ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

反磁性

索引 反磁性

反磁性(はんじせい、diamagnetism)とは、磁場をかけたとき、物質が磁場の逆向きに磁化され(=負の磁化率)、磁場とその勾配の積に比例する力が、磁石に反発する方向に生ずる磁性のことである 。 反磁性体は自発磁化をもたず、磁場をかけた場合にのみ反磁性の性質が表れる。反磁性は、1778年にセバールド・ユスティヌス・ブルグマンス によって発見され、その後、1845年にファラデーがその性質を「反磁性」と名づけた。 原子中の対になった電子(内殻電子を含む)が必ず弱い反磁性を生み出すため、実はあらゆる物質が反磁性を持っている。しかし、反磁性は非常に弱いため、強磁性や常磁性といったスピンによる磁性を持つ物質では隠れて目立たない。つまり、差し引いた結果の磁性として反磁性があらわれている物質のことを反磁性体と呼ぶに過ぎない。 このように、ほとんどの物質において反磁性は非常に弱いが、超伝導体は例外的に強い反磁性を持つ(後述)。なお、標準状態において最も強い反磁性をもつ物質はビスマスである。 なお、反強磁性(antiferromagnetism)は反磁性とは全く違う現象である。.

104 関係: 反強磁性塩化チタン(III)塩化ハフニウム(IV)塩化ニッケル(II)塩化ガリウム(III)塩素常磁性三塩化酸化バナジウム(V)三臭化ヒ素一酸化銀亜酸化窒素亜鉛強磁性地震雲化学に関する記事の一覧ノナヒドリドレニウム(VII)酸カリウムマイケル・ファラデーマグネターチタン酸塩チタン酸カルシウムネオンポリパラフェニレンビニレンポロニウムポール・ランジュバンメチルマロニルCoAムターゼヨウ素ランダウ反磁性ラーモア反磁性ラドンラジウムリンレフ・ランダウヴィルヘルム・ヴェーバーボーア=ファン・リューエンの定理ヘリウムヘキサアンミンコバルト(III)塩化物ヒ素ビスマスピエール・キュリーテルルテトラカルボニルニッケルテトラクロリド白金(II)酸カリウムフッ化タングステン(VI)フッ化銀ニトロソベンゼンホウ化物ホウ素ベリリウムアルゴンアンチモン...インジウムイグノーベル賞受賞者の一覧ウィリアム・トムソンオルトチタン酸テトライソプロピルカルシウムカドミウムガリウムキセノンクリプトングーイの磁気天秤ケイ素ゲルマニウムシクロプロパンジョン・ティンダルジラジカルジルコニウムジクロロ(1,3-ビス(ジフェニルホスフィノ)プロパン)ニッケル(II)ジクロロ(シメン)ルテニウムダイマースズセバールド・ユスティヌス・ブルグマンスセレンタリウム四酸化二窒素四酸化ルテニウムCØDE:BREAKER硫黄磁力磁気モーメント磁気処理水磁気浮上磁性磁性体窒素炭化ハフニウム炭素物質の状態過酸化物非磁性体超反磁性超電導リニア臭化タンタル(V)臭化銅(I)臭素酢酸クロム(II)酸化スズ(IV)酸化鉄(III)酸素FMRI水素 インデックスを展開 (54 もっと) »

反強磁性

反強磁性(Antiferromagnetic )とは、隣り合うスピンがそれぞれ反対方向を向いて整列し、全体として磁気モーメントを持たない物質の磁性を指す。金属イオンの半数ずつのスピンが互いに逆方向となるため反強磁性を示す。 代表的な物質としては、絶縁体では酸化マンガン(MnO)や酸化ニッケル(NiO)などが挙げられる。なお、これら酸化物における相互作用は超交換相互作用によって説明されるが、スピンを逆向きに揃えようとする反強磁性相互作用は超交換相互作用のみに由来するものではなく、強磁性を説明した「ハイゼンベルクの(直接)交換相互作用」においても、磁性軌道間に重なりがあればその係数は負となり、反強磁性相互作用をもたらす。 強磁性体と同様に、反強磁性もその性質を示すのは低温に限られる。熱揺らぎによるスピンをランダムにしようとする効果(=熱によるエントロピーの増大)のため、ある温度以上になるとスピンはそれぞれ無秩序な方向を向いて整列しなくなり、物質は常磁性を示すようになる。この転移温度をネール温度(Néel Temperature)と呼ぶ。ネール温度以上での磁化率は通常は近似的にキュリー・ワイスの法則で表すことが出来る。 なお、反磁性 (diamagnetism) は反強磁性とは全く違う現象である。.

新しい!!: 反磁性と反強磁性 · 続きを見る »

塩化チタン(III)

塩化チタン(III)(えんかチタン さん、titanium(III) chloride)は化学式 TiCl3 で表される化合物である。三塩化チタンとも呼ばれる。水和物も単に塩化チタン(III) と呼ばれることが多い。3種類知られるチタンの塩化物のうち、最も一般的なものである。ポリオレフィンの製造において重要な触媒である。毒物及び劇物取締法により劇物に指定されている。.

新しい!!: 反磁性と塩化チタン(III) · 続きを見る »

塩化ハフニウム(IV)

塩化ハフニウム(IV)(えんかハフニウム、Hafnium(IV) chlorideまたはHafnium tetrachloride)は化学式HfCl4であらわされる無機化合物である。無色の固体であり、大部分の有機ハフニウム化合物を合成するための前駆体として用いられる。ルイス酸として働き、特定のアルキル化反応や異性化反応の触媒としても利用される。.

新しい!!: 反磁性と塩化ハフニウム(IV) · 続きを見る »

塩化ニッケル(II)

塩化ニッケル(II)(えんかニッケル(II)、nickel(II) chloride)は塩素とニッケルのイオン性化合物(塩)である。無水物の組成式は NiCl2 で、融点の高い常磁性を持つ黄色の固体である。ニッケル化合物としては最も広く使われており、ニッケルめっきなどに用いられる。1個または6個の水分子が結合した水和物が知られる。 常温では塩化ニッケル(II) 六水和物は緑色の固体である。潮解性があり、水やアルコールにも容易に溶ける。無水塩の比重は1.9、六水和物は3.55である。他のニッケル塩と同じく発癌性物質である。.

新しい!!: 反磁性と塩化ニッケル(II) · 続きを見る »

塩化ガリウム(III)

塩化ガリウム(III)(Gallium trichloride)は、化学式GaCl3の化合物である。固体のGaCl3は、化学式Ga2Cl6の二量体として存在する。無色で、金属ハロゲン化物としては珍しくアルカンも含め理想的には全ての溶媒に可溶である。ガリウムを含む大部分の誘導体の前駆体や有機合成の試薬となる。 ルイス酸としては、GaCl3は塩化アルミニウムよりも弱い。Ga(III)はAl(III)よりも容易に還元され、還元ガリウム化合物はアルミニウムのものよりも広範である。一方、Ga2Cl6は知られているが、Al2Cl6は知られていない。Ga(III)とFe(III)の配位は似ており、Ga(III)化合物は、Fe(III)化合物の反磁性アナログである。.

新しい!!: 反磁性と塩化ガリウム(III) · 続きを見る »

塩素

Chlore lewis 塩素(えんそ、chlorine)は原子番号17の元素。元素記号は Cl。原子量は 35.45。ハロゲン元素の一つ。 一般に「塩素」という場合は、塩素の単体である塩素分子(Cl2、二塩素、塩素ガス)を示すことが多い。ここでも合わせて述べる。塩素分子は常温常圧では特有の臭いを持つ黄緑色の気体で、腐食性と強い毒を持つ。.

新しい!!: 反磁性と塩素 · 続きを見る »

常磁性

常磁性(じょうじせい、英語:paramagnetism)とは、外部磁場が無いときには磁化を持たず、磁場を印加するとその方向に弱く磁化する磁性を指す。熱ゆらぎによるスピンの乱れが強く、自発的な配向が無い状態である。 常磁性の物質の磁化率(帯磁率)χは温度Tに反比例する。これをキュリーの法則と呼ぶ。 比例定数Cはキュリー定数と呼ばれる。.

新しい!!: 反磁性と常磁性 · 続きを見る »

三塩化酸化バナジウム(V)

三塩化酸化バナジウム(V)(さんえんかさんかバナジウム ご、vanadium(V) trichloride oxide)は、化学式が VOCl3 と表されるバナジウムの化合物である。常温で液体で、蒸留は可能だが空気中で直ちに加水分解される。強い酸化剤であり、主に有機合成の試薬として用いられる。毒物及び劇物取締法により劇物に指定されている。.

新しい!!: 反磁性と三塩化酸化バナジウム(V) · 続きを見る »

三臭化ヒ素

三臭化ヒ素(さんしゅうかひそ、はヒ素の臭化物で、化学式AsBr3で表される無機化合物。ヒ素と臭素の直接反応により作られ、この2つの物質からなる二元化合物としては唯一知られている。屈折率は2.3と非常に高く、高い反磁性を持つ。.

新しい!!: 反磁性と三臭化ヒ素 · 続きを見る »

一酸化銀

一酸化銀(いっさんかぎん、silver monoxide)は、酸化銀-亜鉛アルカリマンガン乾電池の製造段階で使われる無機化合物である。組成式は AgO と表されるが、銀の酸化数は+2ではない。反磁性であることとX線回折の実験結果を見ると組成式は AgIAgIIIO2 の方が適している。 過酸化銀とも呼ばれるが、過酸化物イオン (O22-) は持たない。.

新しい!!: 反磁性と一酸化銀 · 続きを見る »

亜酸化窒素

亜酸化窒素(あさんかちっそ。英語、nitrous oxide)とは、窒素酸化物の1種である。化学式ではN2Oと表されるため、一酸化二窒素(いっさんかにちっそ)とも呼ばれる。 ヒトが吸入すると陶酔させる作用があることから笑気ガス(しょうきガス。英語、laughing gas)とも言い、笑気と略されることもある。また麻酔作用もあるため、全身麻酔など医療用途で用いることもあり、世界保健機関においては必須医薬品の一覧にも載せられている。この他にも、工業用途では燃料の発火促進のために使われる。また、調理用途では食材をムース状に加工するエスプーマと呼ばれる調理法に使用される。 しかし、陶酔感を得るために亜酸化窒素を乱用する者が後を絶たないことから、日本では、2016年2月18日に医薬品医療機器法に基づき「亜酸化窒素」が指定薬物に指定された。そして、日本では同月28日から、医療などの目的以外に亜酸化窒素を製造・販売・所持・使用することなどが禁止されるに至った。なお、乱用以外にも、亜酸化窒素が大気中へと放出されると、 紫外線によって分解されるなどして一酸化窒素を生成し、この一酸化窒素にはオゾン層を破壊する作用がある。したがって、亜酸化窒素の使用もオゾン層の破壊につながるという地球環境への問題も抱えている。.

新しい!!: 反磁性と亜酸化窒素 · 続きを見る »

亜鉛

亜鉛(あえん、zinc、zincum)は原子番号30の金属元素。元素記号は Zn。亜鉛族元素の一つ。安定な結晶構造は、六方最密充填構造 (HCP) の金属。必須ミネラル(無機質)16種の一つ。.

新しい!!: 反磁性と亜鉛 · 続きを見る »

強磁性

強磁性 (きょうじせい、ferromagnetism) とは、隣り合うスピンが同一の方向を向いて整列し、全体として大きな磁気モーメントを持つ物質の磁性を指す。そのため、物質は外部磁場が無くても自発磁化を持つことが出来る。 室温で強磁性を示す単体の物質は少なく、鉄、コバルト、ニッケル、ガドリニウム(18℃以下)である。 単に強磁性と言うとフェリ磁性を含めることもあるが、日本語ではフェリ磁性を含まない狭義の強磁性をフェロ磁性と呼んで区別することがある。なおフェロ (ferro) は鉄を意味する。.

新しい!!: 反磁性と強磁性 · 続きを見る »

地震雲

地震雲(じしんぐも、じしんうん)とは地震の前後に特殊な形状の雲が観測される、と言われているものである。ただそのような雲と地震の発生の関連は、地球科学や気象学、そして一般的な科学としてほとんど認められていない。.

新しい!!: 反磁性と地震雲 · 続きを見る »

化学に関する記事の一覧

このページの目的は、化学に関係するすべてのウィキペディアの記事の一覧を作ることです。この話題に興味のある方はサイドバーの「リンク先の更新状況」をクリックすることで、変更を見ることが出来ます。 化学の分野一覧と重複することもあるかもしれませんが、化学分野の項目一覧です。化学で検索して出てきたものです。数字、英字、五十音順に配列してあります。濁音・半濁音は無視し同音がある場合は清音→濁音→半濁音の順、長音は無視、拗音・促音は普通に(ゃ→や、っ→つ)変換です。例:グリニャール反応→くりにやるはんのう †印はその内容を内含する記事へのリダイレクトになっています。 註) Portal:化学#新着記事の一部は、ノート:化学に関する記事の一覧/化学周辺に属する記事に分離されています。.

新しい!!: 反磁性と化学に関する記事の一覧 · 続きを見る »

ノナヒドリドレニウム(VII)酸カリウム

ノナヒドリドレニウム(VII)酸カリウム(ノナヒドリドレニウム なな さんカリウム、potassium nonahydridorhenate(VII))は、化学式が と表される無機化合物である。この無色の塩は、ホモレプティックなヒドリド錯体である アニオンをもつ点が特徴的である。 レニウム水素化物の研究は1950年代に遡る。この研究には“レニウム化物”アニオン、おそらく の報告が含まれていた。この報告により、A.

新しい!!: 反磁性とノナヒドリドレニウム(VII)酸カリウム · 続きを見る »

マイケル・ファラデー

マイケル・ファラデー(Michael Faraday, 1791年9月22日 - 1867年8月25日)は、イギリスの化学者・物理学者(あるいは当時の呼称では自然哲学者)で、電磁気学および電気化学の分野での貢献で知られている。 直流電流を流した電気伝導体の周囲の磁場を研究し、物理学における電磁場の基礎理論を確立。それを後にジェームズ・クラーク・マクスウェルが発展させた。同様に電磁誘導の法則、反磁性、電気分解の法則などを発見。磁性が光線に影響を与えること、2つの現象が根底で関連していることを明らかにした entry at the 1911 Encyclopaedia Britannica hosted by LovetoKnow Retrieved January 2007.

新しい!!: 反磁性とマイケル・ファラデー · 続きを見る »

マグネター

マグネター(イラスト) マグネター(magnetar)とは極端に強い磁場を持ち、その磁場の減衰をエネルギー源として大量の高エネルギー電磁波、特にX線やガンマ線を放射する中性子星である。マグネターの理論は1992年にロバート・ダンカンとクリストファー・トンプソンによって定式化された。この説が提唱された後の約10年間で、過去に観測されている軟ガンマ線リピーターや異常X線パルサーなどのさまざまな天体に対する有望な物理的説明として、広く受け入れられるようになった。.

新しい!!: 反磁性とマグネター · 続きを見る »

チタン酸塩

化学 において、チタン酸塩(チタンさんえん )とは、通常は酸化チタンを構成要素とする無機化合物を指す。 や などのいくつかの場合で、この用語はチタンを含むアニオンを構成要素とする化合物に使われることがあるが、この記事では酸化物に限るものとする。 チタンの酸化物にはさまざまな種類が知られており、そのうちの幾つかは商業的に重要である。典型的にはこれらの材料は白色の反磁性体で、融点は高く水溶性はない。二酸化チタンから高温で調製されることが多く、たとえばが用いられる。ほとんど全ての場合で、チタンは八面体型錯体を成す。.

新しい!!: 反磁性とチタン酸塩 · 続きを見る »

チタン酸カルシウム

チタン酸カルシウム(Calcium titanate)は、化学式CaTiO3の無機化合物である。鉱物としては、ロシアの鉱物学者レフ・ペロフスキー(1792年-1856年)の名前にちなんでペロブスカイトと呼ばれる。鉱物はしばしば不純物により色付くが、無色、反磁性の固体である。.

新しい!!: 反磁性とチタン酸カルシウム · 続きを見る »

ネオン

ネオン(neon )は原子番号 10、原子量 20.180 の元素である。名称はギリシャ語の'新しい'を意味する「νέος (neos)」に由来する。元素記号は Ne。 単原子分子として存在し、単体は常温常圧で無色無臭の気体。融点 −248.7 ℃、沸点 −246.0 ℃(ただし融点沸点とも異なる実験値あり)。密度は 0.900 g/dm (0 ℃, 1 atm)・液体時は 1.21 g/cm (−246 ℃)。空気中に18.2 ppm含まれ、希ガスとしてはアルゴンに次ぐ割合で存在する。工業的には、空気を液化・分留して作る手段が唯一事業性を持てる。磁化率 −0.334×10 cm/g。1体積の水に溶解する体積比は0.012。 ネオンの三重点(約24.5561 K)はITS-90の定義定点になっている。.

新しい!!: 反磁性とネオン · 続きを見る »

ポリパラフェニレンビニレン

ポリパラフェニレンビニレン(Poly(p-phenylene vinylene)、略称: PPV、ポリフェニレンビニレン polyphenylene vinyleneとも)は、剛直棒状高分子に分類される導電性高分子である。p-フェニレン基とビニレン基の繰り返し構造を持つ。PPVは、この種の高分子の内で唯一高秩序結晶性薄膜が製造できる。PPVとその誘導体はドーピングにより導電性を示す。 水には不溶だが、前駆体は水溶液中で扱うことができる。光学バンドギャップが狭く、明るい黄色の蛍光を発するため、有機発光ダイオード (OLED) や太陽電池への応用が模索されている。また、PPVをドープすることにより導電性材料を製造することもある。物理的および電気的物性は側鎖に官能基を導入することで変化させることができる。.

新しい!!: 反磁性とポリパラフェニレンビニレン · 続きを見る »

ポロニウム

ポロニウム(polonium)は原子番号84の元素。元素記号は Po。漢字では。安定同位体は存在しない。第16族元素の一つ。銀白色の金属(半金属)。常温、常圧で安定な結晶構造は、単純立方晶 (α-Po)。36 以上で立方晶から菱面体晶 (β-Po) に構造相転移する。.

新しい!!: 反磁性とポロニウム · 続きを見る »

ポール・ランジュバン

ポール・ランジュヴァン (Paul Langevin、1872年1月23日 – 1946年12月19日)は、フランスの物理学者。.

新しい!!: 反磁性とポール・ランジュバン · 続きを見る »

メチルマロニルCoAムターゼ

メチルマロニルCoAムターゼ(英: Methylmalonyl Coenzyme A mutase)は、メチルマロニルCoAをスクシニルCoAへの異性化を触媒する酵素であり、主要な代謝経路に含まれている。これが機能するためには、ビタミンB12誘導体補因子であるアデノシルコバラミンが必要である。.

新しい!!: 反磁性とメチルマロニルCoAムターゼ · 続きを見る »

ヨウ素

ヨウ素(ヨウそ、沃素、iodine)は、原子番号 53、原子量 126.9 の元素である。元素記号は I。あるいは分子式が I2 と表される二原子分子であるヨウ素の単体の呼称。 ハロゲン元素の一つ。ヨード(沃度)ともいう。分子量は253.8。融点は113.6 ℃で、常温、常圧では固体であるが、昇華性がある。固体の結晶系は紫黒色の斜方晶系で、反応性は塩素、臭素より小さい。水にはあまり溶けないが、ヨウ化カリウム水溶液にはよく溶ける。これは下式のように、ヨウ化物イオンとの反応が起こることによる。 単体のヨウ素は、毒物及び劇物取締法により医薬用外劇物に指定されている。.

新しい!!: 反磁性とヨウ素 · 続きを見る »

ランダウ反磁性

ランダウ反磁性(-はんじせい、Landau diamagnetism)とは反磁性のひとつであり、金属中の自由電子による反磁性である。1930年にレフ・ランダウによって量子論的な理論により求められた。古典論ではランダウ反磁性は生じず(ボーア=ファン・リューエンの定理: 古典論ではいかなる反磁性・強磁性も説明できない)、ランダウ反磁性を説明するには量子論が必要である。 フェルミ縮退している自由電子の磁化率は以下と表される。 ここで.

新しい!!: 反磁性とランダウ反磁性 · 続きを見る »

ラーモア反磁性

ラーモア反磁性( - はんじせい、Larmor diamagnetism)とは反磁性のひとつであり、古典的には原子に磁場をかけたときに、電子がレンツの法則に従い原子核のまわりでラーモア運動とよばれるサイクロトロン運動をする(より正確には、元の軌道半径は変わらずに角周波数が増える)ことによって生じる反磁性である。1905年にポール・ランジュバンによって理論的に求められた。このような電子の運動はジョセフ・ラーモアにより研究されたため、ラーモア反磁性とよばれる。また、理論により求めたランジュバンより、ランジュバンの反磁性と呼ばれることもある。 ラーモア反磁性の大きさは、温度に依存しない。また、原子番号Zが大きい元素では反磁性が大きくなる。更に、電子の軌道半径に依存するため、かつては磁化率の値から原子の大きさを求めるために利用されていた。 貴ガス原子やイオン芯 などでは、電子軌道が閉殻となっており、その結果反磁性を示す。これは閉殻電子では軌道角運動量の和Lやスピン角運動量の和Sがゼロとなっており、よってラーモア反磁性よりも強いスピンや軌道角運動量による磁気モーメントが消え、ラーモア反磁性の効果が残るためである。この反磁性は特に閉殻の反磁性、イオン芯の反磁性、コアの反磁性などとよばれることがある。 古典論で厳密な計算をすると、ラーモア反磁性はランジュバンの常磁性項と打ち消しあって消える。また、古典論では磁性を説明することができず(ボーア=ファン・リューエンの定理)、量子論が必要不可欠である。.

新しい!!: 反磁性とラーモア反磁性 · 続きを見る »

ラドン

ラドン(radon)は、原子番号86の元素。元素記号は Rn。.

新しい!!: 反磁性とラドン · 続きを見る »

ラジウム

ラジウム(radium)は、原子番号88の元素。元素記号は Ra。アルカリ土類金属の一つ。安定同位体は存在しない。天然には4種類の同位体が存在する。白色の金属で、比重はおよそ5-6、融点は700 、沸点は1140 。常温、常圧での安定な結晶構造は体心立方構造 (BCC)。反応性は強く、水と激しく反応し、酸に易溶。空気中で簡単に酸化され暗所で青白く光る。原子価は2価。化学的性質などはバリウムに似る。炎色反応は洋紅色。 ラジウムがアルファ崩壊してラドンになる。ラジウムの持つ放射能を元にキュリー(記号 Ci)という単位が定義され、かつては放射能の単位として用いられていた。現在、放射能の単位はベクレル(記号 Bq)を使用することになっており、1 Ciは3.7 × 1010 Bqに相当する。なお、ラジウム224、226、228は WHO の下部機関 IARC より発癌性があると (Type1) 勧告されている。 ラジウムそのものの崩壊ではアルファ線しか放出されないが、その後の娘核種の崩壊でベータ線やガンマ線なども放出される。.

新しい!!: 反磁性とラジウム · 続きを見る »

リン

リン(燐、、)は原子番号 15、原子量 30.97 の元素である。元素記号は P。窒素族元素の一つ。白リン(黄リン)・赤リン・紫リン・黒リンなどの同素体が存在する。+III(例:六酸化四リン PO)、+IV(例:八酸化四リン PO)、+V(例:五酸化二リン PO)などの酸化数をとる。.

新しい!!: 反磁性とリン · 続きを見る »

レフ・ランダウ

レフ・ダヴィドヴィッチ・ランダウ(、1908年1月22日 - 1968年4月1日)はロシアの理論物理学者。絶対零度近くでのヘリウムの理論的研究によってノーベル物理学賞を授与された。エフゲニー・リフシッツとの共著である『理論物理学教程』は、多くの言語に訳され、世界的にも標準的な教科書としてよく知られている。.

新しい!!: 反磁性とレフ・ランダウ · 続きを見る »

ヴィルヘルム・ヴェーバー

ヴィルヘルム・エドゥアルト・ヴェーバー(Wilhelm Eduard Weber、1804年10月24日 - 1891年6月23日)は、ドイツの物理学者。電気や磁気の精密な測定器具を製作して電磁気学の形成に貢献したほか、ガウスとともに電磁気の単位系の統一に努力し磁束のSI単位「ウェーバ」に名を残している。また、電気が荷電粒子の流れであるということを最初に主張した人物でもある。 生理学者のエルンスト・ヴェーバーは兄、エドゥアルト・ヴェーバーは弟。.

新しい!!: 反磁性とヴィルヘルム・ヴェーバー · 続きを見る »

ボーア=ファン・リューエンの定理

ボーア=ファン・リューエンの定理(―のていり、Bohr-van Leeuwen theorem)は固体物理学の定理であり、古典力学を適用すると熱平衡にある物質の磁化は0であるという定理である。これは古典力学では電子の集団の自由エネルギーは磁場に依存しないことから導かれる。これにより磁性は量子力学的効果だけによるものであり、よって古典物理学では反磁性、常磁性、強磁性などを説明できないということを意味する。ヴァン・ヴレックはボーア=ファン・リューエンの定理を簡潔に「いかなる有限の温度、有限の電場・磁場の下でも、熱平衡にある電子集団の磁化は結局はないに等しい。」と述べた。.

新しい!!: 反磁性とボーア=ファン・リューエンの定理 · 続きを見る »

ヘリウム

ヘリウム (新ラテン語: helium, helium )は、原子番号 2、原子量 4.00260、元素記号 He の元素である。 無色、無臭、無味、無毒(酸欠を除く)で最も軽い希ガス元素である。すべての元素の中で最も沸点が低く、加圧下でしか固体にならない。ヘリウムは不活性の単原子ガスとして存在する。また、存在量は水素に次いで宇宙で2番目に多い。ヘリウムは地球の大気の 0.0005 % を占め、鉱物やミネラルウォーターの中にも溶け込んでいる。天然ガスと共に豊富に産出し、気球や小型飛行船のとして用いられたり、液体ヘリウムを超伝導用の低温素材としたり、大深度へ潜る際の呼吸ガスとして用いられている。.

新しい!!: 反磁性とヘリウム · 続きを見る »

ヘキサアンミンコバルト(III)塩化物

ヘキサアンミンコバルト(III)塩化物(英語:Hexaamminecobalt(III) chloride)は化学式がCl3で表される化合物である。この錯体 は、典型的な"ヴェルナー錯体"である。この錯体の陽イオンは3+であり、それにCl−イオンが3つ結合している。この陽イオンはコバルト原子に6個のアンモニア分子が配位子として結合したである。 もともとこの化合物はルテオ(luteo、ラテン語で黄色という意味) コバルト錯体と呼ばれていたが、近代になって化学が発展し、色が構造に比べあまり重要ではないことがわかってきてからこの名前は使われなくなった。同様に色で呼ばれていた錯体としてペンタアンミン錯体はパープレオ(purpureo、ラテン語で紫)、テトラアンミン錯体の2つの異性体はそれぞれプラセオ(praseo、ギリシャ語で緑)とバイオレオ(violeo、ラテン語で菫色)と呼ばれていた。.

新しい!!: 反磁性とヘキサアンミンコバルト(III)塩化物 · 続きを見る »

ヒ素

ヒ素(砒素、ヒそ、arsenic、arsenicum)は、原子番号33の元素。元素記号は As。第15族元素(窒素族元素)の一つ。 最も安定で金属光沢があるため金属ヒ素とも呼ばれる「灰色ヒ素」、ニンニク臭があり透明なロウ状の柔らかい「黄色ヒ素」、黒リンと同じ構造を持つ「黒色ヒ素」の3つの同素体が存在する。灰色ヒ素は1気圧下において615 で昇華する。 ファンデルワールス半径や電気陰性度等さまざまな点でリンに似た物理化学的性質を示し、それが生物への毒性の由来になっている。.

新しい!!: 反磁性とヒ素 · 続きを見る »

ビスマス

ビスマス(bismuth)は原子番号83の元素。元素記号は Bi。第15族元素の一つ。日本名は蒼鉛。.

新しい!!: 反磁性とビスマス · 続きを見る »

ピエール・キュリー

ピエール・キュリー(Pierre Curie, 1859年5月15日 - 1906年4月19日)は、フランスの物理学者。結晶学、圧電効果、放射能といった分野の先駆的研究で知られている。1903年、妻マリ・キュリー(旧名マリア・スクウォドフスカ)やアンリ・ベクレルと共にノーベル物理学賞を受賞した。.

新しい!!: 反磁性とピエール・キュリー · 続きを見る »

テルル

テルル(tellurium)は原子番号52の元素。元素記号は Te。第16族元素の一つ。.

新しい!!: 反磁性とテルル · 続きを見る »

テトラカルボニルニッケル

テトラカルボニルニッケル (tetracarbonylnickel) またはニッケルカルボニル (nickel carbonyl) は、ニッケルの一酸化炭素錯体である。化学式 Ni(CO) で表される、無色もしくは黄色で揮発性の液体である。毒性が非常に高く、「死の液体 (liquid death)」の異名を持つ。歴史、応用、理論の各方面で重要な化合物である。毒物及び劇物取締法により毒物に指定されている。.

新しい!!: 反磁性とテトラカルボニルニッケル · 続きを見る »

テトラクロリド白金(II)酸カリウム

テトラクロリド白金(II)酸カリウム(テトラクロリドはっきん に さんカリウム、potassium tetrachloroplatinate(II))は、化学式 K2 で表される白金(II)のクロリド錯体であり無機化合物の一種である。数多くの白金(II)錯体の合成出発物質として用いられる。.

新しい!!: 反磁性とテトラクロリド白金(II)酸カリウム · 続きを見る »

フッ化タングステン(VI)

六フッ化タングステンもしくはフッ化タングステン(VI)はWF6の組成式で表されるフッ素とタングステンからなる無機化合物である。標準状態では腐食性を有する無色の気体であり、その密度はおよそ13 g/Lと空気の約11倍重く、標準状態において気体である既知の物質の中でも最も重い物質の一つである。WF6は集積回路やプリント基板の製造において低抵抗の金属配線層を形成するのに利用される。これは化学気相蒸着法を用いて基板上でWF6を分解させることによって金属タングステンを堆積させるものである。.

新しい!!: 反磁性とフッ化タングステン(VI) · 続きを見る »

フッ化銀

フッ化銀(フッかぎん、silver fluoride)とは、フッ素と銀からなる無機化合物である。銀のフッ化物にあたる。銀の酸化数が1/2, 1, 2, 3の化合物が知られており、それぞれ一フッ化二銀、フッ化銀(I)、フッ化銀(II)、フッ化銀(III)と呼ばれる。 酸化数の多様性以外にも、フッ化銀は他のハロゲン化銀と性質が大きく異なる。.

新しい!!: 反磁性とフッ化銀 · 続きを見る »

ニトロソベンゼン

ニトロソベンゼン (nitrosobenzene) とは、示性式が C6H5NO と表される芳香族化合物。ベンゼンの水素がひとつニトロソ基に置き換わったもので、反磁性。二量体 (C6H5-N(.

新しい!!: 反磁性とニトロソベンゼン · 続きを見る »

ホウ化物

化学においてホウ化物(ホウかぶつ、Boride)とは、ホウ素とそれより電気陰性度が小さい元素との間の化合物の総称である。ホウ化物は非常に大きな化合物の一群であり、一般に融点が高く天然では非イオン性である。いくつかのホウ化物は非常に役立つ物理的特性を持つ。また、ホウ化物という用語は大まかであり、二十面体ホウ化物であるB12As2のような化合物にも適用される。.

新しい!!: 反磁性とホウ化物 · 続きを見る »

ホウ素

ホウ素(ホウそ、硼素、boron、borium)は、原子番号 5、原子量 10.81、元素記号 B で表される元素である。高融点かつ高沸点な硬くて脆い固体であり、金属元素と非金属元素の中間の性質を示す(半金属)。1808年にゲイ.

新しい!!: 反磁性とホウ素 · 続きを見る »

ベリリウム

ベリリウム(beryllium, beryllium )は原子番号 4 の元素である。元素記号は Be。第2族元素に属し、原子量は 9.01218。ベリリウムは緑柱石などの鉱物から産出される。緑柱石は不純物に由来する色の違いによってアクアマリンやエメラルドなどと呼ばれ、宝石としても用いられる。常温常圧で安定した結晶構造は六方最密充填構造(HCP)である。単体は銀白色の金属で、空気中では表面に酸化被膜が生成され安定に存在できる。モース硬度は6から7を示し、硬く、常温では脆いが、高温になると展延性が増す。酸にもアルカリにも溶解する。ベリリウムの安定同位体は恒星の元素合成においては生成されず、宇宙線による核破砕によって炭素や窒素などのより重い元素から生成される。 ベリリウムは主に合金の硬化剤として利用され、その代表的なものにベリリウム銅合金がある。また、非常に強い曲げ強さ、熱的安定性および熱伝導率の高さ、金属としては比較的低い密度などの物理的性質を利用して、高速航空機やミサイル、宇宙船、通信衛星などの軍事産業や航空宇宙産業において構造部材として用いられる。ベリリウムは低密度かつ原子量が小さいためX線やその他電離放射線に対して透過性を示し、その特性を利用してX線装置や粒子物理学の試験におけるX線透過窓として用いられる。 ベリリウムを含有する塵は人体へと吸入されることによって毒性を示すため、その商業利用には技術的な難点がある。ベリリウムは細胞組織に対して腐食性であり、慢性ベリリウム症と呼ばれる致死性の慢性疾患を引き起こす。.

新しい!!: 反磁性とベリリウム · 続きを見る »

アルゴン

アルゴン(argon)は原子番号 18 の元素で、元素記号は Ar である。原子量は 39.95。周期表において第18族元素(希ガス)かつ第3周期元素に属す。.

新しい!!: 反磁性とアルゴン · 続きを見る »

アンチモン

アンチモン(Antimon 、antimony 、stibium)は原子番号51の元素。元素記号は Sb。常温、常圧で安定なのは灰色アンチモンで、銀白色の金属光沢のある硬くて脆い半金属の固体。炎色反応は淡青色(淡紫色)である。レアメタルの一種。古い資料や文献によっては英語の読み方を採用してアンチモニー(安質母尼)と表記されている事もある。 元素記号の Sb は輝安鉱(三硫化二アンチモン、Sb2S3)を意味するラテン語 Stibium から取られている。.

新しい!!: 反磁性とアンチモン · 続きを見る »

インジウム

インジウム(indium )は、原子番号49の元素。元素記号は In。第13族元素の1つ。銀白色の柔らかい金属である。常温で安定な結晶構造は正方晶系。比重7.3、融点は156.4 と低い。常温では空気中で安定である。酸には溶けるが、塩基や水とは反応しない。.

新しい!!: 反磁性とインジウム · 続きを見る »

イグノーベル賞受賞者の一覧

イグノーベル賞受賞者の一覧は、第1回(1991年)から現在までの、イグノーベル賞受賞者の一覧である。.

新しい!!: 反磁性とイグノーベル賞受賞者の一覧 · 続きを見る »

ウィリアム・トムソン

初代ケルヴィン男爵ウィリアム・トムソン(William Thomson, 1st Baron Kelvin OM, GCVO, PC, PRS, PRSE、1824年6月26日 - 1907年12月17日)は、アイルランド生まれのイギリスの物理学者。爵位に由来するケルヴィン卿(Lord Kelvin)の名で知られる。特にカルノーの理論を発展させた絶対温度の導入、クラウジウスと独立に行われた熱力学第二法則(トムソンの原理)の発見、ジュールと共同で行われたジュール=トムソン効果の発見などといった業績がある。これらの貢献によって、クラウジウス、ランキンらと共に古典的な熱力学の開拓者の一人と見られている。このほか電磁気学や流体力学などをはじめ古典物理学のほとんどの分野に600を超える論文を発表した。また、電磁誘導や磁気力を表すためにベクトルを使い始めた人物でもある。.

新しい!!: 反磁性とウィリアム・トムソン · 続きを見る »

オルトチタン酸テトライソプロピル

ルトチタン酸テトライソプロピル(オルトチタンさんテトライソプロピル、titanium isopropoxide)は、化学式がTi4の化合物である。英語名の一般名称であるTitanium tetraisopropoxide からTTIPと略される。TTIPは、金属種が4価のチタンであるアルコキシドで、4面体構造を持った反磁性の分子である。主に無極性溶媒で単量体の状態で存在しBradley, D. C.; Mehrotra, R.; Rothwell, I.; Singh, A. “Alkoxo and Aryloxo Derivatives of Metals” Academic Press, San Diego, 2001.

新しい!!: 反磁性とオルトチタン酸テトライソプロピル · 続きを見る »

カルシウム

ルシウム(calcium、calcium )は原子番号 20、原子量 40.08 の金属元素である。元素記号は Ca。第2族元素に属し、アルカリ土類金属の一種で、ヒトを含む動物や植物の代表的なミネラル(必須元素)である。.

新しい!!: 反磁性とカルシウム · 続きを見る »

カドミウム

ドミウム(cadmium)は原子番号48の金属元素である。元素記号は Cd で、いわゆる亜鉛族元素の一つ。安定な六方最密充填構造 (HCP) をとる。融点は320.9 。化学的挙動は亜鉛と非常に良く似ており、常に亜鉛鉱と一緒に産出する(亜鉛鉱に含まれている)ため亜鉛精錬の際回収されている。軟金属である。 カドミウムは人体にとって有害(腎臓機能に障害が生じ、それにより骨が侵される)で、日本ではカドミウムによる環境汚染で発生したイタイイタイ病が問題となった。またカドミウムとその化合物はWHOの下部機関IARCよりヒトに対して発癌性があると (Group1) 勧告されている。 ホタテガイの中腸腺(ウロ)にはカドミウムが蓄積することが知られている。.

新しい!!: 反磁性とカドミウム · 続きを見る »

ガリウム

リウム (gallium) は原子番号31の元素で、元素記号は Ga である。ホウ素、アルミニウムなどと同じ第13族元素に属する。圧力、温度によっていくつかの安定な結晶構造がある。常温、常圧では斜方晶系が安定(比重 5.9)で、青みがかった金属光沢がある金属結晶である。融点は 29.8 と低いが、一方、沸点は 2403 村上 (2004) 124頁。(異なる実験値あり)と非常に高い。酸やアルカリに溶ける両性である。価電子は3個 (4s, 4p) だが、3d軌道も比較的浅いところにある。 また、水と同じように、液体の方が固体よりも体積が小さい異常液体である。ガリウムは固体から液体になると、その体積が約3.4%減少する。そのため金属のガリウムをガラス容器に保管すると相転移に伴う体積変化によって容器が破損するため、通常はポリ容器に保管される。.

新しい!!: 反磁性とガリウム · 続きを見る »

キセノン

ノン(xenon)は原子番号54の元素。元素記号は Xe。希ガス元素の一つ。ラムゼー (W. Ramsay) と (M. W. Travers) によって1898年に発見された。ギリシャ語で「奇妙な」「なじみにくいもの」を意味する ξένος (xenos) の中性単数形の ξένον (xenon) が語源。英語圏ではゼノン と発音されることが多い。 常温常圧では無色無臭の気体。融点-111.9 、沸点-108.1 。空気中にもごく僅かに(約0.087 ppm)含まれる。固体では安定な面心立方構造をとる。 一般に希ガスは最外殻電子が閉殻構造をとるため、反応性はほとんど見られない。しかし、キセノンの最外殻 (5s25p6) は原子核からの距離が離れているため、他の電子による遮蔽効果によって束縛が弱まっており、比較的イオン化しやすい(イオン化エネルギーが他の希ガス元素に比べて相対的に低い)。このため、反応性の強いフッ素や酸素と反応して、フッ化物や酸化物を形成する。.

新しい!!: 反磁性とキセノン · 続きを見る »

クリプトン

リプトン(krypton)は原子番号36の元素。元素記号は Kr。希ガス元素の一つ。 常温、常圧で無色、無臭の気体。融点は-157.2 、沸点は-152.9 (-153.4)、比重は2.82 (-157)。重い気体であるため、吸引すると声が低くなる。空気中には1.14 ppmの割合で含まれている。空気を液化、分留することにより得られる。不活性であるがフッ素とは酸化数が+2の不安定な化合物を作る。また、水やヒドロキノンと包接化合物を作る。.

新しい!!: 反磁性とクリプトン · 続きを見る »

グーイの磁気天秤

ーイの磁気天秤の模式図 グーイの磁気天秤(グーイのじきてんびん)とは、が発明した、試料の磁化率を測る機器である。.

新しい!!: 反磁性とグーイの磁気天秤 · 続きを見る »

ケイ素

イ素(ケイそ、珪素、硅素、silicon、silicium)は、原子番号 14 の元素である。元素記号は Si。原子量は 28.1。「珪素」「硅素」「シリコン」とも表記・呼称される。地球の主要な構成元素のひとつ。半導体部品は非常に重要な用途である。 地殻中に大量に存在するため鉱物の構成要素として重要であり、ケイ酸塩鉱物として大きなグループを形成している。これには Si-O-Si 結合の多様性を反映したさまざまな鉱物が含まれている。しかしながら生物とのかかわりは薄く、知られているのは、放散虫・珪藻・シダ植物・イネ科植物などにおいて二酸化ケイ素のかたちでの骨格への利用に留まる。栄養素としての必要性はあまりわかっていない。炭素とケイ素との化学的な類似から、SF などではケイ素を主要な構成物質とするケイ素生物が想定されることがある。 バンドギャップが常温付近で利用するために適当な大きさであること、ホウ素やリンなどの不純物を微量添加させることにより、p型半導体、n型半導体のいずれにもなることなどから、電子工学上重要な元素である。半導体部品として利用するためには高純度である必要があり、このため精製技術が盛んに研究されてきた。現在、ケイ素は99.9999999999999 % (15N) まで純度を高められる。また、Si(111) 基板はAFMやSTMの標準試料としてよく用いられる。.

新しい!!: 反磁性とケイ素 · 続きを見る »

ゲルマニウム

ルマニウム(germanium )は原子番号32の元素。元素記号は Ge。炭素族の元素の一つ。ケイ素より狭いバンドギャップ(約0.7 eV)を持つ半導体で、結晶構造は金剛石構造である。.

新しい!!: 反磁性とゲルマニウム · 続きを見る »

シクロプロパン

プロパン(cyclopropane)は、分子式 C3H6を持つシクロアルカン分子である。3つの炭素原子が互いにつながり環を形成し、それぞれの炭素原子が2つの水素原子と結合することで、D3h分子対称性を持つ。シクロプロパンおよびプロペンは同じ分子式を持つが異なる構造を持つ構造異性体である。 融点 −127℃、沸点 −33℃、CAS登録番号は 。常温で無色の気体で 4–6 気圧に加圧すると液化する。常温で2.7倍の体積の水に溶解し、エタノール、アセトンに可溶である。 シクロプロパンは吸引すると麻酔作用を示す。現代では、通常条件下でのその極めて高い反応性のためにその他の麻酔薬に取って代わられている。シクロプロパンガスが酸素と混合すると、爆発の危険性が高い。.

新しい!!: 反磁性とシクロプロパン · 続きを見る »

ジョン・ティンダル

ョン・ティンダル(John Tyndall、1820年8月2日 - 1893年12月4日)は、アイルランド出身の物理学者、登山家である。 物理学者として一般に知られる業績としては、チンダル現象を発見したことである。その他にも、赤外線放射(温室効果)、反磁性体、に関して突出した業績を残した。 登山家としてはアルプス山脈5番目の最高峰ヴァイスホルンの初登頂に成功した(1861年8月19日)。また、マッターホルンの初登頂を競い、1862年に山頂から標高230m下の肩にまで達した(エドワード・ウィンパーが1865年に初登頂した)。1868年にはマッターホルンの初縦走に成功している。なお、登山の元々の目的は物理学者としてアルプスの氷河を研究することであった。 1852年王立協会フェロー選出、同協会から1853年ロイヤル・メダル、1864年ランフォード・メダル受賞。.

新しい!!: 反磁性とジョン・ティンダル · 続きを見る »

ジラジカル

有機化学におけるジラジカル(diradical)は、2つの電子が2つの縮退した分子軌道を占有している分子種である。これらは高い反応性と短い寿命を持つことで知られている。より広い定義では、ジラジカルは原子価の標準規則によって許される数よりも1つ少ない結合を持つ偶数電子分子である。2つの電子のスピンが反平行とすると、分子は一重項状態にあると言われる。電子のスピンが平行とすると、三重項状態となる。似たラジカルは1つの不対電子しかもたない。「一重項」および「三重項」という用語は電子スピン共鳴におけるジラジカルの多重度から来ている。一重項ジラジカルは1つの状態(S.

新しい!!: 反磁性とジラジカル · 続きを見る »

ジルコニウム

ルコニウム(zirconium)は原子番号40の元素。元素記号は Zr。チタン族元素の1つ、遷移金属でもある。常温で安定な結晶構造は、六方最密充填構造 (HCP) のα型。862 ℃以上で体心立方構造 (BCC) のβ型へ転移する。比重は6.5、融点は1852 ℃。銀白色の金属で、常温で酸、アルカリに対して安定。耐食性があり、空気中では酸化被膜ができ内部が侵されにくくなる。高温では、酸素、窒素、水素、ハロゲンなどと反応して、多様な化合物を形成する。.

新しい!!: 反磁性とジルコニウム · 続きを見る »

ジクロロ(1,3-ビス(ジフェニルホスフィノ)プロパン)ニッケル(II)

ニッケル(II) (dichloronickel(II)) は、化学式が NiCl2(dppp) で表される錯体である(dppp はジホスフィン;Ph2PCH2CH2CH2PPh2)。有機合成の触媒として使われる。外見は鮮やかな赤橙色の結晶粉末。.

新しい!!: 反磁性とジクロロ(1,3-ビス(ジフェニルホスフィノ)プロパン)ニッケル(II) · 続きを見る »

ジクロロ(シメン)ルテニウムダイマー

(シメン)ルテニウムダイマー((Cymene)ruthenium dichloride dimer)は。化学式が2の有機金属化合物である。反磁性の赤色の固体で、有機合成化学にいて均一系触媒として使われる。.

新しい!!: 反磁性とジクロロ(シメン)ルテニウムダイマー · 続きを見る »

スズ

(錫、Tin、Zinn)とは、典型元素の中の炭素族元素に分類される金属で、原子番号50の元素である。元素記号は Sn。.

新しい!!: 反磁性とスズ · 続きを見る »

セバールド・ユスティヌス・ブルグマンス

バールド・ユスティヌス・ブルグマンス(Sebald Justinus Brugmans、1763年3月24日 - 1819年7月22日)は、オランダの植物学者、医師である。.

新しい!!: 反磁性とセバールド・ユスティヌス・ブルグマンス · 続きを見る »

セレン

レン(selenium 、Selen )は原子番号34の元素。元素記号は Se。カルコゲン元素の一つ。セレニウムとも呼ばれる。.

新しい!!: 反磁性とセレン · 続きを見る »

タリウム

タリウム(thallium)は原子番号81の元素。元素記号は Tl。第13族元素の一つ。硫化鉱物(硫化バナジウムや黄鉄鉱)中に微量に存在するため、銅、鉛、亜鉛の硫化鉱物の精錬副産物から回収し得る。.

新しい!!: 反磁性とタリウム · 続きを見る »

四酸化二窒素

四酸化二窒素(しさんかにちっそ、dinitrogen tetroxide or nitrogen peroxide)は化学式 N2O4で表される窒素酸化物の一種である。窒素の酸化数は+4。強い酸化剤で高い毒性と腐食性を有する。四酸化二窒素はロケットエンジンの推進剤で酸化剤として注目されてきた。また化学合成においても有用な試薬である。固体では無色であるが、液体、気体では平衡副生成物の為、呈色している場合が多い(構造と特性に詳しい)。.

新しい!!: 反磁性と四酸化二窒素 · 続きを見る »

四酸化ルテニウム

四酸化ルテニウム(しさんかルテニウム、Ruthenium(VIII) tetroxide)は、組成式がRuO4の無機化合物である。無色の揮発性・反磁性液体だが、不純物によって大抵黒色である。四塩化炭素などの溶媒で安定した状態となる。.

新しい!!: 反磁性と四酸化ルテニウム · 続きを見る »

CØDE:BREAKER

『CØDE:BREAKER』(コード:ブレイカー)は、上条明峰による日本の漫画作品。2008年28号から2013年33号まで『週刊少年マガジン』(講談社)において連載。話数表示は「code:○」。「異能」と呼ばれる特殊能力により「悪」を滅する者「コード:ブレイカー」達の戦いを描く。タイトルの「Ø」という文字について、作者は「φ(ファイ)ではなく0(ゼロ)。ただしO(オー)でも良い。」と語っている。 2011年9月、『マガジン』誌上にて連載150回と共にテレビアニメ化が発表され『週刊少年マガジン』2012年No.29。、2012年10月から12月にかけて放送された。.

新しい!!: 反磁性とCØDE:BREAKER · 続きを見る »

硫黄

硫黄(いおう、sulfur, sulphur)は原子番号 16、原子量 32.1 の元素である。元素記号は S。酸素族元素の一つ。多くの同素体や結晶多形が存在し、融点、密度はそれぞれ異なる。沸点 444.674 ℃。大昔から自然界において存在が知られており、発見者は不明になっている。硫黄の英名 sulfur は、ラテン語で「燃える石」を意味する言葉に語源を持っている。.

新しい!!: 反磁性と硫黄 · 続きを見る »

磁力

磁力(じりょく)とは、磁石や電流が発生させる磁場により、磁石や電流が流れている導体どうし、あるいはそれらと強磁性体の間に発生する力である。同種の磁極の間には退け合う力が、異種の磁極では引き合う力が働く。この力のことを磁力、または磁気力(じきりょく)という。.

新しい!!: 反磁性と磁力 · 続きを見る »

磁気モーメント

磁気モーメント(じきモーメント、)あるいは磁気能率とは、磁石の強さ(磁力の大きさ)とその向きを表すベクトル量である。外部にある磁場からもたらされる磁石にかかるねじる方向に働く力のベクトル量を指す。ループ状の電流や磁石、電子、分子、惑星などもそれぞれ磁気モーメントを持っている。 磁気モーメントは強さと方向を持ったベクトルと考えることができる。磁気モーメントの方向は磁石のS極からN極へ向いている。磁石がつくる磁場は磁気モーメントに比例する。正確には「磁気モーメント」とは一般的な磁場をしたときの1次項が生成する磁気双極子モーメントの系を言う。物体の磁場の双極子成分は磁気双極子モーメントの方向について対称であり、物体からの距離の −3 乗に比例して減少していく。 磁気モーメントは周囲に磁束を作る。 対になる磁極の強さを ±m とし、負極から正極を指すベクトルを d とする。磁気モーメント m はモーメントの名のとおり、m と d の積である。 磁力は電荷が移動することで発生する。回転する電荷は中心に位置する磁気モーメントと等価であり、その磁気モーメントは電荷のもつ角運動量と比例関係にある。.

新しい!!: 反磁性と磁気モーメント · 続きを見る »

磁気処理水

磁気処理水(じきしょりすい、magnetic water)とは、磁気により磁化されたと称する水のことである。磁気活性水(じきかっせいすい)とも呼ばれる。単に活性水あるいは、磁気水や磁化水(じかすい)ともいわれる。 根拠のない効用をうたう磁気処理装置の販売業者があり、2005年には取扱業者に対して公正取引委員会による排除命令もだされている。磁気が水に与える効果についてはいまだ不明な点が多い。.

新しい!!: 反磁性と磁気処理水 · 続きを見る »

磁気浮上

磁気浮上(じきふじょう、magnetic suspension)は、磁力のみによって物体を空中浮揚させる方法を指す。マグレブとも。重力に抗する力として電磁気力が用いられる。 いくつかの場合には、浮上のための力としては磁気浮上を用いるものの安定化のために微小な力を加える支持機構が用いられる。これは擬似磁気浮上(pseudo-levitation)と呼ばれる。 磁気浮上式鉄道、磁気軸受、商品展示などに用いられる。.

新しい!!: 反磁性と磁気浮上 · 続きを見る »

磁性

物理学において、磁性(じせい、magnetism)とは、物質が原子あるいは原子よりも小さいレベルで磁場に反応する性質であり、他の物質に対して引力や斥力を及ぼす性質の一つである。磁気(じき)とも言う。.

新しい!!: 反磁性と磁性 · 続きを見る »

磁性体

磁性体(じせいたい)とは、平易には磁性を帯びる事が可能な物質であり、専門的には反磁性体・常磁性体・強磁性体の3つに分けられる。このため、すべての物質が磁性体であるといえるが、普通は強磁性体のみを磁性体と呼ぶ。比較的簡単に磁極が消えたり反転してしまう磁性体は軟質磁性体と呼ばれ、そうでない磁性体は硬質磁性体と呼ばれる「したしむ磁性」 朝倉書店 ISBN 4-254-22764-7。 代表的な磁性体に酸化鉄・酸化クロム・コバルト・フェライトなどがある。 固体状態のものは磁石として、電動機の界磁として使用される。 硬質材料の円盤上に磁性粉を塗布あるいは蒸着したものがハードディスクドライブ(のプラッタ)に用いられる。柔軟な合成ゴムにまぜて板状にするとマグネットシートになり、液体にコロイド分散させると磁性流体となる。医療分野では強力な磁力を使ったMRIやごく微弱な磁力を利用するSQUIDの形で実用化されている。新しい情報記憶素子のMRAMなどを含むスピントロニクスと呼ばれる科学研究分野が注目されている。.

新しい!!: 反磁性と磁性体 · 続きを見る »

窒素

素(ちっそ、nitrogen、nitrogenium)は原子番号 7 の元素。元素記号は N。原子量は 14.007。空気の約78.08 %を占めるほか、アミノ酸をはじめとする多くの生体物質中に含まれており、地球のほぼすべての生物にとって必須の元素である。 一般に「窒素」という場合は、窒素の単体である窒素分子(窒素ガス、N2)を指すことが多い。窒素分子は常温では無味無臭の気体として安定した形で存在する。また、液化した窒素分子(液体窒素)は冷却剤としてよく使用されるが、液体窒素温度 (-195.8 ℃, 77 K) から液化する。.

新しい!!: 反磁性と窒素 · 続きを見る »

炭化ハフニウム

炭化ハフニウム (Hafnium carbide) は、ハフニウムと炭素から構成される化合物である。融点は約3900°C で、既知の最も耐火性のある二元化合物である。しかし、耐酸化性は弱く、約430°C で酸化が始まる。 炭化ハフニウムは、通常炭素が欠けているため、しばしば HfC (x.

新しい!!: 反磁性と炭化ハフニウム · 続きを見る »

炭素

炭素(たんそ、、carbon)は、原子番号 6、原子量 12.01 の元素で、元素記号は C である。 非金属元素であり、周期表では第14族元素(炭素族元素)および第2周期元素に属する。単体・化合物両方において極めて多様な形状をとることができる。 炭素-炭素結合で有機物の基本骨格をつくり、全ての生物の構成材料となる。人体の乾燥重量の2/3は炭素である​​。これは蛋白質、脂質、炭水化物に含まれる原子の過半数が炭素であることによる。光合成や呼吸など生命活動全般で重要な役割を担う。また、石油・石炭・天然ガスなどのエネルギー・原料として、あるいは二酸化炭素やメタンによる地球温暖化問題など、人間の活動と密接に関わる元素である。 英語の carbon は、1787年にフランスの化学者ギトン・ド・モルボーが「木炭」を指すラテン語 carbo から名づけたフランス語の carbone が転じた。ドイツ語の Kohlenstoff も「炭の物質」を意味する。日本語の「炭素」という語は宇田川榕菴が著作『舎密開宗』にて用いたのがはじめとされる。.

新しい!!: 反磁性と炭素 · 続きを見る »

物質の状態

物質の状態は、相の違いにより区別される物質の状態である。 歴史的には、物質の状態は巨視的な性質により区別されていた。即ち、固体は定まった体積と形を持つ。液体は定まった体積を持つが、形は定まっていない。気体は体積も形も定まっていない。近年では、物質の状態は分子間相互作用によって区別されている。即ち、固体は分子間の相互配置が定まっており、液体では近接分子は接触しているが相互配置は定まっていないのに対し、気体では分子はかなり離れていて、分子間相互作用はそれぞれの運動にほとんど影響を及ぼしていない。また、プラズマは高度にイオン化した気体で、高温下で生じる。イオンの引力、斥力による分子間相互作用によりこのような状態を生じるため、プラズマはしばしば「第四の状態」と呼ばれる。 分子以外から構成される物質や別の力で組織される物質の状態も、ある種の「物質の状態」だと考えられる。フェルミ凝縮やクォークグルーオンプラズマ等が例として挙げられる。 また、物質の状態は相転移からも定義される。相転移は物質の性質の突然の変化から構造の変化を示すものである。この定義では、物質の状態とは他とは異なった熱力学的状態のことである。水はいくつかの異なった固体の状態を持つといえる。また、超伝導の出現は相転移と関連していて、「超伝導状態」という状態がある。液晶や強磁性が相転移により特別の性質を持つのと同様である。 相転移のダイアグラム.

新しい!!: 反磁性と物質の状態 · 続きを見る »

銅(どう)は原子番号29の元素。元素記号は Cu。 周期表では金、銀と同じく11族に属する遷移金属である。英語でcopper、ラテン語でcuprumと言う。.

新しい!!: 反磁性と銅 · 続きを見る »

銀(ぎん、silver、argentum)は原子番号47の元素。元素記号は Ag。貴金属の一種。.

新しい!!: 反磁性と銀 · 続きを見る »

過酸化物

過酸化物(かさんかぶつ、peroxide)は、有機化合物では官能基としてペルオキシド構造 (-O-O-) または過カルボン酸構造(-C(.

新しい!!: 反磁性と過酸化物 · 続きを見る »

非磁性体

非磁性体(ひじせいたい)とは強磁性体でない物質のことであり、以下の3種類の総称である。.

新しい!!: 反磁性と非磁性体 · 続きを見る »

超反磁性

超伝導体は磁場中に置かれたとき本質的に完全反磁性材料として振る舞い、磁場を排除するため、磁束線が完全がその領域を避ける 超反磁性もしくは完全反磁性は特定の材料を低温下にしたときに起きる現象であり、透磁率が完全になく(すなわち磁化率 \chi_.

新しい!!: 反磁性と超反磁性 · 続きを見る »

超電導リニア

超電導リニア(ちょうでんどうリニア、英訳:SCMaglev, Superconducting Maglev, Superconducting Magnetic Levitation Railway)は、鉄道総合技術研究所(鉄道総研)および東海旅客鉄道(JR東海)により開発が進められている磁気浮上式リニアモーターカーである。超電導電磁石(超伝導電磁石)を利用するため、開発を推進するJR東海では超電導リニアと呼んでいるが、国土交通省では「超電導磁気浮上方式鉄道」という呼び方もしており、また「JRマグレブ」という呼び方もある。マグレブ (Maglev) とは英語の“magnetic levitation”(磁気浮上)を省略した呼称である。 新幹線を始めとする、従来の軌道接地走行の技術的問題点を回避できる浮上走行を行う。磁気浮上方式鉄道としては他に、ドイツのトランスラピッドや日本のHSSTなどがあるが、この2者は常電導電磁石による浮上であり、超電導電磁石によるリニアモーターでの走行は、世界でもこの超電導リニアのみである。超電導磁石による浮上・案内という基本原理は、米国のPowell、Danby両博士の米国機械学会誌への発表によるものであるが、その後、基礎技術から日本で独自に研究・開発が行われた点も特筆すべき事柄である。技術的には既に実用化段階にあり、有人の試験走行で2003年(平成15年)12月にMLX01の3両編成が鉄道における世界最高速度となる581km/hを記録、2015年(平成27年)4月16日にはL0系7両編成が590km/h、同月21日には同じくL0系7両編成が603km/hを記録し、MLX01の世界記録を更新した。 2027年を目標に中央新幹線として、品川駅 - 名古屋駅間の営業運転を開始する予定である。.

新しい!!: 反磁性と超電導リニア · 続きを見る »

臭化タンタル(V)

臭化タンタル(V)(Tantalum(V) bromide)は、Ta2Br10の化学式を持つ無機化合物である。反磁性を持つ黄色の固体で、すぐに加水分解する。2つのTaBr5サブユニットが臭素原子の架橋リガンドで結ばれ、辺を共有した八面体が2つ繋がった構造をしている。ニオブ及びタンタルの五塩化物及び五ヨウ化物も、同じ構造を持つ。.

新しい!!: 反磁性と臭化タンタル(V) · 続きを見る »

臭化銅(I)

臭化銅(I)(しゅうかどう(I)、Copper(I) bromide)は、化学式がCuBrの無機化合物である。反磁性の固体で、硫化亜鉛と同様のポリマー構造をとる。この化合物は有機合成に広く用いられる。.

新しい!!: 反磁性と臭化銅(I) · 続きを見る »

臭素

臭素(しゅうそ、bromine)は、原子番号 35、原子量 79.9 の元素である。元素記号は Br。ハロゲン元素の一つ。 単体(Br2、二臭素)は常温、常圧で液体(赤褐色)である。分子量は 159.8。融点 -7.3 ℃、沸点 58.8 ℃。反応性は塩素より弱い。刺激臭を持ち、猛毒である。海水中にも微量存在する。.

新しい!!: 反磁性と臭素 · 続きを見る »

自然金 金(きん、gold, aurum)は原子番号79の元素。第11族元素に属する金属元素。常温常圧下の単体では人類が古くから知る固体金属である。 元素記号Auは、ラテン語で金を意味する aurum に由来する。大和言葉で「こがね/くがね(黄金: 黄色い金属)」とも呼ばれる。。 見かけは光沢のある黄色すなわち金色に輝く。日本語では、金を「かね」と読めば通貨・貨幣・金銭と同義(お金)である。金属としての金は「黄金」(おうごん)とも呼ばれ、「黄金時代」は物事の全盛期の比喩表現として使われる。金の字を含む「金属」や「金物」(かなもの)は金属全体やそれを使った道具の総称でもある。 金属としては重く、軟らかく、可鍛性がある。展性と延性に富み、非常に薄く延ばしたり、広げたりすることができる。同族の銅と銀が比較的反応性に富むこととは対照的に、標準酸化還元電位に基くイオン化傾向は全金属中で最小であり、反応性が低い。熱水鉱床として生成され、そのまま採掘されるか、風化の結果生まれた金塊や沖積鉱床(砂金)として採集される。 これらの性質から、金は多くの時代と地域で貴金属として価値を認められてきた。化合物ではなく単体で産出されるため精錬の必要がなく、装飾品として人類に利用された最古の金属で、美術工芸品にも多く用いられた。銀や銅と共に交換・貨幣用金属の一つであり、現代に至るまで蓄財や投資の手段となったり、金貨として加工・使用されたりしている。ISO通貨コードでは XAU と表す。また、医療やエレクトロニクスなどの分野で利用されている。.

新しい!!: 反磁性と金 · 続きを見る »

酢酸クロム(II)

酢酸クロム(II) (さくさんクロム、Chromium(II) acetate)は、化学式が の化合物である。一般的には、省略した形 で書かれる。この化合物とその誘導体のいくつかは金属の特性の一つである四重結合を持つ。の合成は空気中で相当過敏に反応するため学生実験のテストに使われる。酢酸クロム(II)には二水和物と無水物が存在する。 酢酸クロム(II)は反磁性の粉末で、ダイヤモンド型の結晶に成長する。非イオン性であり、水、メタノールへの溶解度は低い。.

新しい!!: 反磁性と酢酸クロム(II) · 続きを見る »

酸化スズ(IV)

酸化スズ(IV)(さんかスズ よん、tin(IV) oxide)、または二酸化スズ(にさんかスズ、tin dioxide)(古くは酸化第二スズとも)は、化学式SnO2で表されるスズの酸化物である。スズは複数の価数を持つ金属なので、酸化スズ(IV)とし、系統的な命名法では二酸化スズとはしない。 酸化スズ(IV)の鉱物は錫石といい、スズの鉱石鉱物である。多くの別名があり、スズの化学における最も重要な原料である。外観は無色の粉末。反磁性をもつ。両性酸化物である。.

新しい!!: 反磁性と酸化スズ(IV) · 続きを見る »

酸化鉄(III)

酸化鉄(III)(さんかてつ さん、Iron(III) oxide)は、 酸化第二鉄(さんかだいにてつ、ferric oxide)、ヘマタイト (Hematite)、 赤色酸化鉄(せきしょくさんかてつ、red iron oxide)、 合成磁赤鉄鉱(ごうせいじせきてっこう、maghemite)、弁柄(べんがら、colcothar)、 三酸化二鉄(さんさんかにてつ)、 あるいは単に錆として知られる、幾つか存在する鉄の酸化物の一つで、 常磁性を示し、組成式はFe2O3で示される化学物質である。 結晶は硬く金属光沢をもった黒色だが、粉末になると赤褐色を示す。一般的にみられるものは常温常圧で生成した微結晶の集合で、非常にもろい赤褐色の固体。水酸化鉄の脱水や、金属鉄の自然酸化によって生ずる。赤鉄鉱を構成しており、これを還元して金属鉄を得る。「赤さび」と呼ばれる錆は、鉄の自然酸化によってこの物質ができることによって生ずる。 2008年度日本国内生産量は 148,413t、消費量は 3,976t である。.

新しい!!: 反磁性と酸化鉄(III) · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

新しい!!: 反磁性と酸素 · 続きを見る »

鉛(なまり、lead、plumbum、Blei)とは、典型元素の中の金属元素に分類される、原子番号が82番の元素である。なお、元素記号は Pb である。.

新しい!!: 反磁性と鉛 · 続きを見る »

FMRI

fMRI 計測によって得られる画像。移動する視覚刺激を見ている際の脳活動を、安静時の脳活動と複数の実験参加者で比較したもの。fMRI 計測によって得られた活動量 (統計値) は黄色とオレンジで示されており、灰色で示した実験参加者平均の脳画像と重ね合わされている。この画像では一次視覚野や外線条皮質、外側膝状体が活動していることが分かる。 脳画像センターにある4T fMRIスキャナー(画像作成日:2005年) MRIの画像から作られたアニメーション画像。頭の上からまっすぐ下に移動している、左上の頭部の外に現れる点は、画像の右と左を間違えないよう、ビタミンEの錠剤を頭の横にテープで貼っておいたもの fMRI (functional magnetic resonance imaging) はMRI(核磁気共鳴も参照)を利用して、ヒトおよび動物の脳や脊髄の活動に関連した血流動態反応を視覚化する方法の一つである。最近のニューロイメージングの中でも最も発達した手法の一つである。.

新しい!!: 反磁性とFMRI · 続きを見る »

水面から跳ね返っていく水滴 海水 水(みず)とは、化学式 HO で表される、水素と酸素の化合物である広辞苑 第五版 p. 2551 【水】。特に湯と対比して用いられ、温度が低く、かつ凝固して氷にはなっていないものをいう。また、液状のもの全般を指すエンジンの「冷却水」など水以外の物質が多く含まれているものも水と呼ばれる場合がある。日本語以外でも、しばしば液体全般を指している。例えば、フランス語ではeau de vie(オー・ドゥ・ヴィ=命の水)がブランデー類を指すなど、eau(水)はしばしば液体全般を指している。そうした用法は、様々な言語でかなり一般的である。。 この項目では、HO の意味での水を中心としながら、幅広い意味の水について解説する。.

新しい!!: 反磁性と水 · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

新しい!!: 反磁性と水素 · 続きを見る »

ここにリダイレクトされます:

モーゼ効果反磁性体逆モーゼ効果

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »