ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

不連続性の分類

索引 不連続性の分類

連続関数は数学およびその応用において非常に重要である。しかし、関数が全て連続というわけではない。ある関数がその定義域内のある点で連続でないとき、その関数は不連続性 (discontinuity) を有する。関数の不連続点全体の成す集合は離散集合の場合もあるし、稠密集合の場合もある。場合によっては定義域全体と同じとなるかもしれない。 本項目では、最も単純な実一変数で実数を値にとる函数の場合における不連続性の分類を述べる。.

17 関係: 対称微分微分可能関数ノルム代数マイスナー効果リーマン=スティルチェス積分ヘヴィサイドの階段関数カントール関数特異点特異点 (数学)相転移複素対数函数離散コサイン変換離散確率分布連続 (数学)有界変動函数方正函数拡大実数

対称微分

数学において、対称微分(たいしょうびぶん、symmetric derivative)とは通常の微分を一般化した演算であり、次のように定義されるThomson, p. 1。 極限をとらない形はしばしば対称差分商と呼ばれる。関数が点 x で対称微分可能であるとは、その点で対称微分が存在することである。 ある点で通常の意味で微分可能ならば対称微分可能であるが、その逆は必ずしも真ではない。よく知られた例として、絶対値関数 f(x).

新しい!!: 不連続性の分類と対称微分 · 続きを見る »

微分可能関数

数学の一分野である微分積分学において、可微分函数あるいは微分可能関数(びぶんかのうかんすう、)とは、その定義域内の各点において導関数が存在するような関数のことを言う。微分可能関数のグラフには、その定義域の各点において非垂直な接線が存在しなければならない。その結果として、微分可能関数のグラフは比較的なめらかなものとなり、途切れたり折れ曲がったりせず、や、垂直接線を伴う点などは含まれない。 より一般に、ある関数 f の定義域内のある点 x0 に対し、導関数 f′(x0) が存在するとき、f は x0 において微分可能であるといわれる。そのような関数 f はまた、点 x0 の近くでは線型関数によってよく近似されるため、x0 において局所線型(locally linear)とも呼ばれる。.

新しい!!: 不連続性の分類と微分可能関数 · 続きを見る »

ノルム代数

数学の特に函数解析学におけるノルム環(ノルムかん)またはノルム代数(ノルムだいすう、normed algebra; ノルム多元環、ノルム線型環) は適当な位相体 (とくに実数体 または複素数体 )上のノルム空間かつ多元環であって、そのノルムが を満たすものを言う。加えて、 が乗法単位元 を持つ(単位的多元環)ならば も仮定することがある。.

新しい!!: 不連続性の分類とノルム代数 · 続きを見る »

マイスナー効果

マイスナー効果(マイスナーこうか Meissner effect, Meißner Ochsenfeld Effekt)は、超伝導体が持つ性質の1つであり、遮蔽電流(永久電流)の磁場が外部磁場に重なり合って超伝導体内部の正味の磁束密度をゼロにする現象である。マイスナー―オクセンフェルト効果 、あるいは完全反磁性とも呼ばれる。.

新しい!!: 不連続性の分類とマイスナー効果 · 続きを見る »

リーマン=スティルチェス積分

数学の微分積分学周辺分野におけるリーマン=スティルチェス積分(リーマンスティスチェスせきぶん、Riemann–Stieltjes integral)は、ベルンハルト・リーマンとトーマス・スティルチェスに名を因む、リーマン積分の一般化である。.

新しい!!: 不連続性の分類とリーマン=スティルチェス積分 · 続きを見る »

ヘヴィサイドの階段関数

ヘヴィサイドの階段関数(ヘヴィサイドのかいだんかんすう、Heaviside step function)は、正負の引数に対しそれぞれ 1, 0 を返す階段関数 である。名称はオリヴァー・ヘヴィサイドにちなむ。ヘヴィサイド関数と呼ばれることもある。通常、H(x) や Y(x) などで表されることが多い。 単位ステップ関数と似ているが、こちらは と x.

新しい!!: 不連続性の分類とヘヴィサイドの階段関数 · 続きを見る »

カントール関数

ントール関数(カントールかんすう、Cantor function)または悪魔の階段(あくまのかいだん、Devil's staircase)とは、連続ではあるが絶対連続ではない関数の一つである。カントール関数の名前はゲオルク・カントールに由来する。.

新しい!!: 不連続性の分類とカントール関数 · 続きを見る »

特異点

特異点(とくいてん、singularity)とは、ある基準 の下、その基準が適用できない (singular) 点である。したがって、特異点は基準があって初めて認識され、「—に於ける特異点」「—に関する特異点」という呼ばれ方をする。特異点という言葉は、数学と物理学の両方で用いられる。.

新しい!!: 不連続性の分類と特異点 · 続きを見る »

特異点 (数学)

数学において、特異性(とくいせい、singularity)とは、適当な枠組みの下で考えている数学的対象が「定義されない」「よく振舞わない」などと言ったことを理由に除外されること、もの、およびその基準である。特異性を示す点を特異点(とくいてん、singular point)という。 これに対して、ある枠組みの中で、よく振舞う (well-behaved) ならば非特異 (non-singular) または正則 (regular) であると言われる。.

新しい!!: 不連続性の分類と特異点 (数学) · 続きを見る »

相転移

転移(そうてんい、英語:phase transition)とは、ある系の相(phase)が別の相へ変わることを指す。しばしば相変態(そうへんたい、英語:phase transformation)とも呼ばれる。熱力学または統計力学において、相はある特徴を持った系の安定な状態の集合として定義される。一般には物質の三態(固体・固相、液体・液相、気体・気相)の相互変化として理解されるが、同相の物質中の物性変化(結晶構造や密度、磁性など)や基底状態の変化に対しても用いられる。相転移に現れる現象も単に「相転移」と呼ぶことがある。.

新しい!!: 不連続性の分類と相転移 · 続きを見る »

複素対数函数

複素解析における複素対数函数(ふくそたいすうかんすう、complex logarithm)は、実自然対数函数が実自然指数函数の逆函数であるのと同様の意味において、複素指数函数の逆「函数」である。すなわち、複素数 の対数 とは を満たす複素数を言い、そのような を や などと書く。任意の非零複素数 は無限個の対数を持つから、そのような表記が紛れのない意味を為すように気を付けねばならない。 極形式を用いて と書くならば、 は の対数の一つを与えるが、これに の任意の整数倍を加えたもので の対数はすべて尽くされる。.

新しい!!: 不連続性の分類と複素対数函数 · 続きを見る »

離散コサイン変換

DFTとの比較。左はスペクトル、右はヒストグラム。低周波域での相違を示すため、スペクトルは 1/4 だけ示してある。DCTでは、パワーのほとんどが低周波領域に集中していることがわかる。 離散コサイン変換(りさんコサインへんかん)は、離散信号を周波数領域へ変換する方法の一つであり、信号圧縮に広く用いられている。英語の discrete cosine transform の頭文字から DCT と呼ばれる。以下DCTと略す。.

新しい!!: 不連続性の分類と離散コサイン変換 · 続きを見る »

離散確率分布

離散確率分布の確率質量関数。単集合 1、3、7 の確率はそれぞれ 0.2、0.5、0.3。これらの点を含まない集合の確率はゼロである。 上から順に、離散確率分布、連続確率分布、連続部分と離散部分がある確率分布の累積分布関数 離散確率分布(英: discrete probability distribution)は、確率論や統計学において、観測される値が事前に定義された一連の値に限定される場合の確率分布である。とりうる値は有限個の数であるか、高々可算集合である。.

新しい!!: 不連続性の分類と離散確率分布 · 続きを見る »

連続 (数学)

数学において、連続(れんぞく、continuous)および連続性(れんぞくせい、continuity)とは、いくら拡大しても近くにあって差が無いことを示す極限概念である。位相空間のあいだの写像について、開集合や極限といった位相的な概念を一定の方法でたもつという条件によって連続性の概念が定められる。これは異なる位相空間のあいだの関係を表す最も基本的な枠組みである。日常語としては「連続」が「切れずに繋がっている」という意味で使われることがあるが、位相空間の性質として「切れずに繋がっている」ということを表す概念は「連結性」である。事実として「連結領域の連続像は必ず連結」であり、従って連結な定義域を持つ連続函数のグラフは文字通り「切れずに繋がっている」ことになるが、それは連続性の本質ではない。.

新しい!!: 不連続性の分類と連続 (数学) · 続きを見る »

有界変動函数

解析学における有界変動の函数(ゆうかいへんどうのかんすう、fonction of bounded variation)あるいは有界変動函数(-function; BV函数)は、その変動が有界、すなわちが有限値となるような実数値函数を言う。この性質は函数のグラフが以下に述べる意味において素性のよい (well behaved) ものであることを述べるものである。話を一変数の連続函数に限定すれば、有界変動であることはその連続函数のグラフ上を奔る動点の(方向への寄与分は無視して)方向への移動距離が有限であることを意味する。多変数の連続函数の場合にもこれは同様の意味を持つのであるが、考えるべき動点の辿る連続な路としては、与えられた函数のグラフ全体(今の場合これは超曲面になる)を取ることができないという事実があるので、函数のグラフと固定された -軸および -軸に平行な任意の超平面との交叉を取る必要がある。.

新しい!!: 不連続性の分類と有界変動函数 · 続きを見る »

方正函数

数学における方正函数(ほうせいかんすう、regulated function, ruled function)は「素性のよい」("well-behaved") 実一変数の函数である。方正函数の概念は可積分函数の一つのクラスとして生じたものであり、その特徴付けにはいくつか方法がある。方正函数は1954年にが導入し、対応する積分をジャン・デュドネを含む数学結社ブルバキが提唱した。.

新しい!!: 不連続性の分類と方正函数 · 続きを見る »

拡大実数

数学における拡張実数(かくちょうじっすう、extended real number; 拡大実数)あるいはより精確にアフィン拡張実数 (affinely extended real number) は、通常の実数に正の無限大 と負の無限大 の二つを加えた体系を言う。新しく付け加えられた元(無限大、無限遠点)は(通常の)実数ではないが、文脈によってはこれらを含めた全ての拡張実数を指して便宜的に「実数」と呼ぶこともあり、その場合通常の実数は有限実数と呼んで区別する。拡張実数の概念は、微分積分学や解析学(特に測度論と積分法)において種々の函数の極限についての記述を簡素化するのに有効である。(アフィン)拡張実数全体の成す集合 は、その上の適当な順序構造や位相構造などを持つものとして補完数直線(ほかんすうちょくせん、extended real line; 拡張実数直線)と呼ばれ、 や と書かれる。 文脈から意味が明らかな場合には、正の無限大の記号 はしばしば単に と書かれる。.

新しい!!: 不連続性の分類と拡大実数 · 続きを見る »

ここにリダイレクトされます:

ジャンプ不連続不連続函数不連続点

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »