ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

分圧

索引 分圧

多成分からなる混合気体において、ある1つの成分が混合気体と同じ体積を単独で占めたときの圧力を、その成分の分圧 ()という。たとえば酸素の分圧は酸素分圧と呼ばれる。 ドルトンの分圧の法則によれば、混合気体の圧力(全圧)は各成分の分圧の和に等しい。よって、分圧の法則が成り立つ混合気体であれば、ある成分 の分圧 は のように全圧 に係数としてモル分率 を使って簡単に表すことができる。混合気体が理想気体の状態方程式 に従うなら、この混合気体では分圧の法則が成り立つ。すなわち、理想混合気体の成分 の分圧は で表すことができる。それに対して混合気体が に従わないときには、ふつうは分圧の法則が成り立たないので である。.

72 関係: 基準電極吸収 (化学)吸着大気化学中和滴定曲線一酸化鉛平衡定数乾湿計人工呼吸土壌呼吸圧力化学に関する記事の一覧化学平衡ナミゲンゴロウナイトラス・オキサイド・システムナイツ&マジックポルフィリンルシャトリエの原理トラバーチンヘンリーの法則テクニカルダイビングフガシティードルトンの法則ベルヌーイの定理アインシュタインとシラードの冷蔵庫エア・ギアギブズ-ヘルムホルツの式ケプラー186fゲンゴロウ類ステンレス鋼スティックランド反応スクーバダイビングタイタンの大気もやもや病全圧全身麻酔動的平衡固体電解質石灰窯火星の植民理論化学理想溶液硫酸窒素中毒真空乾燥頚動脈小体頭蓋内圧血液ガス分析飽和飽和水蒸気量...高度高度が人に与える影響鳥類の体の構造蒸発熱蒸気圧酸素酸素中毒酸素分圧接触改質束一的性質格子欠陥欠陥化学水素イオン指数気体気圧気象学・気候学に関する記事の一覧沸点洞窟生成物混合ガス溶解度の一覧流体静力学拡散 インデックスを展開 (22 もっと) »

基準電極

基準電極(きじゅんでんきょく、reference electrode)とは、電極電位の測定時に電位の基準点を与える電極のこと。 参照電極(さんしょうでんきょく)、照合電極(しょうごうでんきょく)ともいう。 電位の基準点を与えるという性質上、基準電極にはその電極電位の安定性と再現性が要求される。 すなわち、.

新しい!!: 分圧と基準電極 · 続きを見る »

吸収 (化学)

化学における吸収(きゅうしゅう、英語 absorption)とは、物質がある相 (物質)から別の相に移動する現象、または人為的にそれを利用する方法である。.

新しい!!: 分圧と吸収 (化学) · 続きを見る »

吸着

吸着(きゅうちゃく、adsorption)とは、物体の界面において、濃度が周囲よりも増加する現象のこと。気相/液相、液相/液相、気相/固相、液相/固相の各界面で生じうる。 反対に、吸着していた物質が界面から離れることを脱着または脱離(desorption)と呼ぶ。.

新しい!!: 分圧と吸着 · 続きを見る »

大気化学

大気化学(たいきかがく、英語:atmospheric chemistry)とは、大気中の化学物質の挙動や気象現象との関連を扱う学問分野である。関係の深い分野には物理学、気象学、コンピューターモデリング、海洋学、地質学、火山学などがある。 大気の組成は生物活動との関係によって変化する。またオゾン層破壊、地球温暖化、酸性雨、気候変動なども大気化学に関連する重要な社会問題となっている。 日本では気象学の一分野として扱われることが多い。気象化学とも呼ばれるが、大気化学の呼称が一般的である。また惑星大気を対象に入れることがあり、惑星科学の一分野としても扱われる。 1995年に、ドイツのクルッツェン、アメリカのモリーナ、ローランドの3名は、大気化学の分野におけるオゾンの生成と分解に関する研究により、ノーベル化学賞を受賞した。.

新しい!!: 分圧と大気化学 · 続きを見る »

中和滴定曲線

中和滴定曲線(ちゅうわてきていきょくせん)とは、酸と塩基の中和滴定における、水素イオン指数変化をグラフにしたものである。ここでは水溶液中における中和滴定曲線について、その求め方について解説する。.

新しい!!: 分圧と中和滴定曲線 · 続きを見る »

一酸化鉛

一酸化鉛(いっさんかなまり、PbO)は鉛と酸素の化合物である。組成比は1:1で、別名は酸化鉛(II)。.

新しい!!: 分圧と一酸化鉛 · 続きを見る »

平衡定数

平衡定数(へいこうていすう、)は、化学反応の平衡状態を、物質の存在比で表したもの。.

新しい!!: 分圧と平衡定数 · 続きを見る »

乾湿計

電動式乾湿計を備えた百葉箱の内部 乾湿計(かんしつけい、乾湿球湿度計、乾湿温度計)は、乾球温度・湿球温度の測定により湿度・温度を同時に測定する湿度計である。一般の温度・湿度環境での測定に適している。極端な高温・低温・低湿度・低気圧での測定では、誤差が大きく実用にならない。 2個の温度計からなり、一方は純水で球部を常に湿らせる(湿球)。湿球は球部で水が蒸発によって蒸発熱を奪うため、通常もう一方の温度計(乾球)よりも低い温度を示す。しかし気温が氷点下の場合は湿球が薄い氷の層で覆われるため、乾球よりも高い温度を示すことがある。 精密測定の場合、相対湿度は乾球温度または湿球温度と乾球・湿球間の温度差と気圧とからスプルンク(Adolf Sprung 1848年 - 1909年)の式で計算する。式の補正値は、各通風方式ごとに用意されている。 ここでeは空気中の水蒸気分圧、 eswは湿球温度における飽和水蒸気圧、A.

新しい!!: 分圧と乾湿計 · 続きを見る »

人工呼吸

人工呼吸用のマスク 人工呼吸(じんこうこきゅう)とは、自発呼吸が不十分な人に対し、人工的に呼吸を補助することをいう。.

新しい!!: 分圧と人工呼吸 · 続きを見る »

土壌呼吸

土壌呼吸(どじょうこきゅう)とは、土壌中の微生物と植物の地下部(根)の細胞呼吸による二酸化炭素の生成である。 土壌呼吸は、土壌に固定されていた炭素を二酸化炭素の形で大気に開放する点で重要である。この、土壌から大気への炭素の移動は土壌呼吸を伴って循環している。まず、植物は植物体地上部で大気中の二酸化炭素で光合成を行い、光合成産物を地下部(根)に送り込む。根圏で植物の根は呼吸をする。根の分泌物や根毛、脱落細胞など、根から有機化合物は放出され、地中の従属栄養生物はそれらで細胞呼吸を行う。そして、植物と地中の従属生物から二酸化炭素は地上の大気へと放出され、植物は大気から二酸化炭素を得る。 生態系の土壌呼吸の量はいくつかの要因により制御されている。土壌中の温度、含水率、栄養素の含有量、および酸素レベルは呼吸速度を全く異なるものへ変化させる。土壌呼吸の速度を測定する方法がある。それとは別に、供給源となった物質を分離し、対象の植物の光合成経路がどちらのタイプなのか(C3型光合成かC4型光合成なのか)を判別できる。 土壌呼吸は人間の活動により多大な影響を受ける。近年の気候変動(二酸化炭素濃度の上昇、地球温暖化、降水パターンの変遷)が土壌呼吸に影響を与えると懸念されている。農地における窒素肥料の施肥量の増大も影響因子の一つである可能性がある。 土壌呼吸は、地球温暖化と正のフィードバックの関係にあると云われる。地球温暖化は大気中の二酸化炭素濃度の増加で進行するため、土壌呼吸の速度が増えると地球温暖化が進行し、地球温暖化が進行すると土壌呼吸の速度もさらに増加する。 ある生態系での土壌呼吸の量は、その系での炭素循環および養分循環を理解するために重要である。生物による炭素の代謝は炭素だけでなく他の栄養素も消費するし、植物による二酸化炭素の排出は他の栄養素の排出も伴うためである。.

新しい!!: 分圧と土壌呼吸 · 続きを見る »

圧力

圧力(あつりょく、pressure)とは、.

新しい!!: 分圧と圧力 · 続きを見る »

化学に関する記事の一覧

このページの目的は、化学に関係するすべてのウィキペディアの記事の一覧を作ることです。この話題に興味のある方はサイドバーの「リンク先の更新状況」をクリックすることで、変更を見ることが出来ます。 化学の分野一覧と重複することもあるかもしれませんが、化学分野の項目一覧です。化学で検索して出てきたものです。数字、英字、五十音順に配列してあります。濁音・半濁音は無視し同音がある場合は清音→濁音→半濁音の順、長音は無視、拗音・促音は普通に(ゃ→や、っ→つ)変換です。例:グリニャール反応→くりにやるはんのう †印はその内容を内含する記事へのリダイレクトになっています。 註) Portal:化学#新着記事の一部は、ノート:化学に関する記事の一覧/化学周辺に属する記事に分離されています。.

新しい!!: 分圧と化学に関する記事の一覧 · 続きを見る »

化学平衡

化学平衡(かがくへいこう、chemical equilibrium)とは可逆反応において、順方向の反応と逆方向との反応速度が釣り合って反応物と生成物の組成比が巨視的に変化しないことをいう。.

新しい!!: 分圧と化学平衡 · 続きを見る »

ナミゲンゴロウ

ンゴロウ(ナミゲンゴロウ、オオゲンゴロウ、Cybister japonicus、並源五郎)は、コウチュウ目ゲンゴロウ科ゲンゴロウ亜科ゲンゴロウ族ゲンゴロウ属の水生昆虫。単にゲンゴロウという時にはゲンゴロウ類の総称であることもあるが、本種のことを指す場合もある。.

新しい!!: 分圧とナミゲンゴロウ · 続きを見る »

ナイトラス・オキサイド・システム

ナイトラス・オキサイド・システム (英:Nitrous Oxide Systems、NOS) とは、ナイトラス・オキサイド(亜酸化窒素(笑気ガス/N2O))と呼ばれるガスをエンジン内部に噴射するシステムのこと。元々は第二次大戦中にドイツ空軍の航空機用に開発されたシステム(→GM-1)で、エンジン冷却と高高度での出力低下を抑えるために用いられていた。.

新しい!!: 分圧とナイトラス・オキサイド・システム · 続きを見る »

ナイツ&マジック

『ナイツ&マジック』(Knight's & Magic)は、天酒之瓢によるライトノベル、オンライン小説。小説投稿サイト『小説家になろう』に掲載され、ヒーロー文庫より刊行された。2016年より漫画化され、2017年にはアニメ化された。なお、Web版のタイトルは『Knight's & Magic』と英語表記である - 小説家になろう。また、初期設定を公開した『設定資料兼備忘録』 - 小説家になろうや、記念短編なども同サイトにて公開されている - 小説家になろう - 「ナイツ&マジック」アニメ最終話放映記念短編。。.

新しい!!: 分圧とナイツ&マジック · 続きを見る »

ポルフィリン

ポルフィリン (porphyrin) は、ピロールが4つ組み合わさって出来た環状構造を持つ有機化合物。環状構造自体はポルフィン (porphine, CAS 101-60-0) という名称であるが、これに置換基が付いた化合物を総称してポルフィリンと呼ぶ。古代より使用されてきた貝紫(ポルフィラ、πορφύρα)が名前の由来。類似化合物としてフタロシアニン・コロール・クロリンなどがある。 分子全体に広がったπ共役系の影響で平面構造をとり、中心部の窒素は鉄やマグネシウムをはじめとする多くの元素と安定な錯体を形成する。また、πスタッキング(J会合)によって他の化合物と超分子を形成することもある。金属錯体では、ポルフィリン平面に対してz方向に軸配位子を取ることも多く、この効果を利用しても様々な超分子がつくられている。 ポルフィリンや類似化合物の金属錯体は、生体内でヘム、クロロフィル、シアノコバラミン(ビタミンB12)などとして存在しいずれも重要な役割を担う他、人工的にも色素や触媒として多様に用いられる。.

新しい!!: 分圧とポルフィリン · 続きを見る »

ルシャトリエの原理

ルシャトリエの原理(るしゃとりえのげんり、英語:Le Chatelier's priciple)もしくはルシャトリエの法則(— ほうそく、— law)とは、化学平衡状態にある反応系において、その状態に対して何らかの変動を起こさせたときに、平衡が移動する方向を示す原理のことであり、 1884年にアンリ・ルシャトリエ (Henry Louis Le Chatelier) によって発表された。 1887年にカール・ブラウン (Karl Ferdinand Braun) によっても独立して発表されたため、ルシャトリエ=ブラウンの原理 (Le Chatelier – Braun priciple) ともいう。.

新しい!!: 分圧とルシャトリエの原理 · 続きを見る »

トラバーチン

イエローストーン国立公園のマンモス・ホットスプリングスにあるトラバーチンでできた石灰華段 マンモス・ホットスプリングスの石灰華段 カルシウム炭酸塩が付着しながらも成長する苔。多孔性石灰華が形成される初期段階 トラバーチン(travertine)は、温泉、鉱泉、あるいは地下水中より生じた石灰質化学沈殿岩で、緻密、多孔質、縞状など、多様な構造をもつ。温泉沈殿物や鍾乳洞内の鍾乳石類、あるいは石灰分の多い河川沈殿物など。とくに多孔質で、軟弱なものをトゥファ()と呼ぶ。これらの総称として石灰華()が用いられる。緻密で、研磨して美しい光沢や色合い、模様を有するものを、装飾石材名としてオニックス マーブル()とかケイブ オニックス()という 。 ローマ近郊地方のラテン語名に由来し、イタリア語で(フランス語で)と呼ぶ。本項では温泉生成物について主に記述する。.

新しい!!: 分圧とトラバーチン · 続きを見る »

ヘンリーの法則

ヘンリーの法則(ヘンリーのほうそく、Henry's law)は気体に関する法則であり、1803年にウィリアム・ヘンリーにより発表された。 「揮発性の溶質を含む希薄溶液が気相と平衡にあるときには、気相内の溶質の分圧pは溶液中の濃度cに比例する」 と定義される。 ラウールの法則は実際の溶液においては溶液中の多量成分(溶媒)については良く成り立つが、少量成分(溶質)においては成り立たないことが多い。 しかし、この場合でも溶質の蒸気圧をp、モル分率をχとすると が成り立つ。KHは比例定数である。 溶質がヘンリーの法則に従うような溶液を理想希薄溶液という。 また溶質が気体である場合、上記の式は溶液中の気体のモル分率と気相での圧力が比例することを意味する。モル分率が充分に小さい範囲ではモル分率は濃度に比例するから、「気体の溶解度は圧力に比例する」といえる。これもヘンリーの法則と呼ばれる。.

新しい!!: 分圧とヘンリーの法則 · 続きを見る »

テクニカルダイビング

テクニカルダイビング()とは、オーバーヘッド環境(閉鎖環境)や減圧(仮想閉鎖環境)を伴う潜水のことである。.

新しい!!: 分圧とテクニカルダイビング · 続きを見る »

フガシティー

フガシティ(fugacity)または逃散能、散逸能とは、物理化学の分野において、圧力の高い実在気体の化学平衡を扱うときにも、理想気体の化学ポテンシャルの形式が成り立つようにする意図で導入された概念である。 この概念はもとはウィラード・ギブズが という考えを熱力学的平衡に用いたことに由来し、ギルバート・ルイスが導入した。.

新しい!!: 分圧とフガシティー · 続きを見る »

ドルトンの法則

ドルトンの法則(ドルトンのほうそく、)、あるいは分圧の法則とは、理想気体の混合物の圧力が各成分の分圧の和に等しいことを主張する法則であるアトキンス『物理化学』 pp.21-22。 1801年にジョン・ドルトンにより発見された。 この法則は、気体が理想的な混合をしている系における近似法則である。理想混合系において、複数の気体からなる混合気体を容器に入れたときのある温度での圧力(全圧)は、それぞれの気体を単離して同じ容器に入れたときの同じ温度での圧力(分圧)の和に等しい。つまり、成分 の分圧を とすると、全圧 は で与えられる。化学反応によって物質量の増減が生じないとき、理想気体の混合系は理想混合系となる。理想気体の状態方程式から、成分 の物質量を とするとき、温度 、体積 での分圧 は で与えられる。ドルトンの法則から全圧は となる。理想気体において状態方程式の形は気体の種類によらない。これは混合系においても同じで、容器内の気体の分子数にのみ依存し、個別の分子の種類にはよらない。また、全圧に対する分圧の比は となり、モル分率に等しくなる。 理想混合系において、混合によるヘルムホルツエネルギーの変化はない。言い換えれば、各成分を単離した純粋系におけるヘルムホルツエネルギーの和に等しい田崎『熱力学』 p.175。つまり、温度 、体積 、物質量 の理想混合系におけるヘルムホルツエネルギーは で与えられる。 は純粋な成分 の系のヘルムホルツエネルギーである。 圧力はヘルムホルツエネルギーの体積による偏微分で与えられるので となる。ここで は成分 を単離して、同じ温度と体積にしたときの圧力、つまり分圧である。これを代入すればドルトンの法則が導かれる。.

新しい!!: 分圧とドルトンの法則 · 続きを見る »

ベルヌーイの定理

ベルヌーイの定理(ベルヌーイのていり、Bernoulli's principle)またはベルヌーイの法則とは、非粘性流体(完全流体)のいくつかの特別な場合において、ベルヌーイの式と呼ばれる運動方程式の第一積分が存在することを述べた定理である。ベルヌーイの式は流体の速さと圧力と外力のポテンシャルの関係を記述する式で、力学的エネルギー保存則に相当する。この定理により流体の挙動を平易に表すことができる。ダニエル・ベルヌーイ(Daniel Bernoulli 1700-1782)によって1738年に発表された。なお、運動方程式からのベルヌーイの定理の完全な誘導はその後の1752年にレオンハルト・オイラーにより行われた 。 ベルヌーイの定理は適用する非粘性流体の分類に応じて様々なタイプに分かれるが、大きく二つのタイプに分類できる。外力が保存力であること、バロトロピック性(密度が圧力のみの関数となる)という条件に加えて、 である。(I)の法則は流線上(正確にはベルヌーイ面上)でのみベルヌーイの式が成り立つという制限があるが、(II)の法則は全空間で式が成立する。 最も典型的な例である 外力のない非粘性・非圧縮性流体の定常な流れに対して \fracv^2 + \frac.

新しい!!: 分圧とベルヌーイの定理 · 続きを見る »

アインシュタインとシラードの冷蔵庫

アインシュタインとシラード又はアインシュタインの冷蔵庫は可動部品を有せず一定の圧力で運転し、尚且つ運転には熱源のみを必要とする吸収式冷蔵庫である。1926年にアルベルト・アインシュタインと彼の以前の生徒だったレオ・シラードの共同で発明され、1930年11月11日に()が取得された。 これは1922年のスウェーデンの発明家であるバルツァー フォン プラテン と カール・ムンタースによる元の発明の代替設計である。.

新しい!!: 分圧とアインシュタインとシラードの冷蔵庫 · 続きを見る »

エア・ギア

『エア・ギア』 (Air Gear) は、大暮維人による日本の漫画。また、これを原作としたテレビ東京系列6局で2006年4月より放送されたテレビアニメ作品。『週刊少年マガジン』(講談社)にて2002年49号から2012年25号まで連載された。35巻まで発刊された2012年3月時点で単行本は累計1600万部を突破。エンブレムデザイン協力は町田形。話数の単位は「Trick-」。エアギア第30-32巻限定版にはOVA『黒の羽と眠りの森-Break on the sky-』を収録。.

新しい!!: 分圧とエア・ギア · 続きを見る »

ギブズ-ヘルムホルツの式

ブズ-ヘルムホルツの式(ギブズ-ヘルムホルツのしき、Gibbs-Helmholtz equation)とは、熱力学における関係式。内部エネルギーまたはエンタルピーと、自由エネルギーの間の関係式である。1876年にウィラード・ギブズが理論的に導出し、1882年にヘルマン・フォン・ヘルムホルツが実験的に証明した。ヴァルター・ネルンストは1906年、この式を手掛かりに熱力学第三法則を発見した。 化学反応における温度依存性を考える上で重要な式である。この式を使うと、化学電池の起電力が温度によってどの程度変わるかを、反応熱から推定できる。また、この式から導かれるファントホッフの式を使うと、化学平衡に達したときの反応物と生成物の存在比この比を平衡定数と呼ぶ。が温度によってどの程度変わるかを、反応熱から推定できる。反応熱が不明あるいは不確かなときは逆に、これらの熱力学関係式を使って反応熱を決定できる。すなわち熱量計による直接測定が困難な反応熱は、起電力や平衡定数の温度依存性を測定することにより、間接的に測定できる。 系のヘルムホルツエネルギー が熱力学温度 と体積 の関数として表されているとき、この系の内部エネルギー は次式で与えられる。 系のギブズエネルギー が熱力学温度 と圧力 の関数として表されているとき、この系のエンタルピー は次式で与えられる。 この二つの式と、これらから導かれる一連の式をギブズ-ヘルムホルツの式という。.

新しい!!: 分圧とギブズ-ヘルムホルツの式 · 続きを見る »

ケプラー186f

プラー186f()は、地球から492±59光年(151±18パーセク)離れた赤色矮星ケプラー186を周回する太陽系外惑星である。 ケプラー186fは、太陽以外の恒星のハビタブルゾーン(生命が存在する可能性のある領域)内において、初めて発見された地球に近いサイズの惑星である。アメリカ航空宇宙局 (NASA) のケプラー探査機のトランジット法による観測により、内側の他の4つの惑星(いずれも地球より大きい)と同時に発見された。 この発見には、3年に渡る観測結果の分析が必要であった。発見は2014年3月19日のカンファレンスにて初めて公開され See session 19 March 2014 – Wednesday 11:50–12:10 – Thomas Barclay: The first Earth-sized habitable zone exoplanets.

新しい!!: 分圧とケプラー186f · 続きを見る »

ゲンゴロウ類

ンゴロウ類(ゲンゴロウるい)は昆虫綱コウチュウ目オサムシ上科に属する水生の数科にまたがる水生昆虫の総称。 ゲンゴロウ(源五郎)はゲンゴロウ類ゲンゴロウ上科として一括する考え方もある。の総称だが、その中でもゲンゴロウ科 (Dytiscidae) のみを指したり、ゲンゴロウ科に属するナミゲンゴロウ (Cybister japonicus) の標準和名として用いられる。同じオサムシ上科の水生グループでも、幼虫が鰓呼吸をするコガシラミズムシ科やミズスマシ科はゲンゴロウ類には通常含めない。食用に用いられる地域もある。.

新しい!!: 分圧とゲンゴロウ類 · 続きを見る »

ステンレス鋼

テンレス鋼(ステンレスこう、stainless steel)とは、クロム、またはクロムとニッケルを含む、さびにくい合金鋼である。ISO規格では、炭素含有量 1.2 %(質量パーセント濃度)以下、クロム含有量 10.5 % 以上の鋼と定義される。名称は、省略してステンレスという名称でもよく呼ばれる。かつては不銹鋼(ふしゅうこう)と呼ばれていた。.

新しい!!: 分圧とステンレス鋼 · 続きを見る »

スティックランド反応

ティックランド反応(スティックランドはんのう、Stickland reaction)あるいはスティックランド発酵は、アミノ酸の共役した酸化および還元反応による有機酸への変換を指す化学反応名である。1934年に、スティックランドにより偏性嫌気性タンパク質分解菌 Clostridium sporogenes で発見された。 電子ドナーのアミノ酸は一炭素短い揮発性のカルボン酸へと酸化される。例えば、炭素数3のアラニンは、炭素数2の酢酸に変換される。電子アクセプターのアミノ酸は、元のアミノ酸と炭素数が同じ揮発性のカルボン酸へと還元される。例えば、炭素数2のグリシンは、炭素数2の酢酸へ変換される。この反応により、アミノ酸発酵微生物は、水素イオンを電子アクセプターとして用いることによる水素ガスの発生を避けることができる。アミノ酸は、スティックランドアクセプター、スティックランドドナーあるいはドナー、アクセプターの両方として働くことができる。ヒスチジンだけは、スティックランド反応によって発酵できず、酸化される。典型的なアミノ酸混合物では10%のスティックランドアクセプターの不足があり、水素ガスが発生する。非常に低い水素分圧下では、非共役型の嫌気性酸化反応の増加もまた観察される。 スティックランド反応の一般的な機構 D-アラニンとグリシンのスティックランド反応の例.

新しい!!: 分圧とスティックランド反応 · 続きを見る »

スクーバダイビング

ーバを用いた潜水 スクーバダイビング、スキューバダイビング(scuba diving)とは、空気を詰めたタンクを使ってのダイビング(潜水)である。これに対して息をこらえて行う潜水をフリーダイビング、地上からホースで空気を供給する潜水を送気式潜水(フーカー潜水)と呼ぶ。日本にはアメリカのアクアラング社 (Aqua Lung) が紹介し、一時期は社名「アクアラング」がスクーバダイビングの意味で使われることも多かった。なお、本記事では特に断らない限り、「ダイビング」を「スクーバダイビング」の意味で使用する。.

新しい!!: 分圧とスクーバダイビング · 続きを見る »

タイタンの大気

タイタンの大気のもやの層の色 タイタンは、太陽系の衛星で唯一、完全に発達した大気圏を持っている。.

新しい!!: 分圧とタイタンの大気 · 続きを見る »

もやもや病

脳底の動脈の模式図 もやもや病(もやもやびょう、Moyamoya disease モヤモヤ(モィヤモィヤ)・ディズィーズ)は、脳底部に異常血管網がみられる脳血管障害。脳血管造影の画像において、異常血管網が煙草の煙のようにモヤモヤして見えることからこの病名となっている。 かつてはウィリス動脈輪閉塞症(ウィリスどうみゃくりんへいそくしょう)が日本における正式な疾患呼称だったが、2002年度(平成14年度)より現在の呼称が正式になっている。.

新しい!!: 分圧ともやもや病 · 続きを見る »

全圧

全圧 (total pressure).

新しい!!: 分圧と全圧 · 続きを見る »

全身麻酔

全身麻酔(ぜんしんますい、General anesthesia)は、麻酔方法の一つ。手術に付随して行われる医療である。手術する部位のみを麻酔する局所麻酔に対し、全身麻酔では全身を麻酔する。全身麻酔では意識が消失する。 全身麻酔下では患者は苦痛を訴えることができないので、麻酔科医が注意深くモニターする必要がある。全身麻酔の長所はあらゆる部位の手術に用いることができることである。また、麻酔の目的として鎮静(意識消失)、筋弛緩、鎮痛、有害な副交感神経反射の抑制があげられるが、全身麻酔は基本的にはこれらの条件を全て満たす。.

新しい!!: 分圧と全身麻酔 · 続きを見る »

動的平衡

動的平衡(どうてきへいこう、英語:dynamic equilibrium)とは、物理学・化学などにおいて、互いに逆向きの過程が同じ速度で進行することにより、系全体としては時間変化せず平衡に達している状態を言う。 系と外界とはやはり平衡状態にあるか、または完全に隔離されている(孤立系)かである。 なお、ミクロに見ると常に変化しているがマクロに見ると変化しない状態である、という言い方もできる。これにより他の分野でも動的平衡という言葉が拡大解釈されて使われるが、意味は正確には異なる。これについては他の意味の項を参照。.

新しい!!: 分圧と動的平衡 · 続きを見る »

固体電解質

固体電解質(こたいでんかいしつ)は、外部から加えられた電場によってイオン(帯電した物質)を移動させることができる固体。逆にイオンの移動を利用して電力を取り出すこともできる。固体酸化物形燃料電池の発電材料や電解コンデンサの電極導体として利用される。 金属や半導体は主として電子の移動によって電流が流れるのに対して、固体電解質は主としてイオンの移動によって電流が流れる。移動する荷電粒子がイオンであるという点では電解質の溶液と同様であるが、媒体が固体であるためイオンの移動速度が小さく、低温での導電性は低い。.

新しい!!: 分圧と固体電解質 · 続きを見る »

石灰窯

Burgess Park に保存されている石灰窯 古い石灰窯。コーンウォール ボスキャッスル 石灰窯(いしばいがま、lime kiln)は、石灰石(炭酸カルシウム)の焼成によって生石灰を生産する窯である。この化学反応の化学反応式は次の通り。 この反応は900℃(この温度でCO2の分圧が1気圧になる)で発生するが、一般に約1000℃(この温度でのCO2の分圧は3.8気圧)まで加熱することで反応を速くして行うことが多いParkes, G.D. and Mellor, J.W. (1939).

新しい!!: 分圧と石灰窯 · 続きを見る »

火星の植民

火星の植民(かせいのしょくみん)とは、宇宙移民構想の1つであり、ヒトが火星へと移住し、火星の環境の中で生活基盤を形成することである。かねてより火星への植民が可能かどうかは、デタラメな憶測からまじめな研究まで、多くの話題を集めてきた。.

新しい!!: 分圧と火星の植民 · 続きを見る »

理論化学

論化学(りろんかがく、英語:theoretical chemistry)とは、理論的モデルや数式を元に、既知の実験事実を説明したり、未知の物質の性質などを予言したりする演繹的なアプローチを行う化学の方法論である。 これに対して、多数の実験事実からその背後にある普遍的な理論を導くアプローチを行う化学の方法論は実験化学という。.

新しい!!: 分圧と理論化学 · 続きを見る »

理想溶液

想溶液(りそうようえき、ideal solution)とは、混合熱が厳密にゼロで、任意の成分の蒸気圧がラウールの法則にほぼ完全に従う溶液のことである。完全溶液 ともいう横田 (1987) p.112.

新しい!!: 分圧と理想溶液 · 続きを見る »

硫酸

硫酸(りゅうさん、sulfuric acid)は、化学式 H2SO4 で示される無色、酸性の液体で硫黄のオキソ酸の一種である。古くは緑礬油(りょくばんゆ)とも呼ばれた。化学薬品として最も大量に生産されている。.

新しい!!: 分圧と硫酸 · 続きを見る »

窒素中毒

素中毒(ちっそちゅうどく)とは、高分圧(通常3~4気圧程度以上)の窒素を摂取すると発症する一種の中毒症状。一般的に窒素酔い(ちっそよい)と呼ばれる。特にスクーバダイビングなど、空気あるいは混合ガスを用いての潜水時に起こりやすい。.

新しい!!: 分圧と窒素中毒 · 続きを見る »

真空乾燥

真空乾燥(英語:vacuum drying)とは、真空(または減圧)下で乾燥する方法である。気圧が下がると空気中の水蒸気分圧が下がり、水分の沸点が低下し蒸発速度が加速され、対象物の乾燥を速めることができる。 真空乾燥時の圧力は、一般に0.0296-0.059気圧であり、その時の水の沸点は25~30℃となる。真空乾燥はバッチ操作であり、減圧下では相対湿度も低くなり、乾燥がより速く起こる。 フリーズドライの様に熱に弱い食品や薬品などを予め凍結させてから乾燥や、真空時に加熱する真空加熱乾燥などの応用もある。.

新しい!!: 分圧と真空乾燥 · 続きを見る »

頚動脈小体

頚動脈小体(けいどうみゃくしょうたい、英語:carotid bodyまたはcarotid glomus、ラテン語:glomus caroticum)とは、頚動脈の分岐部にある、米粒大の末梢化学受容器である。頚動脈球ともいう。類似の末梢化学受容器としては他に大動脈小体がある。 血中の酸素(O2)および二酸化炭素(CO2)の分圧(濃度)を検知し、またpHや温度の変化にも敏感で、呼吸調節システムの一部をなす。 頚動脈小体を構成する細胞はグロムス細胞と呼ばれる。発生学的には神経上皮に由来し、タイプⅠとタイプⅡからなる。タイプⅠが神経細胞様の受容細胞であり、タイプⅡはグリア細胞である。 脳幹にある化学受容器はCO2に特に敏感なのに対し、頚動脈小体はO2により敏感であり、その情報を呼吸中枢へ送る。頚動脈小体の出力は酸素分圧が約100Torr以上(生理的pHの場合)では低いが、それ以下 になるとタイプI細胞の活動が急速に上昇し、種々の神経伝達物質(アセチルコリン、ATP、ドーパミン、ノルアドレナリン、サブスタンスP、met-エンケファリン)を分泌して次のニューロンを興奮させる。末梢化学受容器の信号は、健康な人では中枢のCO2受容器に比べて二次的な役割しかないが、慢性の高二酸化炭素血症(肺気腫など)の患者では脳脊髄液内のガス分圧に対する感受性が低下することにより、換気に大きな影響を与える。全身麻酔は、頚動脈小体から中枢神経系への情報伝達を妨げ、回復過程での呼吸を促進できなくする恐れがあるため、避けるのが普通である。 頚動脈小体からの情報は舌咽神経を通じて延髄の呼吸中枢にフィードバックされる。これらの中枢が呼吸と血圧を調節する。.

新しい!!: 分圧と頚動脈小体 · 続きを見る »

頭蓋内圧

頭蓋内圧(ずがいないあつ、; )とは、特殊な医療機器によって測定される頭蓋骨内部の圧力である。脳圧、脳髄液圧とも言う。その圧はホメオスタシスによって極めて一定に保たれており、その大きな変動は、重大な疾患の表徴であると共に、それ自体が死あるいは致死的な合併症をもたらす。.

新しい!!: 分圧と頭蓋内圧 · 続きを見る »

血液ガス分析

血液ガス分析(けつえきガスぶんせき、英語:blood gas analysis, BGA)とは、血液中に含まれる酸素や二酸化炭素の量、あるいは pH を測定する検査。通常は動脈血を測定する。.

新しい!!: 分圧と血液ガス分析 · 続きを見る »

飽和

飽和(ほうわ).

新しい!!: 分圧と飽和 · 続きを見る »

飽和水蒸気量

飽和水蒸気量(ほうわすいじょうきりょう)a(T) は1m3の空間に存在できる水蒸気の質量をgで表したものである。容積絶対湿度、飽和水蒸気密度ともいう。これは温度Tが小さいと小さくなる。 水蒸気を理想気体と見なすとa(T)は以下の式で示される。 湿度RHは、その温度の飽和水蒸気量に対して、水蒸気量(絶対湿度)との比であらわす。 飽和水蒸気圧曲線、沸点で大気圧になる。 空気中の飽和水蒸気圧e(T)は気温できまり、この値を超える分圧を有する水蒸気は安定して存在できない。 e(T)は近似的にTetens(1930)のパラメータ値によるAugust他の式 により、指定した温度 Tにおける飽和水蒸気圧 e(T)が求まる。気体の状態方程式により、水蒸気量を計算できる。 臨界圧(=22.12MPa)まで、良い近似で求めるには、ワグナー(Wagner)式を用い、 ここで、 飽和水蒸気圧に湿度RHを掛けることにより、水蒸気分圧を求めることができる。 なお、湿り空気の水蒸気分圧が飽和水蒸気圧を上回っても、水蒸気が凝縮しないことがあり、これを過飽和状態と呼ぶ。過飽和状態の水蒸気は不安定であり、微小な粒子などを核として急速に凝縮するか、低温の場合は凝固(昇華の逆)して氷晶となる。自然界ではこの現象により雲が発生するが、人工降雨ではヨウ化銀などの微粒子を過飽和状態の空気中に散布して水蒸気の凝縮を促す。 水には0℃以下でも凍結しない過冷却状態があるので、氷点下における水の飽和水蒸気圧も存在する。自然界、特に大気上空の空気は、雲を構成する微小な水滴が過冷却状態にある。そして、この状態において微量の氷晶が形成されると、氷の飽和水蒸気圧が水の飽和水蒸気圧よりも少し低い影響で、氷の周りにある微小水滴が蒸発して氷の表面に昇華していく、ライミングというプロセスが始まり、急速に氷晶が成長する。(降水過程を参照) また、放射線により気体分子が電離して発生するイオンを核として、過飽和状態の水蒸気が凝縮することを応用したものが霧箱である。.

新しい!!: 分圧と飽和水蒸気量 · 続きを見る »

高度

度(altitudeまたはheight)は、航空、地理学、スポーツなどで、「高さ」をいうときに用いられる用語である。高度は測地系で採用する高さゼロの面又は点から、鉛直線上で「上」への距離(長さ)を表すが、通常は、その地点の海面からの高さ、すなわち「海抜」を意味する。海面からの鉛直線上での「下」への距離(長さ)を「水深」、「深度」又は「深さ」(depth) という。 「高度」よりも広い概念の「高さ」も参照のこと。.

新しい!!: 分圧と高度 · 続きを見る »

高度が人に与える影響

レーニア山への登山 高度が人に与える影響(こうどがひとにあたえるえいきょう)はかなり大きい。ヘモグロビンの酸素飽和度は、血液中の酸素の量を決定する。人体が海抜高度2,100mに達すると、酸素で飽和したヘモグロビンの割合は急落し始める。 しかし、人体は短期的にも長期的にも高度に順応し、酸素の不足をある程度補償することができる。アスリートは、この順応を利用してパフォーマンスを向上させる。しかし、順応には限度があり、登山家は8,000mを超える高度を「デス・ゾーン」と呼び、ここでは人体は順応することができない。但し旅客機の機内圧力は与圧調整のため、同高度の高地よりもかなり高く保たれている。.

新しい!!: 分圧と高度が人に与える影響 · 続きを見る »

鳥類の体の構造

Wattle)、23:過眼線 鳥類の体の構造(Bird anatomy)では、鳥類の解剖学的、生理学的構造(physiological structure)について述べる。鳥類の体構造は多くの点で特有の適応を示し、そのほとんどは飛翔に関わっている。鳥類は軽い骨格と、軽いが力強い筋肉、非常に高い代謝効率と酸素供給の能力を持つ循環器系と呼吸器系を持ち、それらが飛翔を可能にしている。くちばしの発達によって、特殊な適応を遂げ消化器系が進化した。これらの解剖学的特殊化が、鳥類を脊椎動物のなかで独立した綱として分類する根拠となっている。.

新しい!!: 分圧と鳥類の体の構造 · 続きを見る »

蒸発熱

蒸発熱(じょうはつねつ、heat of evaporation)または気化熱(きかねつ、heat of vaporization)とは、液体を気体に変化させるために必要な熱のことである。気化熱は潜熱の一種であるので、蒸発潜熱または気化潜熱ともいう。固体を気体に変化させるために必要な熱は昇華熱(しょうかねつ、heat of sublimation)または昇華潜熱という『新物理小事典』「気化熱」。。単に気化熱というときは液体の蒸発熱を指すことが多いが、液体の蒸発熱と固体の昇華熱を合わせて気化熱ということもある。以下この項目では、便宜上、液体の気化熱を蒸発熱と呼び、液体の蒸発熱と固体の昇華熱を合わせて気化熱と呼ぶ。 固体や液体が気体に変化する現象を気化という。気化にはエネルギーが必要である。物質が気化するとき、多くの場合、気化に必要なエネルギーは熱として物質に吸収される。多くのエアコンや冷蔵庫で、この吸熱作用を利用したヒートポンプという技術が使われている。 気化に必要なエネルギーは物質により異なる。データ集などでは、物質 1 キログラム当たりの値または物質 1 モル当たりの値が気化熱として記載されている。単位はそれぞれ kJ/kg (キロジュール毎キログラム)および kJ/mol (キロジュール毎モル)である。例えば 25 ℃ における水の蒸発熱は 2442 kJ/kg であり 44.0 kJ/mol である平衡蒸気圧の下での値。特記ない限り本文中の蒸発熱は次のサイトに依る: 。気化熱の大きさは、同じ物質でも気化する状況により変わる。通常は、1 気圧における沸点での値か、25 ℃ における平衡蒸気圧での値が物質の蒸発熱としてデータ集に記載されている本文中で引用した蒸発熱の値は、とくに断らない限り、1 気圧における沸点での値である。。例えば 1 気圧、100 ℃ の水の蒸発熱は 2257 kJ/kg であり、飽和水蒸気圧(32 hPa)の下での 25 ℃ の蒸発熱 2442 kJ/kg より1割近く減少する。 気体が液体に変化するときに放出される凝縮熱(ぎょうしゅくねつ、heat of condensation)の値は、同じ温度と同じ圧力の蒸発熱の値に符号も含めて等しい。 モル当たりの蒸発熱は、液体中で分子の間に働く引力に、分子が打ち勝つためのエネルギーであると解釈される。たとえばヘリウムの蒸発熱が 0.08 kJ/mol と極端に小さいのは、ヘリウム原子の間に働くファンデルワールス力が非常に弱いためである。 それに対して、液体中の分子の間に水素結合が働いていると、水やアンモニアのように蒸発熱が大きくなる。金属のモル当たりの昇華熱は、金属結合で結ばれた 1 モルの金属結晶の塊をバラバラにして 6.02×1023 個の原子にするのに必要なエネルギーに相当する。遷移金属の昇華熱は、数百キロジュール毎モルの程度である。.

新しい!!: 分圧と蒸発熱 · 続きを見る »

蒸気圧

蒸気圧(じょうきあつ、)、あるいは平衡蒸気圧(へいこうじょうきあつ、)とは、液相あるいは固相にある物質と相平衡になるような、その物質の気相の圧力のことである。蒸気圧は物質に特有の物性値であり、温度に依存して決まる。 物質の沸点とは、その物質が液相にあるときの蒸気圧が外圧に等しくなる温度である。また、物質の昇華点とは、その物質が固相にあるときの蒸気圧が外圧に等しくなる温度である。さらに物質が液相と固相の平衡状態にあるときの蒸気圧が外圧に等しくなる温度は三重点と呼ばれる。 液体の物質の周囲でのその物質の蒸気の分圧が液相の蒸気圧に等しいとき、その液体は蒸気と気液平衡の状態にある。 気液平衡から温度を上げると蒸気圧が上がり、蒸気の分圧より大きくなる。蒸気を理想気体とみなせば、分圧は蒸気量に比例する。液体が蒸発することで蒸気量が増えて分圧も上がり、新たな温度での蒸気圧と等しくなることで再び気液平衡となる。逆に温度を下げると蒸気圧が下がる。このときは蒸気が液体に凝縮することで分圧が下がり、新たな温度で気液平衡となる。気相と固相の相平衡でも同様に、温度の変化に対して物質が昇華して分圧が蒸気圧と等しくなるように蒸気量が変化して平衡が保たれる。 純物質の蒸気圧はクラウジウス・クラペイロンの式によって近似される。溶液であれば蒸気圧降下が起こり、これはラウールの法則で近似される。.

新しい!!: 分圧と蒸気圧 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

新しい!!: 分圧と酸素 · 続きを見る »

酸素中毒

酸素中毒(さんそちゅうどく)とは、超高分圧の酸素を摂取した場合、またはある程度高分圧の酸素を長期にわたって摂取し続けることによって、身体に様々な異常を発し最悪の場合は死に至る症状である。特にスクーバダイビングなど、空気あるいは混合ガスを用いての潜水時に起こりやすい。 酸素中毒に対する誤解として酸素濃度だけを問題にすることが見受けられるが、上記のとおり酸素分圧が問題であるため大気圧で純酸素(酸素100%のガス)を吸入した場合であっても制限時間内であれば問題は無く(実際に医療行為として行われる)、低圧であれば初期のアポロ計画のように船内気圧を1/3にして純酸素で船内を満たしても、長時間の試験を行える。逆に通常の空気(酸素約21%)であっても深度の潜水などの高圧環境で、酸素分圧が高くなれば酸素中毒を起こす(後述)。.

新しい!!: 分圧と酸素中毒 · 続きを見る »

酸素分圧

酸素分圧(さんそぶんあつ)とは流体の体積あたりの酸素量を現す指標である。.

新しい!!: 分圧と酸素分圧 · 続きを見る »

接触改質

接触改質(せっしょくかいしつ、英語:catalytic reforming)とは、石油精製において原油を蒸留することで得られたガソリン留分のオクタン価を触媒反応によって高める過程のこと。単にリホーミング、リフォーミング (reforming) とも呼ばれている。.

新しい!!: 分圧と接触改質 · 続きを見る »

束一的性質

束一的性質(そくいつてきせいしつ、Colligative properties)とは希薄溶液における相平衡の性質で、存在する溶質分子の数だけに依存する性質である。 高分子化合物などの(平均)分子量を、束一的性質に基づいて、沸点上昇、凝固点降下、浸透圧の変化量をもとに決定することが可能である。.

新しい!!: 分圧と束一的性質 · 続きを見る »

格子欠陥

格子欠陥(こうしけっかん, Lattice Defect)とは、結晶において空間的な繰り返しパターンに従わない要素である。格子欠陥は大別すると「不純物」と「原子配列の乱れ」があり、後者だけを格子欠陥と呼ぶときがある。狭い意味では特に格子空孔(後述)を指すこともある。伝導電子や正孔も広い意味では格子欠陥に含まれる。.

新しい!!: 分圧と格子欠陥 · 続きを見る »

欠陥化学

欠陥化学(けっかんかがく、英語:defect chemistry)は、結晶に含まれる格子欠陥の振る舞いを化学反応として記述する体系。結晶に含まれる不純物や添加物、結晶を取り巻く雰囲気の効果などを定量的に論じることが可能となる。.

新しい!!: 分圧と欠陥化学 · 続きを見る »

水素イオン指数

水素イオン指数(すいそイオンしすう、Wasserstoffionenexponent)とは、溶液の液性(酸性・アルカリ性の程度)を表す物理量で、記号pHで表す。水素イオン濃度指数または水素指数とも呼ばれる。1909年にデンマークの生化学者セレン・セーレンセンが提案した『化学の原典』 p. 69.

新しい!!: 分圧と水素イオン指数 · 続きを見る »

気体

気体(きたい、gas)とは、物質の状態のひとつであり岩波書店『広辞苑』 第6版 「気体」、一定の形と体積を持たず、自由に流動し圧力の増減で体積が容易に変化する状態のこと。 「ガス体」とも。.

新しい!!: 分圧と気体 · 続きを見る »

気圧

気圧(きあつ、)とは、気体の圧力のことである。単に「気圧」という場合は、大気圧(たいきあつ、、大気の圧力)のことを指す場合が多い。 気圧は計量単位でもある。日本の計量法では、圧力の法定の単位として定められている(後述)。.

新しい!!: 分圧と気圧 · 続きを見る »

気象学・気候学に関する記事の一覧

気象・気象学および気候・気候学に関連する項目の一覧。;掲載範囲外の項目 以下の一覧及びカテゴリに含まれる項目であるため本一覧に掲載していない。.

新しい!!: 分圧と気象学・気候学に関する記事の一覧 · 続きを見る »

沸点

沸点(ふってん、)とは、液体の飽和蒸気圧が外圧液体の表面にかかる圧力のこと。と等しくなる温度であるアトキンス第8版 p.122.

新しい!!: 分圧と沸点 · 続きを見る »

洞窟生成物

洞窟生成物 (どうくつせいせいぶつ) とは洞窟堆積物あるいは洞窟充填堆積物の一つで、洞窟内の天井や壁・床に滲出する地下水、あるいは洞窟内を流れる地下水流中に溶存した鉱物分の晶出/沈殿によって二次的に形成される化学沈殿物の総称である。 洞窟石灰生成物、洞窟二次生成物、あるいは洞窟装飾物とも (洞窟は省略されることも多い)。広義では鍾乳石に同義。 特別な例として、熔岩洞にみられる熔岩鍾乳や珪酸鍾乳も洞窟生成物の一つであるが、熔岩鍾乳は地下水中から晶出したものではなく、熔岩が固まったもので二次的な成長はしないので、厳密な意味では鍾乳石ではない。しかし珪酸鍾乳は成長するという意味で鍾乳石である。.

新しい!!: 分圧と洞窟生成物 · 続きを見る »

混合ガス

混合ガス(こんごうガス)とは、各種高純度ガスを原料とし、それらを混合したガス。.

新しい!!: 分圧と混合ガス · 続きを見る »

溶解度の一覧

溶解度の一覧では、1気圧における化合物(主に無機化合物)の水に対する溶解度を水温別にまとめた表を掲載する。数値の単位は特に注釈がない限り g/100g H2O とした。化合物は五十音順に配列している。.

新しい!!: 分圧と溶解度の一覧 · 続きを見る »

流体静力学

流体静力学(りゅうたいせいりきがく、fluid statics, hydrostatics)は静止流体についての科学であり、流体力学の一分野である。流体静力学という用語は通常、対象物の力学的取り扱いを指し、流体が安定した平衡下の状態についての研究を含んでいる。仕事をする流体の活用は水理学と呼ばれ、動的な流体についての科学は流体動力学と呼ばれる。.

新しい!!: 分圧と流体静力学 · 続きを見る »

拡散

拡散(かくさん、独、英、仏: Diffusion) とは、粒子、熱、運動量などが自発的に散らばり広がる物理現象である。この現象は着色した水を無色の水に滴下したとき、煙が空気中に広がるときなど、日常よく見られる。これらは、化学反応や外力ではなく、流体の乱雑な運動の結果として起こるものである。.

新しい!!: 分圧と拡散 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »