ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

パスカルの原理

索引 パスカルの原理

流体のはいった容器の一点に力を及ぼすと容器表面のすべての単位面積の面素に、垂直で同じ大きさの内部の力(接触力)が発生する。この図では重力の影響は無視している。 パスカルの原理(パスカルのげんり、英語:Pascal's principle)は、ブレーズ・パスカルによる「密閉容器中の流体は、その容器の形に関係なく、ある一点に受けた単位面積当りの圧力ここでの「圧力」は容器に垂直で圧縮する向きの「力」という意味であり、本来の「圧力」(単位面積当たりの力の法線成分)ではない。をそのままの強さで、流体の他のすべての部分に伝える。」パスカル「液体の平衡及び空気の質量の測定についての論述」の紹介 http://www.kanazawa-it.ac.jp/dawn/166301.htmlという流体静力学における基本原理である。.

26 関係: 原理仕事 (物理学)ハイドロニューマチック・サスペンションブレーキブレーキフルードブレーズ・パスカルパスカルディスクブレーキファン・カーシャワーシリンジポンプサイフォン噴射ポンプ物理学に関する記事の一覧物理学者の一覧静力学阿南市科学センター量の次元連通管水理学油圧液体流体流体力学流体静力学浮沈子

原理

原理(げんり、principium、principe、principle、Prinzip)とは、哲学や数学において、学問的議論を展開する時に予め置かれるべき言明。 そこから他のものが導き出され規定される始原。他を必要とせず、なおかつ他が必要とする第一のものである。.

新しい!!: パスカルの原理と原理 · 続きを見る »

仕事 (物理学)

物理学における仕事(しごと、work)とは、物体に加わる力と、物体の変位の内積によって定義される物理量である。エネルギーを定義する物理量であり、物理学における種々の原理・法則に関わっている。 物体に複数の力がかかる場合には、それぞれの力についての仕事を考えることができる。ある物体 A が別の物体 B から力を及ぼされながら物体 A が移動した場合には「物体 A が物体 B から仕事をされた」、または「物体 B が物体 A に仕事をした」のように表現する。ただし、仕事には移動方向の力の成分のみが影響するため、力が物体の移動方向と直交している場合には仕事はゼロであり、「物体 B は物体 A に仕事をしない」のように表現をする。力が移動方向とは逆側に向いている場合は仕事は負になる。これらの事柄は変位と力のベクトルの内積として仕事が定義されることで数学的に表現される。すなわち仕事は正負の符号をとるスカラー量である。 仕事が行われるときはエネルギーの増減が生じる。仕事は正負の符号をとるスカラー量であり、正負の符号は混乱を招きやすいが、物体が正の仕事をした場合は物体のエネルギーが減り、負の仕事をした場合には物体のエネルギーが増える。仕事の他のエネルギーの移動の形態として熱があり、熱力学においては仕事を通じて内部エネルギーなどの熱力学関数が定義され、エネルギー保存則が成り立つように熱が定義される。 作用・反作用の法則により力は相互的であるが、仕事は相互的ではない。物体 B が物体 A に力を及ぼしているとき、物体 B は物体 A から逆向きで同じ大きさの力を及ぼされている。しかし物体 B が物体 A に仕事をするときに、物体 B は物体 A から逆符号の仕事をされているとは限らない。例えば、物体が床などの固定された剛な面の上を移動するとき、床と物体との間の摩擦抗力により、床は物体に仕事をするが、床は移動しないため、物体は床に仕事をしない。.

新しい!!: パスカルの原理と仕事 (物理学) · 続きを見る »

ハイドロニューマチック・サスペンション

ハイドロニューマチック・サスペンション(hydropneumatic suspension、suspension hydropneumatique)とは、エアスプリングと油圧シリンダーおよび油圧ポンプを組み合わせた自動車用サスペンション機構の一種で、エアサスペンションの一種である。 名称は、「水の」という意味を持つギリシア語ὑδρο-(hydro-)と「空気の」または「空気圧で動く」という意味のフランス語「pneumatique」を組み合わせたものであるということができる。なお、上記からわかるとおり、hydropneumatiqueは本来フランス語であり、フランス語での発音を音写すると、「イドロプヌマティク」となる 。 サスペンションを構成する機構の一部であり、一般的な金属スプリングのサスペンションのスプリングとショックアブソーバーの部分に相当し、双方の機能を併せ持っている。また、一般的なエアサスペンションとは異なり、気体(窒素ガス)は最初から密封されており、純粋にスプリングの機能のみを果たし、その他の機能は油圧シリンダーが受け持っている。その油圧シリンダーに掛ける油圧を加減することにより、荷重の変化にかかわらず、車高を一定に保つことができ、車高の調整も可能であるが、そのためのポンプが必須である。 サスペンションのアームやリンクの配置とハイドロニューマチックとの組み合わせに特に決まりはなく、基本的には、どのような形式のサスペンションとも組み合わせ可能である。 フランスの自動車メーカーであるシトロエンが開発し、同社が製造する多くの乗用車と救急車のサスペンションに採用されたことで知られている(リアのみの採用例もある)。また、それに使われるポンプの油圧をブレーキやステアリングなど広範囲に応用したことでも知られている。 このほか、ロールス・ロイスやメルセデス・ベンツ、プジョーなども用いたことがあるが、主として後輪の車高調整用など、サスペンション部分のみが用いられることが多く、シトロエンのように広範囲に応用しているのはあまり例がない。 自動車用以外にも航空機の降着装置などにも用いられる。 異色の例としては、陸上自衛隊の74式戦車と90式戦車と10式戦車のサスペンションが挙げられる(90式はハイブリッドで、左右傾斜機能はオミットされた。10式では復活している)。この主目的は砲身制御である。.

新しい!!: パスカルの原理とハイドロニューマチック・サスペンション · 続きを見る »

ブレーキ

ブレーキ (Brake) は、運動、移動する物体の減速、あるいは停止を行う装置である。これらの動作を制動と呼ぶため、制動装置(せいどうそうち)ともいわれる。 自転車、自動車、オートバイ、鉄道車両、航空機、エレベーター、競技用のソリ(ボブスレーなど)といった乗り物にはおおむね搭載されている。また、高速な稼動部を有したり、精密な停止制御が必要な機械類などでも、ブレーキを持つものがある。原義から転じて、変化を抑制する意味の単語としても用いられる(「景気にブレーキがかかる」など)。 自動車用ブレーキの一例(ランボルギーニ・ムルシエラゴのブレンボ製ディスクブレーキ).

新しい!!: パスカルの原理とブレーキ · 続きを見る »

ブレーキフルード

ブレーキフルード(Brake fluid)とは、自動車などの液圧 (油圧) 式ブレーキにおいて、油圧系統内に充填される液体である。ブレーキオイルとも呼ばれる。.

新しい!!: パスカルの原理とブレーキフルード · 続きを見る »

ブレーズ・パスカル

ブレーズ・パスカル(Blaise Pascal、1623年6月19日 - 1662年8月19日)は、フランスの哲学者、自然哲学者、物理学者、思想家、数学者、キリスト教神学者である。 早熟の天才で、その才能は多分野に及んだ。ただし、短命であり、三十代で逝去している。死後『パンセ』として出版されることになる遺稿を自身の目標としていた書物にまとめることもかなわなかった。 「人間は考える葦である」などの多数の名文句やパスカルの賭けなどの多数の有名な思弁がある遺稿集『パンセ』は有名である。その他、パスカルの三角形、パスカルの原理、パスカルの定理などの発見で知られる。ポール・ロワヤル学派に属し、ジャンセニスムを代表する著作家の一人でもある。 かつてフランスで発行されていた500フラン紙幣に肖像が使用されていた。.

新しい!!: パスカルの原理とブレーズ・パスカル · 続きを見る »

パスカル

パスカル (pascal、記号: Pa) は、圧力・応力の単位で、国際単位系 (SI) における、固有の名称を持つSI組立単位である。「ニュートン毎平方メートル」とも呼ばれる。 1パスカルは、1平方メートル (m2) の面積につき1ニュートン (N) の力が作用する圧力または応力と定義されている。その名前は、圧力に関する「パスカルの原理」に名を残すブレーズ・パスカルに因む。.

新しい!!: パスカルの原理とパスカル · 続きを見る »

ディスクブレーキ

ディスクブレーキ (disc brake) は、制動装置の一種であり、主に航空機、自動車、オートバイ、自転車、鉄道車両に使用されている。車輪とともに回転する金属の円盤を、パッドなどで両側から挟み込むことによって制動する。一般的に円盤はブレーキローター、挟み込む機構はブレーキキャリパーと称される。.

新しい!!: パスカルの原理とディスクブレーキ · 続きを見る »

ファン・カー

ファン・カー(Fan Car)とは、送風機(ファン)により車体下面の空気を強制的に排気することで、気圧を車体上面よりも低圧とすることでその圧力差によってダウンフォースを発生させ、安定性とグリップ(ロードホールディング)の向上を図った車、特にレーシングカーである。サカー・カー(Sucker Car)などとも(sucker: (何かを)吸うもの)。.

新しい!!: パスカルの原理とファン・カー · 続きを見る »

シャワー

ャワー(Shower)とは水などを幅広く撒く、また身体に浴びるために、この幅広く水をまくための器具(シャワーヘッド、蓮口)を使用して噴出させ降下させるもの、およびこれらを組み込んだ装置を利用する行為である。.

新しい!!: パスカルの原理とシャワー · 続きを見る »

シリンジポンプ

リンジポンプ(syringe driver)とは、点滴静脈注射を施行する際に利便性と安全性を高めるために使用される医療機器であり、輸液ポンプより少量で、より正確な輸注を必要とする際に使用する。.

新しい!!: パスカルの原理とシリンジポンプ · 続きを見る »

サイフォン

イフォン(siphon、ギリシア語で「チューブ、管」の意味)とは、隙間のない管を利用して、液体をある地点から目的地まで、途中出発地点より高い地点を通って導く装置であり、このメカニズムをサイフォンの原理と呼ぶ。.

新しい!!: パスカルの原理とサイフォン · 続きを見る »

噴射ポンプ

12気筒ディーゼルエンジンの列型噴射ポンプ 噴射ポンプ(ふんしゃポンプ、Injection Pump)はディーゼルエンジンの燃焼室内に噴射する燃料を高圧で送り出す部品である。.

新しい!!: パスカルの原理と噴射ポンプ · 続きを見る »

物理学に関する記事の一覧

物理学用語の一覧。物理学者名は含まない。;他の物理学関係の一覧.

新しい!!: パスカルの原理と物理学に関する記事の一覧 · 続きを見る »

物理学者の一覧

物理学者の一覧(ぶつりがくしゃのいちらん)は、物理学の歴史を彩る、世界の有名な物理学者を一覧する。 主として物理学史において既に評価が定まった過去の物理学者を一覧し、近現代の物理学者についてはその「有名な」を保証するため、次の基準に基づいて選んである。 なお、日本の物理学者の一覧、:Category:物理学者も参照。.

新しい!!: パスカルの原理と物理学者の一覧 · 続きを見る »

静力学

静力学(せいりきがく、英語:statics)とは、静的状態にある、即ち時間によって系の要素の相対的な位置が変化しない状態に働く力やトルクについて研究する、応用物理学の一分野である。静的状態では、物体は止まっているか、重心に向かって等速度運動している。 運動の第2法則によると、この状況は系の全ての物体にかかる力とトルクの総和が0であることを意味する。つまり働いている全ての力には同じ大きさで逆向きの力がある。 静力学は、建築学や構造力学での構造の分析の道具として用いられる。材料強度学は、静力学に大きく関係する力学の一分野である。 流体静力学は静止した流体について研究する学問である。静止した流体の特徴は、ある点にかかる力が全ての方向に分散することである。もし力が等しくかからなければ、流体は力の方向に移動する。この概念はフランスの数学者で哲学者のブレーズ・パスカルによって1647年に初めて公式化され、パスカルの原理として知られるようになった。この原理は水理学の基礎となっている。ガリレオ・ガリレイも水理学の発展に大きく貢献した一人である。 経済学では、「静的」分析とは物理学におけるのと同じ意味で用いられる。1947年にポール・サミュエルソンのFoundations of Economic Analysisが発表されて以来、比較静学、つまりある静的状態と別の静的状態を比べる手法が注目を集めてきた。 * Category:古典力学.

新しい!!: パスカルの原理と静力学 · 続きを見る »

阿南市科学センター

阿南市科学センター(あなんしかがくセンター、Anan science center)は、徳島県阿南市那賀川町上福井にある科学施設。.

新しい!!: パスカルの原理と阿南市科学センター · 続きを見る »

量の次元

量の次元(りょうのじげん、)とは、ある量体系に含まれる量とその量体系の基本量との関係を、基本量と対応する因数の冪乗の積として示す表現である。 ISOやJISなどの規格では量 の次元を で表記することが規定されているが、しばしば角括弧で括って で表記されるISOやJISなどにおいては、角括弧を用いた は単位を表す記号として用いられている。なお、次元は単位と混同が多い概念であるが、単位の選び方に依らない概念である。。 次元は量の間の関係を表す方法であり、量方程式の乗法を保つ。ある量 が二つの量 によって量方程式 で表されているとき、それぞれの量の次元の間の関係は量方程式の形を反映して となる。基本量 と対応する因子を で表したとき、量 の次元は の形で一意に表される。このとき冪指数 は次元指数と呼ばれる。全ての次元指数がゼロとなる量の次元は指数法則により1である。次元1の量は無次元量()とも呼ばれる。.

新しい!!: パスカルの原理と量の次元 · 続きを見る »

連通管

連通管 連通管に液体を入れた時のアニメーション 連通管(れんつうかん)とは、液体を入れる2つ以上の容器の底を液体が流通できるように連結した管である。なお、本項目では数学的な記述はしない。連通管に関する数学的な記述はパスカルの原理を参照されたい。 フランスの哲学者、自然哲学者、神学者、思想家、数学者、物理学者、宗教家であるブレーズ・パスカルは液体の分子に作用する圧力が完全に全ての方向に同じ強さで送られることを17世紀に証明した(パスカルの原理)。 また、利点としてもっとも簡易な連通管であるU字管に同じ種類の液体を入れる場合、管が太く表面張力の影響を無視できる。 長い管で底をつないだ連通管に水を入れたものは水盛りと呼ばれ、離れた2点の高さの差を測定する時に用いられる。.

新しい!!: パスカルの原理と連通管 · 続きを見る »

水理学

水理学(すいりがく、hydraulics)とは、水の流れに関する力学を研究する学問である。水力学とほぼ同じ学問であるが、概要で述べるように、歴史的・伝統的、その他の理由により両者は区別される。.

新しい!!: パスカルの原理と水理学 · 続きを見る »

油圧

油圧(ゆあつ)あるいは油圧システム(ゆあつシステム)または油圧駆動システム(ゆあつくどうシステム、Hydraulic drive system)とは、液体(主に鉱物油)をエネルギーの伝達媒体とした駆動系のこと。類似した圧力媒体の異なる圧力駆動システムには空圧や水・グリセリンを使用した機構がある。.

新しい!!: パスカルの原理と油圧 · 続きを見る »

液体

液体の滴は表面積が最小になるよう球形になる。これは、液体の表面張力によるものである 液体(えきたい、liquid)は物質の三態(固体・液体・気体)の一つである。気体と同様に流動的で、容器に合わせて形を変える。液体は気体に比して圧縮性が小さい。気体とは異なり、容器全体に広がることはなく、ほぼ一定の密度を保つ。液体特有の性質として表面張力があり、それによって「濡れ」という現象が起きる。 液体の密度は一般に固体のそれに近く、気体よりもはるかに高い密度を持つ。そこで液体と固体をまとめて「凝集系」などとも呼ぶ。一方で液体と気体は流動性を共有しているため、それらをあわせて流体と呼ぶ。.

新しい!!: パスカルの原理と液体 · 続きを見る »

流体

流体(りゅうたい、fluid)とは静止状態においてせん断応力が発生しない連続体の総称である。大雑把に言えば固体でない連続体のことであり、物質の形態としては液体と気体およびプラズマが流体にあたる。.

新しい!!: パスカルの原理と流体 · 続きを見る »

流体力学

流体力学(りゅうたいりきがく、fluid dynamics / fluid mechanics)とは、流体の静止状態や運動状態での性質、また流体中での物体の運動を研究する、力学の一分野。.

新しい!!: パスカルの原理と流体力学 · 続きを見る »

流体静力学

流体静力学(りゅうたいせいりきがく、fluid statics, hydrostatics)は静止流体についての科学であり、流体力学の一分野である。流体静力学という用語は通常、対象物の力学的取り扱いを指し、流体が安定した平衡下の状態についての研究を含んでいる。仕事をする流体の活用は水理学と呼ばれ、動的な流体についての科学は流体動力学と呼ばれる。.

新しい!!: パスカルの原理と流体静力学 · 続きを見る »

浮沈子

浮沈子(ふちんし)とは、パスカルの原理を利用した玩具。容器を押したり離したりすることで、中にあるものが浮いたり沈んだりする。しょうゆ入れ(タレビン)とナット・ペットボトルの浮沈子が理科実験としてよく利用されるが、いろいろな材料を使った浮沈子が考えられている。 浮沈子(ふちんし)(英語:Cartesian diverあるいはCartesian devil)は、古典的な科学実験である。その英語名Cartesian diverあるいはCartesian devilは、デカルトにちなんで命名されている。浮力の原理(アルキメデスの原理)と理想気体の状態方程式を実演する。 デカルトがこの玩具を発明したと言われている。.

新しい!!: パスカルの原理と浮沈子 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »