ (数学)と四角錐数 · 続きを見る »

C

Cは、ラテン文字(アルファベット)の3番目の文字。小文字は c 。.

新しい!!: 組合せ (数学)とC · 続きを見る »

確率・統計

率・統計(かくりつ・とうけい)は,1982年(昭和57年)度から施行された高等学校学習指導要領において,確率に関する基本的な概念や法則についての理解を深めるとともに,確率分布の概念を理解させ,統計的な見方・考え方に関する能力を伸ばすことを目的とした数学の科目の一つである。1989年(平成元年)の指導要領改訂に伴い廃止された(1994年(平成6年)度の第1学年から廃止)。指導要領に示された内容は次のとおりである。 ----.

新しい!!: 組合せ (数学)と確率・統計 · 続きを見る »

算数

算数(さんすう、elementary mathematics)は 日本の小学校における教科の一つ。広義には各国の初等教育における一分野も指す。 この項では便宜を考慮して各国の初等教育(中でも小学校に相当する学校)における、算数に相当する教科について広く解説する。.

新しい!!: 組合せ (数学)と算数 · 続きを見る »

組合せ爆発

組合せ爆発(くみあわせばくはつ、Combinatorial explosion)は、計算機科学、応用数学、情報工学、人工知能などの分野では、解が組合せ(combination)的な条件で定義される離散最適化問題で、問題の大きさn に対して解の数が指数関数や階乗などのオーダーで急激に大きくなってしまうために、有限時間で解あるいは最適解を発見することが困難になることをいう。.

新しい!!: 組合せ (数学)と組合せ爆発 · 続きを見る »

組合せ数学

組合せ数学(くみあわせすうがく、combinatorics)や組合せ論(くみあわせろん)とは、特定の条件を満たす(普通は有限の)対象からなる集まりを研究する数学の分野。特に問題とされることとして、集合に入っている対象を数えたり(数え上げ的組合せ論)、いつ条件が満たされるのかを判定し、その条件を満たしている対象を構成したり解析したり(組合せデザインやマトロイド理論)、「最大」「最小」「最適」な対象をみつけたり(極値組合せ論や組合せ最適化)、それらの対象が持ちうる代数的構造をみつけたり(代数的組合せ論)することが挙げられる。.

新しい!!: 組合せ (数学)と組合せ数学 · 続きを見る »

階乗

数学において非負整数 の階乗(かいじょう、factorial) は、1 から までのすべての整数の積である。例えば、 である。空積の規約のもと と定義する。 階乗は数学の様々な場面に出現するが、特に組合せ論、代数学、解析学などが著しい。階乗の最も基本的な出自は 個の相異なる対象を一列に並べる方法(対象の置換)の総数が 通りであるという事実である。この事実は少なくとも12世紀にはインドの学者によって知られていた。は1677年にへの応用として階乗を記述した。再帰的な手法による記述の後、Stedman は(独自の言葉を用いて)階乗に関しての記述を与えている: 感嘆符(!)を用いた、この "" という表記は1808年にによって発明された。 階乗の定義は、最も重要な性質を残したまま、非整数を引数とする函数に拡張することができる。そうすれば解析学における著しい手法などの進んだ数学を利用できるようになる。.

新しい!!: 組合せ (数学)と階乗 · 続きを見る »

順列

初等組合せ論における順列(じゅんれつ、sequence without repetition、arrangement)は、区別可能な特定の元から有限個を選んで作られる重複の無い有限列をいう。 初等組合せ論における「」はともに n-元集合から -個の元を取り出す方法として可能なものを数え上げる問題に関するものである。取り出す順番を勘案するのが -順列、順番を無視するのが -組合せである。.

新しい!!: 組合せ (数学)と順列 · 続きを見る »

血液型

血液型(けつえきがた)とは、血球の表面または内部にある血液型物質(抗原)の有無によってつける個人の区別であり、「ヒトの血清学的体質」、「血液の個人性」、「個人を血清学的に識別する方法」ともいえる。 血液型は初め血液の型として出発してきたが、その後の研究によって血液以外(他の体液や細胞、毛髪のように生きていない組織も)にも分布する特徴であることが分かっており、内容的にその意義が著しく広くなっているため、慣習的に今でも「血液型」と呼んでいるが、厳密には今日の観点では不適当になってきている。 上記のように抗体と抗原による反応をみるため、血液の成分が違っても判定は可能であり例えば親の組み合わせがA型(AO型)とO型(OO型)、親がB型(BO型)とO型(OO型)で子供がO型(OO型)であっても、必ず4分の1はA型の血液、または4分の1はB型の血液が継がれている。異種動物はもちろん、血液のない細菌にも血液型は存在する。 抗原は数百種類が知られており、その組み合せによって決まる血液型は膨大な数(数兆通り以上という説もあり)になる。世界を捜しても、一卵性双生児でもない限り自分と完全に同じ血液型をしている人はいないとすら言われる。この性質を利用して畜産、特にサラブレッド生産の分野において血液型が親子関係の証明に使われていた(現在は直接DNAを鑑定する手法が用いられる)。 輸血をする場合、ABO式血液型など一部の分類は自然抗体が形成され、型違いの血液を混ぜると凝集や溶血が起きるため、型合わせする必要がある。また、血液型によって、凝集や溶血反応はそれぞれである。 また、70万人に1人程度といわれている低確率で一人の人間が複数の血液型を持っている場合は、「血液型キメラ」と呼ばれる(例:A型99% AB型0.1%等)。詳しくはキメラの項を参照。 血液型と性格との関連性には科学的根拠がないといわれている。.

新しい!!: 組合せ (数学)と血液型 · 続きを見る »

複雑ネットワーク

ウィキペディア周辺のWWWの構造 ヒトのタンパク質間相互作用の一部 BAモデルにより生成されたランダムネットワーク。各頂点の大きさが次数に対応している。http://www.cytoscape.org/ Cytoscape上でRandomNetworksプラグインを使用し作成。 複雑ネットワーク(ふくざつネットワーク、complex networks)は、現実世界に存在する巨大で複雑なネットワークの性質について研究する学問である。 複雑ネットワークは、1998年に「ワッツ・ストロガッツモデル」という数学モデルが発表されたことを契機に、現実世界の様々な現象を説明する新たなパラダイムとして注目を集めている。多数の因子が相互に影響しあうことでシステム全体の性質が決まるという点において複雑系の一分野でもある。.

新しい!!: 組合せ (数学)と複雑ネットワーク · 続きを見る »

論理学の歴史

論理学の歴史では妥当な推論を探求する学問の発展を取り扱う。形式論理学は古代の中国、インド、ギリシアで発展した。ギリシア論理学、中でもアリストテレス論理学は科学・数学に広く受容・応用されている。 アリストテレス論理学は中世のイスラーム圏およびキリスト教西方世界にさらに発展し、14世紀半ばに頂点をむかえた。14世紀から19世紀初めまでの時期は概して論理学が衰退し、軽視された時期であり、少なくとも一人の論理学史家によって論理学の不毛期とみなされているOxford Companion p. 498; Bochenski, Part I Introduction, passim。 19世紀半ばになると論理学が復興し、革命期が始まって、数学において用いられる厳密な証明を手本とする厳格かつ形式的な規則へと主題が発展した。近現代におけるこの時期の発展、いわゆる「記号」あるいは「数理」論理学は二千年にわたる論理学の歴史において最も顕著なものであり、人類の知性の歴史において最も重要・顕著な事件の一つだと言えるOxford Companion p. 500。 数理論理学の発展は20世紀の最初の数十年に、特にゲーデルおよびタルスキの著作によって起こり、分析哲学や哲学的論理学に、特に1950年代以降に様相論理や時相論理、義務論理、適切さの論理といった分野に影響を与えた。.

新しい!!: 組合せ (数学)と論理学の歴史 · 続きを見る »

超立方体

4次元超立方体 超立方体(ちょうりっぽうたい、hypercube)とは、2次元の正方形、3次元の立方体、4次元の正八胞体を各次元に一般化した正多胞体である。なお、0次元超立方体は点、1次元超立方体は線分である。 正測体(せいそくたい)、γ体(ガンマたい)とも言い、n 次元超立方体を \gamma_n と書く。 正単体、正軸体と並んで、5次元以上での3種類の正多胞体の1つである。 単に超立方体と言った場合は特に四次元の超立方体(tesseract)を指すこともある。 右図は、四次元超立方体を二次元に投影した図である。立方体を二次元に投影した場合と同様に、各辺の長さや成す角度は歪んでいるが、実際の辺の長さはすべて等しく、角も直角である。胞(立方体)の数は、投影図において外側の大きな立方体、内側の立方体、これら2つの対応する面をそれぞれ結ぶ(対応する稜線を4つ選ぶ)部分に6つあり、胞は計8つである。.

新しい!!: 組合せ (数学)と超立方体 · 続きを見る »

重複置換

数学における重複置換(ちょうふくちかん、permutations avec répétition)は、区別不能なものを含む対象を順番を考慮して複数の組に分ける方法を言う(対象は区別できないが、組は区別が付く)。例えば、 は二つの と一つの を持つ重複置換である。 一部に区別のつかないものを含む 個の対象を並べ替えて特定の順番に並べるとき、いくつか同じものが生じる場合がある。 として、 個の対象がつくる -組が 種類の相異なる組に分けられるとき、その各々が 個の対象を含む(ただし、 を満たす)ものを考える。このような -組のなかで区別不能なものを入れ替えて得られる -組は同じものと考える。例えば、文字列 MATHÉMATIQUE のアナグラムを全て求めようとするとき、二つの A は区別が付かないのでこれらを入れ替えても文字列としては変わらないが、É と E を入れ替えたときは文字列として相異なる。.

新しい!!: 組合せ (数学)と重複置換 · 続きを見る »

重複組合せ

数学の一分野である組合せ論における重複組合せ(ちょうふくくみあわせ、じゅうふくくみあわせ、combination with repetition, multi-choose; 重複選択)は、取り出した元の並びは考慮しないが、(通常の(非重複)組合せと異なり)同じ元を複数取り出すことが許される「組合せ」を言う。例えば、( から までの)六面サイコロを10回投げるとき、各出目が何回目に振ったときに出たものか考えなければ、サイコロの出目の「組合せ」となるが、各面のうちには複数回現れるものが存在することになる(たとえば、出目 が一回、 が三回、 が二回、 が四回であるときがその一例である)。.

新しい!!: 組合せ (数学)と重複組合せ · 続きを見る »

重複順列

数学における重複順列(ちょうふくじゅんれつ、sequence (with repetition), arrangement avec répétition)は、区別可能な 個の対象から重複を許して 個の対象を取り出して特定の順番でならべることで生じる。大抵の場合、これを -組(あるいは長さ のリスト)として表す。例えば、 から までの番号が振られた 個の玉が入った箱から 個の玉を取り出して、取り出した順番に番号をリストに記録すると重複順列を得る。.

新しい!!: 組合せ (数学)と重複順列 · 続きを見る »

この記事では量(りょう、)について解説する。.

新しい!!: 組合せ (数学)と量 · 続きを見る »

配置状態関数

量子化学において、配置状態関数(はいちじょうたいかんすう、configuration state function、CSF)はスレイター行列式の対称性適応形の線形結合である。CSFは電子配置とは混同しがちだが、別物である。.

新しい!!: 組合せ (数学)と配置状態関数 · 続きを見る »

離散数学

離散数学(りさんすうがく、英語:discrete mathematics)とは、原則として離散的な(言い換えると連続でない、とびとびの)対象をあつかう数学のことである。有限数学あるいは離散数理と呼ばれることもある。 グラフ理論、組み合わせ理論、最適化問題、計算幾何学、プログラミング、アルゴリズム論が絡む応用分野で、その領域を包括的・抽象的に表現する際に用いられることが多い。またもちろん離散数学には整数論が含まれるが、初等整数論を超えると解析学などとも関係し(解析的整数論)、離散数学の範疇を超える。.

新しい!!: 組合せ (数学)と離散数学 · 続きを見る »

GNU Scientific Library

GNU Scientific Library (GSL) は、C言語で記述された科学技術計算関数のライブラリである。オープンソースであり、GNU General Public Licenseのもとで配布されている。 このプロジェクトは1996年にロスアラモス国立研究所のDr.

新しい!!: 組合せ (数学)とGNU Scientific Library · 続きを見る »

NCR

* NCRコーポレーション - アメリカのIT企業.

新しい!!: 組合せ (数学)とNCR · 続きを見る »

SageMath

SageMath(セイジ、以前はSage、SAGEと記した)は数学の幅広い処理を扱うソフトウェアである。扱う処理は計算機代数、組み合わせ、数値計算など多岐に及ぶ。工学的応用に加え基礎科学の研究もカバーする。 SageMathは2005年2月24日にフリーソフトウェアとしてGNU General Public Licenseの元で初版が公開された。その開発目的はMagma、Maple、Mathematica(いずれも計算機代数ソフトウェア)、MATLABの代替となるフリーかつオープンソースなソフトウェアを提供することであった。開発は、米ワシントン大学の数学准教授のウィリアム・スタイン (William Stein) が主導して始まった。 SageMathはPythonプログラミング言語を使用しており、手続き型・関数型・オブジェクト指向によるプログラムの記述を行うことができる。.

新しい!!: 組合せ (数学)とSageMath · 続きを見る »

V-Cube 6

V-Cube 6とは、ルービックキューブの6×6×6版の立方体パズルである。 基本ルールはルービックキューブと同様で、各面を単色に揃えることが目標である。 配置の組み合わせの数は、:\frac \approx 1.57 \times 10^通りである。 V-Cube 6を揃えられるためには、ルービックリベンジを揃えられる必要があるが、ルービックリベンジを揃えられる人にはそう難しくない。但し、対角線上にないインナーキューブ(1面につき)8つだけは別に覚える必要がある。なお、プロフェッサーキューブやルービックキューブを揃えられる必要は理論上はない。 V-Cube 6を揃えることができれば、ほぼ同様にしてそれより大きい偶数分割のルービックキューブも揃えることができる。また、プロフェッサーキューブも揃えることができれば、一般のn×n×nキューブは理論上全て揃えることができる。.

新しい!!: 組合せ (数学)とV-Cube 6 · 続きを見る »

V-Cube 7

V-Cube 7とは、ルービックキューブの7×7×7版の立方体パズルである。 基本ルールはルービックキューブと同様で、各面を単色に揃えることが目標である。 配置の組み合わせの数は、:\frac \approx 1.95 \times 10^通りである。 V-Cube 7を揃えられる必要十分条件はプロフェッサーキューブとV-Cube 6を揃えられることである。また、V-Cube 7を揃えられれば、一般の n×n×n のルービックキューブを理論上全て揃えられる。.

新しい!!: 組合せ (数学)とV-Cube 7 · 続きを見る »

VoIP

1140E VoIP Phone アバイア Voice over Internet Protocol(ボイス オーバー インターネット プロトコル、VoIP(ブイ オー アイピー、ボイップ、ボイプ)、Voice over IP(ボイス オーバー アイピー))とは、音声を各種符号化方式で符号化および圧縮し、パケットに変換したものをIP(Internet Protocol: インターネットプロトコル)ネットワークでリアルタイム伝送する技術である。Voice over Frame Relay (VoFR) ・Voice over ATM (VoA) などと同じVoice over Packet Network (VoPN) の一種。 この項では「VoIP」の技術とIP電話の網構成を記述する。その他については関連項目も参照のこと。.

新しい!!: 組合せ (数学)とVoIP · 続きを見る »

投票券 (公営競技)

日本の公営競技における投票券(とうひょうけん)とは各競技における競走対象の着順を予想して投票(購入)し、結果に即し配当を得るための券である。本項の倍率は断りのない場合、現在の日本で使われている100円に対する配当金を示す方式を用いる。.

新しい!!: 組合せ (数学)と投票券 (公営競技) · 続きを見る »

格文法

格文法(かくぶんぽう case grammar)とは、1968年に言語学者チャールズ・フィルモアによって提唱された文法理論である。.

新しい!!: 組合せ (数学)と格文法 · 続きを見る »

標準誤差

標準誤差(ひょうじゅんごさ)は、母集団からある数の標本を選ぶとき、選ぶ組み合わせに依って統計量がどの程度ばらつくかを、全ての組み合わせについての標準偏差で表したものをいう。Standard errorを略してSEともいう。 統計量を指定せずに単に「標準誤差」と言った場合、標本平均の標準誤差(standard error of the mean、SEM)のことを普通は指す。以下ではこれについて述べる。.

新しい!!: 組合せ (数学)と標準誤差 · 続きを見る »

数え上げ数学

数学における初等組合せ論 (elementary combinatorics), 有限組合せ論 (finite combinatorics), 数え上げ組合せ論 (enumerative combinatorics) あるいは数え上げの数学(かぞえあげのすうがく、mathematics of counting)とは、一定のパターンに従って形作られる方法の総数を扱う組合せ論の一分野を言う。この種の問題の代表例が組合せと順列の総数を算えることである。より一般には、自然数で添字付けられた有限集合 の無限族が与えられたとき、各 に対する に属する元の総数を数える「計数函数」(counting function) を記述することを模索するのが数え上げ数学の主題である。特定の集合に属する元の数を算えるというのはより広汎なであるにも拘らず、そのような問題の多くは単純な組合せ論的記述に関連した応用から生じてくるのである。は順列、組合せおよび分割の数え上げに対する統一的な枠組みを与える。 最も単純な種類のパターンではそのような計数函数が、四則演算や冪あるいは階乗などの初等的な函数の合成となるような、として与えられる。例えば、 枚のカードからなる山札に対して、可能なすべての相異なる並べ方の総数は で与えられる。このような閉じた式を求める問題はとも呼ばれ、しばしば漸化式や母函数を導いてそれらを適切に解くことにより所望の閉じた形へ到達する。 閉じた形の式が複雑になると、算える対象の数の増加に伴って計数函数がどのように振る舞うかが洞察しづらくなることがよく起きる。そのような場合においては、単純な近似が有効となりうる。ここで函数 が の漸近近似である: とは、 が成り立つことを言う。.

新しい!!: 組合せ (数学)と数え上げ数学 · 続きを見る »

数学 (教科)

教科「数学」(すうがく、mathematics, math)は、中等教育の課程(中学校の課程、高等学校の課程、中等教育学校の課程など)における教科の一つである。 本項目では、主として現在の学校教育における教科「数学」について取り扱う。関連する理論・実践・歴史などについては「算数・数学教育」を参照。.

新しい!!: 組合せ (数学)と数学 (教科) · 続きを見る »

数学A

数学A(すうがくエー)は、日本の高等学校における数学の科目の一つである。現行学習指導要領下での本科目は2012年度より学年進行で実施されている。.

新しい!!: 組合せ (数学)と数学A · 続きを見る »

数学の年表

本項目は、純粋数学と応用数学の歴史に関する年表である。.

新しい!!: 組合せ (数学)と数学の年表 · 続きを見る »

数学ガール

『数学ガール』(すうがくガール)は、結城浩による、数学を題材にした小説の書名であり、その後のシリーズ名でもある。 が刊行され、その後、下記のシリーズ作品が刊行された。 2010年12月時点でシリーズ累計10万部。2014年3月には日本数学会から日本数学会賞出版賞が贈られた。 この記事では、第1作を『数学ガール』、第2作を『フェルマーの最終定理』、第3作を『ゲーデルの不完全性定理』、第4作を『乱択アルゴリズム』、第5作を『ガロア理論』、第6作を『ポアンカレ予想』と記述する。これらの副題と同名の数学の定理を表記する場合は、二重鉤括弧なしで記述する。.

新しい!!: 組合せ (数学)と数学ガール · 続きを見る »

数学記号の表

数学的概念を記述する記号を数学記号という。数学記号は、数学上に抽象された概念を簡潔に表すためにしばしば用いられる。 数学記号が示す対象やその定義は、基本的にそれを用いる人に委ねられるため、一見して同じ記号であっても内容が異なっていたり、逆に異なる記号であっても、同じ対象を示していることがある数学においては、各々の記号はそれ単独では「意味」を持たないものと理解される。それらは常に、数式あるいは論理式として文脈(時には暗黙のうちに掲げられている、前提や枠組み)に即して評価をされて初めて、値として意味を生じるのである。ゆえにここに掲げられる意味は慣用的な一例に過ぎず絶対ではないことに事前の了解が必要である。記号の「読み」は記号の見た目やその文脈における意味、あるいは記号の由来(例えばエポニム)など便宜的な都合(たとえば、特定のグリフをインプットメソッドを通じてコードポイントを指定して利用するために何らかの呼称を与えたりすること)などといったものに従って生じるために、「記号」と「読み」との間には相関性を見いだすことなく分けて考えるのが妥当である。。従って本項に示す数学記号とそれに対応する数学的対象は、数多くある記号や概念のうち、特に慣用されうるものに限られる。.

新しい!!: 組合せ (数学)と数学記号の表 · 続きを見る »

数学II

数学II(すうがくに)は高等学校数学科の科目の一つである。数学Iと共に1956年の学習指導要領で登場して以来、幾度か大きな内容の変更が行われ、名称も何度か変更された科目である。本稿ではこの科目の内容の変遷を、補足的に他の数学科の科目にも触れつつ説明する。なお、当時の用語の一部は現在なじみの深い用語に直している。.

新しい!!: 組合せ (数学)と数学II · 続きを見る »

数学III

数学III(すうがくさん)は、日本の高等学校における数学の科目の一つである。 1982年度入学生から適用の学習指導要領で「微分・積分」の科目名になったため、一旦科目名から消滅したが、1994年入学生からの学習指導要領で科目名称が復活している。.

新しい!!: 組合せ (数学)と数学III · 続きを見る »

ここにリダイレクトされます:

組み合わせ組合せ

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »